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A level set method for a growth of a crystal
by screw dislocations
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1 Introduction

In this paper we introduce a new level set model for the growth of spirals on the surface of
a crystal. Since the conventional method level set method cannot express a spiral curve,
we modify the level set method by using a sheet structure function. Since the model
equation we obtain is a degenerate parabolic type, we need to consider a notion of weak
solution. We shall prove the existence and the uniqueness of the solution for our model
in the sence of viscosity solutions.

The theory of spiral crystal growth was proposed by F. C. Frank in 1948(see [BCF1)).
He first pointed out that dislocations play an important role in the theory of crystal
growth. He especially pointed out the importance of the role of a screw dislocation. In
his theory, if a screw dislocation terminates in the exposed surface of a crystal, there is
a permanently exposed cliff of atoms, say the step. The step can grow perpetually up a
spiral staircase, When one observe the surface from above, one can find spirals drawn by
exposed edge of the step. He proposed an evolution equation of curves which indicates
the location of edges of steps. The equation he proposed is of the form

V=C-xk, (1.1)

where V is a normal velocity of the steps, & is a curvature of the curve corresponding to the
edge of steps, and C is the driving force of steps (see [BCF2]). The sign of the curvature
is taken so that the problem is parabolic. The curvature term is interpreted as a result of
the Gibbs-Thomson effect. We postulate that steps moves under (1.1), and we construct
a new mathematical model based on (1.1). The formula (1,1), says the geometric model,
performs the model of spiral crystal growth for only one screw dislocation. However, it is
not enough to handle other situation when there are two or more screw dislocations on
the surface of the crystal and curves generated from each screw dislocations may touch
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each other. We would like to handle such a situation by adjusting the model. There are
at least two methods to realize our purpose. One is the Allen—Cahn equation model, and
the other is a level set method for geometric model. In this paper we propose a model
reflecting a level set method.

Let © be a bounded domain in R2?, which denotes the surface of the crystal. For
technical reasons we postulate that a screw dislocation is a close disk on the surface. We
also assume that all screw dislocations do not touch each other nor the boundary of ).
We denote by W the complement of all screw dislocations in the surface of the crystal.
We denote by I'; the curve corresponding to edges of steps at time ¢.

In conventional level set approach to (1.1), we denote the evolving curve by the zero-
level set of auxiliary function wu, i.e.,.

Iy = {er; u(t,m)=0},

In this way, however, we cannot distinguish the direction of moving steps. To overcome
this difficulty, we recall sheet structure function due to R. Kobayashi(See [Ko)).

We postulate that there are n screw dislocations on the crystal surface. Let a; denote
the position of the center of j-th screw dislocation. Let p; denotes the radius of j-th screw
dislocation. We denote by W the complement of all screw dislocations in the surface of
the crystal, i.e., '

w=a\ (B, @),

where B,(a) denotes an open disk of radius p centered at a. We recall the sheet structure
function € defined by

0(z) = Z m; arg(z — a;),

where m; # 0 is an integer such that |m;| denotes the height of steps and the sign of m;
denotes the direction of steps. We remark that each arguments of x — a; is multi-valued.
We consider an auxiliary function u = wu(t, ) defined on [0, +00) x W. We interpret I
as a level set of u — 6 instead of u itself, i.e.,

Ii={zeW,; ult,z) - 6(z) =0 mod 2rm},

where m is the greatest common divisor of {|m;|}}_;.
By the definition of I'; we formally observe that

1 ou
V= Nu-ga
Kk = —div Viu—-96)

V(u—-0)|'
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We remark that V@ is single-valued, so this formula is well-defined. We now obtain the
level set model consisting with geometric model of the form

ou . V(u-20) .
- — _ = T .
5 |V(u — 6)| <d1v|V(u — )] + C) 0 in (0,T)x W, (1.2)
To complete the problem we need some boundary condition on OW. Here we postulate
the Neumann boundary condition at the edge of I'; touching OW of the form

(7(z),V(u—6)) =0 on (0,T) x OW. (1.3)

where 7 denotes a unit normal vector field of 8W, and (-,-) is the inner product of R2.
Since the equation (1.2) is degenerate parabolic, we need to consider the solution of these
equation in weak sense. We consider the solution in viscosity sense.

Our goal is to prove the comparison principle, existence and uniqueness of a viscosity
solution for (1.2)—(1.3). The equation (1.2) has a moving singularity at Vu(t, z) = V6(z)
so it is hard to prove the comparison principle directly. To overcome this difficulty we
introduce a covering spaces of W and W x W so that u — # and v — @ respectively be a
sub- and supersolution of

Ou . Vu _
5" |Vl {dlvlvu| + C’} =0 (1.4)
(7,Vu) =0 (1.5)

if u and v respectively be a sub- and supersolution of (1.2)—(1.3). We test u(t, z) — 8(z) —
(v(t,y) — 0(y)) by standard test function by [GS1] but on the covering space. Then we
apply the results for (1.4)—(1.5) in [GS1]. Once we obtain the comparison principle for
(1.2)~(1.3), then it is easy to see a uniqueness of a viscosity solution for (1.2)-(1.3). It
remains to prove the existence of a viscosity solution with a desired initial data. We
construct a viscosity sub- and supersolution according to a Perron’s method due to H.
Ishii(see [I]). Perron’s method for a second order equation with Neumann boundary
condition is found by [Sa]. So we apply a results of [Sa]. In our problem, however, some
difficulties lie in the term of 8. To overcome these difficulties, we first construct sub- and
supersolutions on some small neighborhood of each points of W. Next we extend their
domain of definition to W by using Invariance Lemma(see [GS2]). We apply the Perron’s
method.

We take this opportunity to mention somewhat related results. In [GIK] the unique-
ness and existence of a spiral solution for a geometric model which includes a anisotropy
is proved. In [KP] a Allen-Cahn model for spiral crystal growth is introduced. They also



15

showed numerical computations. In [Ko] a Allen-Cahn model including more generalized
situations than that in [KP] is introduced He also showed numerical computations. He
introduced a sheet structure function in this model. We utilize his idea for expressing a
edge of steps by level set method. In [NOJ a existence of spiral traveling wave solution
for Kobayashi’s model on a annulus is proved. A level set model different from ours are
introduced by [Sm]. He expresses a location of edges of steps by using 2 auxiliary func-
tion, one denotes a existence of steps, and the other denotes a location of edges of steps.
He also showed numerical computation. His model cannot treat a situation of that, for
examples, there are 2 screw dislocations and steps generated from each screw dislocations
and a height of steps is different from each other. Our model includes such a situation.

Analytic foundation based on the theory of viscosity solution [CIL] has established by
[CGG], [ES]. It is extended to the Neumann boundary problem by [GS1] and [Sa]. From
technical point of view we use the method developed by [GS1] and [Sa] although it does
not apply to our settings directly.

The author would like to express my gratitude to Professors Yoshikazu Giga, Shun’ichi
Goto, Hitoshi Ishii and Moto-Hiko Sato for giving me a valuable advice and helpful
comments.

2 Main results

Let © be a bounded domain in R? with C? boundary 8Q. We take ay,...,a, € Q and
P1y - .-, Pn > 0 satisfying

By, (a;) CQ for j=1,2,...,n, (2.1)

B, (a;) N By, (a;) =0 for i,5=1,2,...,n, i#j, (2.2)

where By, (a;) = {z € R?% |z — a;] < p;} and D C R* denotes the closure of D in R*. We
set

W =Q\ [ B,(ay).
j=1
We introduce a multi-valued function on R? \ {as,...,a,} defined by

ba) = 3" myarg(s - ay),

where m; is an integer and arg(z — a;) is an argument of x — a;, which is regarded as a
multi-valued function.
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We consider the equation of the form

% -l fav = } i (0,00) x W, (2.3

(7,V(u—6))=0 on (0,00) x oW, (2.4)
where C is a positive constant, and vector field 7/ is a outer normal unit vector field of
OW and (-,-) is the standard inner product in R2. We remark that (2.3) is well-defined
on W since D@ is single-valued.

We consider equations (2.3)—(2.4) in the viscosity sense. For f: D(C R¥) — R we
denote respectively by f., f* lower and upper semicontinuous envelope of f defined by

fo: D — RU{£oo},
ze fo(2) = ljﬁ}inf{f(w); |z —w| < 1},

f*: D—RU{%o0},
2+ () = limsup{f(w); |2 —w| <7}

We are now in position to state our main results.

Theorem 2.1 (Comparison Principle)
Let u,v: (0,T) x W — R respectively be a viscosity sub- and supersolutions of (2.3)-(2.4)
in (0,T)x W forT > 0. If

u*(0,z) < v,(0,z) for z€W,

then
u*(t,z) < v.(t,z) for (t,z)€ (0,T)xW.

Theorem 2.2 (Existence and Uniqueness)
For a given ug € C(W), there exist a unique global viscosity solution u € C([0,00) x W)
with initial data

ultmo=1up on W.

Remark 2.3 (Generalization of the equation)
The equation (2.3) is written by

% + F(V(u—8),Vi(u—0)) =0 (2:5)
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with F: (R?\ {0}) x S; — R defined by

F(p,X) = —tr{ (12 - plfl)f) X} —Clp|, (2.6)

where S, is the space of symmetric 2 X 2 matrices, I is an identity k x k matrix and ®

denotes a tensor product of vectors in R?. This function F satisfies the following property.
(F1) F: (R?\ {0}) x S; — R is continuous.
(F2) (Degenerate elliptic) For all A > 0 and u € R,
F(Ap,AX + pp ® p) = AF(p, X)
holds for all p € R?\ {0} and X € S,.
(F3) —oo < F,(0,0) = F*(0,0) < +o0.

(F4) There exists positive constants K, K2, K3 and K, such that the following holds;

Suppose that X,Y € S, and non-negative constants vg, i, { satisfy

(pX,p) + (aY,q) < wolp — a* + u(lpl? + lal?) + ¢|p — ql(lp| + |ql)

for all p,q € R%. Then the following holds;

F(p,X)— F(q,Y) > —Kwolp— |> — Kop — Ks(|p — q| — Kulp — q|
for all p,q € R?\ {0},

where p = I%l'

Our results extend to general equation (2.5) provided that F satisfies properties (F1)-
(F4). In paticular it applies that anisotropic curvature flow motion of spilrals of the

form \

bn)V=—-» ——m)+C only
i=1 P;
where b € C(R?\ {0}) is positive on S* and H € C*(R?\ {0}) is positively homogeneous
of degree 1. In fact, our results can extend to the equation (2.5) for

F(p,X) = —tr {A(p)X} + B(p) (2.7)
IR Sy _—clol __p

It is easy to show that (2.7) satisfies (F1)—(F4).
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3 Comparison principle

As usual, we suppose that
o = max {u*(t, ) — v.(t,7); (t,7) € [0,T] x W} > 0, (3.1)

and we lead a contradiction. To lead a contradiction, we use a maximum principle for
semicontinuous functions(see [CIL, Theorem 8.3]). However, if we would use that directly
to our problems, we would have to handle the problem with moving singularity in Vu. In
fact, the equation is singular at Vu(t,z) = V6(z) depending on z. We are tempting to
consider u — @ instead of u, i.e., we are tempting to handle the function

(I)(ta x;?/) = u*(t7 CC) - 0(1:) - (v.(t,y) - o(y)) - \I’(ta T, y) (3’2)

instead of ®(¢, z,y) = u*(¢, ) —v.(t, z) - ¥(¢, z, y). However, this function is multi-valued.
So we have to localize a domain of ® so that ® has a maximum value. To determine a
domain of ® in a suitable way, we introduce some covering space so that 6 is single-valued.

To overcome the difficulty caused by the Neumann boundary condition we choose a
good test function as in [GS1].

3.1 Test function

We shall define a good test function as in [GS1] to lead a contradiction.
Since OW is C?, there is a positive constant C, such that

(F(z),z—y) > —-Colz—y|* forzecdW, yeW. (3.3)
Moreover, for all 3 > 0, there exists ¢ € C?(W) satisfying
—§<g0<0 inW, p=0 on dW, (3.4)
V= -l—g—zi on oW, (3.5)
We fix 8 > 0 and take ¢ € C?(W) satisfying (3.4)-(3.5) and
|Vp| > max {8Cp3,1} on oW. (3.6)

For £ > 0, 6 > 0 and v > 0, we define

_ E(z,y) v
\I’(t’ IB, y) - € +5G(.’L’, y) + T_ta (37)
E(x,y) = |z-y|'G(z,y), (3.8)

G(z,y) = o(z)+p(y) +26. (3.9)
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See [GS1] to know some properties which ¥ holds.

3.2 Covering space

We introduce a covering space so that u —  is viewed as a single valued function. We set

xz{(x,é')eWxR"; (&’62’ ) 1,2,...,n) }

T —a I;,;—ajl(cosé},smﬁg) (]

We define ug, vp: [0,T] x W x R® — R by
uB(ta z, §) = U’*(t’ il}) - Z mj&j?
j=1
vw(t,z,6) = w(ta) =D m;
| i=1

If we restrict the definition of ug on [0,T] x X, we can consider 6(x) formally
0(z) = ult, ) — up(t, z, ).

We still denote by ug and vy their restriction in [0, T] x X.
We define ®: [0,T) x X x X — R by

&)(t’ z, §7 Y, 77) = Ua(t, T, é) - UO(t7 Y, 77) - lIl(ta z, y),

where £ = (£1,&,...,&), 1 = (M, M2,-.., M) and ¥ is defined in the previous section.
Since ® is not bounded because of the term of arguments, we introduce a new covering
space ) instead of X x X:

@z{(%f,y,n)ezxz; fj—WSTIjS£j+7r(j=1,2,...,n)}.

We consider ® on [0, T) x 2 rather than on [0,T) x X x X. On this set arg(x — a]) and
arg(y — a;) take same branch of arguments.

We shall prove a existence of maximum value of ® on [0,T) x ). We need to consider
a subset 3 C Q) defined by

3={(=&y,n€eY; 0<¢<2r (=1,2,...,n)}.
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Proposition 3.1
The function ® has a maximum value on [0,T) x 9 and

Proof.
It suffices to consider ® on [0,T) x 3. Since ¥ > 0 we observe that

&(t,z,€,9,m) < wuolt,z,€) — vg(t, z,7)

n

< max u'— min v.+7rZ|mj|<oo.

T [0,TIxW (0,T]xW =1

Thus ® is bounded from above. Then there exists a sequence { (tj,zj, &, y;,m°)} C [0,T)x
3 satisfying

hm (i)(tj’ xjagj) Y5, 7’7) = 8sup ‘i’

e [0.T)x3

Since (t;,z;,&,y;,m7) € [0,T) x 3 C [0,T] x 3, we may assume that
tj —)EE [O)T]7 (-Tj,ﬁj,yj,ﬂj) - (:2’51?}1';}) 63 a‘SJ — 00

by taking a subsequence of (t;, x;, &, y;, 7). If € = 2 for some j we can consider £ =0
by replacing 7; with 7; — 2r. Therefore it suffices to prove t<T.
Suppose that ¢ = T. Then we get

n
~ . . . ’Y
®(t;,z;,€,y;,7) < max u*— min v.+7r§ m;| — ———.
(t25, 8,5, 7) OIIXW  [0TIxW j=1| i Tt

Since 7_1_-{; — —00 as j — 00, we obtain
im Bt 1 £ . ) = —
jlir{;@(tg,x,,é yYiy ) = —00.
This contradicts SuP[o,T]xSé > —o00. O
We denote by (£, 2, £,4,7) € [0,T) x 2 the maximum point of & over [0,T) x D), i.e.,

o(t,%,€,9,7) = [01’;111?.32)@. (3.10)

The next proposition is standard once we know that & is taken its maximum on [0,T)x9.
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Proposition 3.2
Assume that
o= max (u*—wv.)>0.
[0,T|xW
Let (£,%,€,4,7) € [0,T) x 2 be taken as (3.10).
(i) There exists constants g > 0 and 7y > 0 such that the estimate of the form

max &> 2
[0,T)xD 2

holds for0 <e <1,0<d < dpand 0 <y <
(ii) |2 — 9| — O uniformly ase — 0 on 0 < < § and 0 <y < 7.
(iii) Z(Z,9)/e — 0 uniformly ase — 0 on 0 < § < §p and 0 < 7y < 7.

(iv) Suppose that u*(0,7) < v,(0,z) for x € W. Then there exists a constant o > 0
such that
t>0 for0 < e < &.

We can prove Proposition 3.2 by using a standard arguments of the theory of the
viscosity solution. But we need to modifty the standard argument to prove Proposition
3.2(iii) because of the term of & — n;.

By Proposition 3.2 (ii) and the compactness of W we may assume that
z(e,6),9(e,6) > Z(6) ase—0
by taking a subsequence of €. We moreover may assume that
z(6) > zo €W aséd—0
by taking subsequence §. We set

po = min {p1, pa,...,pPn}

and
Upo(l'o) = BPO(ZL‘()) ﬂW,

where B, (7o) = {z € R?;|z — zo| < po}. We are now in position to define (z). We now
fix '
aj € {§j+2kmkeZ, 0<E&<2m xo—a; = |zo — aj| (cos§;,sing;)},
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and we define ¢;: [o; — Z,a; + 5] — S by
Yi(a) = (cos a, sina).

We define 8;: Uy (20) — [ — 5,5 + 5] by

0;(x) = v [ —2 ) ;

We note that 6; is single-valued and 6; € C%(Up,(20)). We define 0: Uy (z0) — R by
6(z) = ) _ 65(a).
j=1

We define ®: [0,T) x Upy(zo) X Upy(xo) — R so that
®(t,z,y) = u*(t,z) — 0(z) — (v.(t, z) — 0(z)) — ¥(¢,z,v) (3.11)
for0<e<e,0<6d <68, and 0 < v <7, where &;, §; > 0 satisfy the following:
£(e,0),9(g, 8) € Upy(xo)

for0<e<e and 0< 8 < b

Proposition 3.3
The function ® attains its maximum on [0, T) x Uy, (o) X Upy(%o) at (£, 2, §).

Proof.
This follows from
(I)(t, j", 6’ g’ ﬁ) = q>(£1 i') @)D

By the above preparation it sufficies to apply the result in [GS1, Theorem 2.1] to prove
Theorem 2.1. But their proof has a small flaw (p. 1224, line 6). They argued that A < B
“implies A2 < B?, but this is not true for matrices. One should replace the righthand of

X O 2
(O Y)§A+)\A,

matrix inequality by

where A = V2_W({,%,). Fortunately the remaining argument is similar.
zy
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4 Construction of a solution

In this section, we prove the existence of a viscosity solution for the initial-boundary
value problem applying Perron’s method. For that purpose, we construct a subsolution
(denoted by f(t,x)) and a supersolution (denoted by g(t, z)) satisfying

f(t,z) < g(t,z) for (t,x) € (0,T) x W, (4.1)
with some positive 7" independent of uy € C(W) and satisfying the initial condition, i.e.,
f(0,z) = g(0,z) = uo(x) € C(W) forz € W, (4.2)

with the continuity at time zero:
f and g are continuous at t = 0. (4.3)

The solution constructed by Perron’s method satisfies the initial condition.

We construct f and g satisfying (4.1), (4.2) and (4.3). The construction of supersolu-
tion and subsolution is symmetric, so we only construct the supersolution.

Suppose that 9 is C2. We recall the exterior ball condition (3.3) and also recall that
there exists ¢ € C*(W) satisfying (3.4)~(3.5) with 8 = 2C,. Since the initial value ug is
uniformly continuous on W, for fixed € > 0 there exists a positive constant A, such that

luo(z) — uo(y)| < Ace™ |z —y|?+¢ for z,ye W. (4.4)

Because the function 6 is Lipschitz continuous if we choose a branch the value of , there
exists § = §(¢) > 0 such that the following holds;

6(z) — 0(y)| <e if |z—y| <. (4.5)

We now fix y € W and set Us(y) = Bs(y) " W, and we consider the function 6 on Us(y).
We fix a branch of the value of 6 on Us(y). We define the function v, : [0, 00) x Us(y) — R
by

Vey(t, ) = By + Ace?®|z — y|* + 26 + 6(z) — (). (4.6)

Proposition 4.1
(i) vey satisfies the boundary condition, i.e.

(U, V(vey —0)) >0 on (0,00) x (Us(y) NOW).
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(ii) There exists a constant B, such that the following holds: if B > B, then

2 (4,2) + F*( 00yt ) — 0(2)), V(ve(t,2) — 0(2))) <0

for (t, ) € (0,00) x (Us(y) "W).

Proof.
We calculate derivatives of ve y:
%tﬂ(t, z) = B, (4.7
V(vey(t,2) = 6(2)) = Aee?)(|z — yI’Vip(z) + 2(z - 9)), (4.8)
V(vey(t,7) — () = Ace?®(jz — y[’Vip(z) @ V()
+2(Ve(z) ® (z — ) + (2~ y) ® Vo(z))
(4.9)

+|z — y|2V3p(z) + 2I).

(i) By (3.3), (4.8) and Vy = 2Cpi7 on OW we get

(#(z), V(vey(t — ) — 0(z))) = Ace?D(|z — y|*(7, Vip(2)) +2(7,z — )
> A.e@(2C,|z — y|? — 2Co|z — y|*) = 0.

(if) We set
= *®)(jz — y|*Vo(z) + 2(z — v)),
e (|lz — y*Vo(z) ® V()
+2(Vp(z) ® (z — y) + (z — y) ® Vy(z))
+lz — y|*V3p(z) + 21);

p=p(m,y)
X =X(z,y) =

in other words,
V(vey(t, z) — 0(z)) = Aep,
V2(vey(t, ) — 0(z)) = AcX.

By the definition of p and X the set {(p(z,y), X (z,%)); (z,v) e W x W} is bounded
in R? x S,. So there exists a compact set K such that K is independent of ug sat-

isfying
K > {(p(z,y), X (z,9)); (z,y) € W x W}.
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Since Fy is lower semicontinuous on a compact set K, F, has a minimum value on
K. We set

R = —min{F.(p, X); (p, X) € K}.
By the definition of F', we get

ag;’y (t, x) + F*(V(vey(t, z) — 0(x)), V(vey (t, ) — 8())

> B + F,(A., A:X)
= B+ A.F.(p, X)
> B— A.R.

So it is enough to see 2) that we set B. = A.R. O

We need to extend the function v, (resp. u.,) on (0,7) x W. For this purpose we
use Invariance Lemma(See [GS2]). We obtain a desired viscosity supersolution to take
infimum of supersolutions with respect to e > 0 and y € W.

'To construct a subsolution of (2.3)—(2.4), we define u.y: [0, 00) x Us(y) — R by

Uey(t, ) = —B't — Ace?@|z —y|2 — 2¢ + 0(z) — (), (4.10)
where B’ is a positive constant. We may assume that B’ = A.R by take
R =max {F*(p, X); (p, X) € K} .

We apply the Perron’s method to obtain a desired viscosity solution.
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