
Alevel set method for agrowth of acrystal
by screw dislocations

北大 ・ 理院 大塚岳 (Takeshi Ohtsuka)
Division of Mathematics, Graduate School of Science,

Hokkaido University.

1 Introduction

In this paper we introduce anew level set model for the growth of spirals on the surface of
acrystal. Since the conventional method level set method cannot express aspiral curve,
we modify the level set method by using asheet structure function. Since the model
equation we obtain is adegenerate parabolic type, we need to consider anotion of weak
solution. We shall prove the existence and the uniqueness of the solution for our model
in the sence of viscosity solutions.

The theory of spiral crystal growth was proposed by F. C. Frank in 1948(see [BCFI]).
He first pointed out that dislocations play an important role in the theory of crystal
growth. He especially pointed out the importance of the role of ascrew dislocation. In
his theory, if ascrew dislocation terminates in the exposed surface of acrystal, there is
apermanently exposed cliff of atoms, say the step. The step can grow perpetually up $a$

spiral staircase, When one observe the surface from above, one can find spirals drawn by
exposed edge of the step. He proposed an evolution equation of curves which indicates
the location of edges of steps. The equation he proposed is of the form

$V=C-\kappa$ , (1.1)

where $V$ is anormal velocity of the steps, $\kappa$ is acurvature of the curve corresponding to the
edge of steps, and $C$ is the driving force of steps (see [BCF2]). The sign of the curvature
is taken so that the problem is parabolic. The curvature term is interpreted as aresult of
the Gibbs-Thomson effect. We postulate that steps moves under (1.1), and we construct
anew mathematical model based on (1.1). The formula $(1_{=}1)$ , says the geometric model,
performs the model of spiral crystal growth for only one screw dislocation. However, it is
not enough to handle other situation when there are two or more screw dislocations on
the surface of the crystal and curves generated from each screw dislocations may touc
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each other. We would like to handle such asituation by adjusting the model. There are
at least two methods to realize our purpose. One is the Allen-Cahn equation model, and
the other is alevel set method for geometric model. In this paper we propose amodel
reflecting alevel set method.

Let $\Omega$ be abounded domain in $\mathbb{R}^{2}$ , which denotes the surface of the crystal. For
technical reasons we postulate that ascrew dislocation is aclose disk on the surface. We
also assume that all screw dislocations do not touch each other nor the boundary of O.
We denote by $W$ the complement of all screw dislocations in the surface of the crystal.
We denote by $\Gamma_{t}$ the curve corresponding to edges of steps at time $t$ .

In conventional level set approach to (1.1), we denote the evolving curve by the zer0-

level set of auxiliary function $u$ , i.e., ’

$\Gamma_{t}=\{x\in\overline{W};u(t, x)=0\}$ ,

In this way, however, we cannot distinguish the direction of moving steps. To overcome
this difficulty, we recall sheet structure function due to R. Kobayashi(See [Ko]).

We postulate that there are $n$ screw dislocations on the crystal surface. Let $a_{j}$ denote
the position of the center $\mathrm{o}\mathrm{f}j$-th screw dislocation. Let $\rho_{j}$ denotes the radius $\mathrm{o}\mathrm{f}j$-th screw
dislocation. We denote by $W$ the complement of all screw dislocations in the surface of
the crystal, i.e.,

$W=\Omega\backslash (\cup\overline{B_{\rho_{j}}(a_{j})})j=1n$ ,

where $B_{\rho}(a)$ denotes an open disk of radius $\rho$ centered at $a$ . We recall the sheet structure
function 0defined by

$\theta(x)=\sum_{j=1}^{n}m_{j}\arg(x-a_{j})$ ,

where $m_{j}\neq 0$ is an integer such that $|m_{j}|$ denotes the height of steps and the sign of $m_{j}$

denotes the direction of steps. We remark that each arguments of $x-a_{j}$ is multi-valued.
We consider an auxiliary function $u=u(t, x)$ defined on $[0, +\infty)$ $\cross\overline{W}$ . We interpret $\Gamma_{t}$

as alevel set of $u-\theta$ instead of $u$ itself, i.e.,

$\Gamma_{t}=\{x\in\overline{W};u(t, x)-\theta(x)=0 \mathrm{m}\mathrm{o}\mathrm{d} 2\pi m\}$ ,

where $m$ is the greatest common divisor of $\{|m_{j}|\}_{j=1}^{n}$ .
By the definition of $\Gamma_{t}$ we formally observe that

$V= \frac{1}{|\nabla(u-\theta)|}\frac{\partial u}{\partial t}$ ,

$\kappa=-\mathrm{d}\mathrm{i}\mathrm{v}\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}$ .
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We remark that $\nabla\theta$ is single-valued, so this formula is well-defined. We now obtain the
level set model consisting with geometric model of the form

$\frac{\partial u}{\partial t}-|\nabla(u-\theta)|(\mathrm{d}\mathrm{i}\mathrm{v}\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}+C)=0$ in $(0, T)$ $\cross W$, (1.2)

To complete the problem we need some boundary condition on $\partial W$ . Here we postulate
the Neumann boundary condition at the edge of $\Gamma_{t}$ touching $\partial W$ of the form

$\langle\vec{\nu}(x), \nabla(u-\theta)\rangle=0$ on $(0, T)$ $\cross\partial W$. (1.3)

where $\vec{\nu}$ denotes aunit normal vector field of $\partial W$ , and $\langle\cdot, \cdot\rangle$ is the inner product of $\mathbb{R}^{2}$ .
Since the equation (1.2) is degenerate parabolic, we need to consider the solution of these
equation in weak sense. We consider the solution in viscosity sense.

Our goal is to prove the comparison principle, existence and uniqueness of aviscosity
solution for (1.2)-(1.3). The equation (1.2) has amoving singularity at $\nabla u(t, x)=\nabla\theta(x)$

so it is hard to prove the comparison principle directly. To overcome this difficulty we
introduce acovering spaces of $\overline{W}$ and $\overline{W}\cross\overline{W}$ so that $u-\theta$ and $v-\theta$ respectively be a
sub and supersolution of

$\frac{\partial u}{\partial t}-|\nabla u|\{\mathrm{d}\mathrm{i}\mathrm{v}\frac{\nabla u}{|\nabla u|}+C\}=0$ (1.4)

$\langle$
$\nu\sim$, Vrr) $=0$ (1.5)

if $u$ and $v$ respectively be asub- and supersolution of (1.2)-(1.3). We test $u(t, x)-9(\mathrm{x})-$

$(v(t, y)-\theta(y))$ by standard test function by [GS1] but on the covering space. Then we
apply the results for (1.4)-(1.5) in [GS1]. Once we obtain the comparison principle for
(1.2)-(1.3), then it is easy to see auniqueness of aviscosity solution for (1.2)-(1.3). It
remains to prove the existence of aviscosity solution with adesired initial data. We
construct aviscosity sub- and supersolution according to aPerron’s method due to H.
Ishii(see [I]). Perron’s method for asecond order equation with Neumann boundary
condition is found by [Sa]. So we apply aresults of [Sa]. In our problem, however, some
difficulties lie in the term of $\theta$ . To overcome these difficulties, we first construct sub- and
supersolutions on some small neighborhood of each points of $W$ . Next we extend their
domain of definition to $\overline{W}$ by using Invariance Lemma(see [GS2]). We apply the Perron’s
method.

We take this opportunity to mention somewhat related results. In [GIK] the unique-
ness and existence of aspiral solution for ageometric model which includes aanisotropy
is proved. In [KP] aAllen-Cahn model for spiral crystal growth is introduced. They also
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showed numerical computations. In [Ko] aAllen-Cahn model including more generalized
situations than that in [KP] is introduced He also showed numerical computations. He
introduced asheet structure function in this model. We utilize his idea for expressing a
edge of steps by level set method. In [NO] aexistence of spiral traveling wave solution
for Kobayashi’s model on aannulus is proved. Alevel set model different ffom ours are
introduced by [Sm]. He expresses alocation of edges of steps by using 2auxiliary func-
tion, one denotes aexistence of steps, and the other denotes alocation of edges of steps.
He also showed numerical computation. His model cannot treat asituation of that, for
examples, there are 2screw dislocations and steps generated from each screw dislocations
and aheight of steps is different from each other. Our model includes such asituation.

Analytic foundation based on the theory of viscosity solution [CIL] has established by
[CGG], [ES]. It is extended to the Neumann boundary problem by [GS1] and [Sa]. Prom
technical point of view we use the method developed by [GS1] and [Sa] although it does
not apply to our settings directly.

The author would like to express my gratitude to Professors Yoshikazu Giga, Shun’ichi
Goto, Hitoshi Ishii and MotO-Hiko Sato for giving me avaluable advice and helpful
comments.

2Main results

Let $\Omega$ be abounded domain in $\mathbb{R}^{2}$ with $C^{2}$ boundary an. We take $a_{1}$ , $\ldots$ , $a_{n}\in\Omega$ and
$\rho_{1}$ , $\ldots$ , $\rho_{n}>0$ satisfying

$\overline{B_{\rho_{j}}(a_{j})}\subset\Omega$ for $j=1,2$ , $\ldots$ , $n$ , (2.1)
$\overline{B_{\rho i}(a_{i})}\cap\overline{B_{\rho_{j}}(a_{j})}=\emptyset$ for $i$ , $j=1,2$ , $\ldots$ , $n$ , $i\neq j$ , (2.2)

where $B_{\rho_{j}}(a_{j})=\{x\in \mathbb{R}^{2};|x-a_{j}|<\rho_{j}\}$ and $\overline{D}\subset \mathbb{R}^{k}$ denotes the closure of $D$ in $\mathbb{R}^{k}$ . We
set

$W=\Omega\backslash \mathrm{U}^{\overline{B_{\rho j}(a_{j})}}j=1n$.

We introduce amulti-valued function on $\mathbb{R}^{2}\backslash \{a_{1}, \ldots, a_{n}\}$ defined by

$\theta(x)=\sum_{j=1}^{n}m_{j}\arg(x-a_{j})$ ,

wher$\mathrm{e}$

$m_{j}$ is an integer and $\arg(x-a_{j})$ is an argument of $x-a_{j}$ , which is regarded as a
multi-valued function
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We consider the equation of the form

$\frac{\partial u}{\partial t}-|\nabla(u-\theta)|\{\mathrm{d}\mathrm{i}\mathrm{v}\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}+C\}=0$ in $(0, \infty)$ $\cross W$, (2.3)

$\langle\tilde{\nu}, \nabla(u-\theta)\rangle=0$ on $(0, \infty)$ $\cross\partial W$, (2.4)

where $C$ is apositive constant, and vector field $\vec{\nu}$ is aouter normal unit vector field of
$\partial W$ and $\langle\cdot, \cdot\rangle$ is the standard inner product in $\mathbb{R}^{2}$ . We remark that (2.3) is well-defined
on $W$ since $D\theta$ is single-valued.

We consider equations (2.3)-(2.4) in the viscosity sense. For $f:D(\subset \mathbb{R}^{k})arrow \mathbb{R}$ we
denote respectively by $f_{*}$ , $f^{*}$ lower and upper semicontinuous envelope of $f$ defined by

$f_{*}:$ $\overline{D}arrow \mathbb{R}\cup\{\pm\infty\}$ ,

$z \mapsto f_{*}(z)=\lim_{f\downarrow 0}\inf\{f(\omega);|z-\omega|<r\}$ ,

$f^{*}:$ $\overline{D}arrow \mathbb{R}\cup\{\pm\infty\}$ ,

$z \mapsto f^{*}(z)=\lim_{f\downarrow 0}\sup\{f(\omega);|z-\omega|<r\}$ .

We are now in position to state our main results.

Theorem 2.1 (Comparison Principle)
Let $u$ , $v:(0,T)\cross\overline{W}arrow \mathbb{R}$ respectively be aviscosity sub- and supersolutions of (2.3)-(2.4)
in $(0, T)\cross W$ for $T>0$ . If

$u^{*}(0, x)\leq v_{*}(0, x)$ for $x\in\overline{W}$ ,

then
$u^{*}(t, x)\leq v_{*}(t, x)$ for $(t, x)\in(0,T)\cross\overline{W}$.

Theorem 2.2 (Existence and Uniqueness)
For agiven $u_{0}\in C(\overline{W})$ , there exist aunique global viscosity solution $u\in C([0, \infty)\cross\overline{W})$

with initial data
$u|_{t=0}=u_{0}$ on $\overline{W}$.

Remark 2.3 (Generalization of the equation)
The equation (2.3) is written by

$\frac{\partial u}{\partial t}+F(\nabla(u-\theta), \nabla^{2}(u-\theta))=0$ (2.5)
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(2.6)

with $F:(\mathbb{R}^{2}\backslash \{0\})\cross \mathrm{S}_{2}arrow \mathbb{R}$ defined by

$F(p, X)=-tr \{(I_{2}-\frac{p\otimes p}{|p|^{2}})X\}-C|p|$ ,

where $\mathrm{S}_{2}$ is the space of symmetric $2\cross 2$ matrices, $I_{k}$ is an identity $k\cross k$ matrix $and\otimes$

denotes atensor product of vectors in $\mathbb{R}^{2}$ . This function $F$ satisfies the following property.

(Fl) $F:(\mathbb{R}^{2}\backslash \{0\})\cross \mathrm{S}_{2}$ $arrow \mathbb{R}$ is continuous.

(F2) (Degenerate elliptic) For all $\lambda>0$ and $\mu\in \mathbb{R}$ ,

$F(\lambda p, \lambda X+\mu p\mathrm{C}\otimes p)=\lambda F(p, X)$

holds for all $p\in \mathbb{R}^{2}\backslash \{0\}$ and $X\in \mathrm{S}_{2}$ .

(F1) $-\infty<F_{*}(0, O)=F^{*}(0, O)<+\infty$ .

($\mathrm{F}4\mathrm{J}$ There exists positive constants $K_{1}$ , $K_{2}$ , $K_{3}$ and $K_{4}$ such that the following holds;

Suppose that $X$ , $\mathrm{Y}\in \mathrm{S}_{2}$ and non-negative constants $\mathrm{v}\mathrm{O}$ , $\mu$ , $\zeta$ satisfy

$\langle pX,p\rangle+\langle q\mathrm{Y}, q\rangle\leq\nu_{0}|p-q|^{2}+\mu(|p|^{2}+|q|^{2})+\zeta|p-q|(|p|+|q|)$

for all $p$ , $q\in \mathbb{R}$ . Then the following holds;

$F(p, X)-F(q, \mathrm{Y})\geq-K_{1}\nu_{0}|\overline{p}-\overline{q}|^{2}-K_{2}\mu-K_{3}\zeta|\overline{p}-\overline{q}|-K_{4}|p-q|$

for all $p$ , $q\in \mathbb{R}^{2}\backslash \{0\}$ ,

where $\overline{p}=\frac{p}{|p|}$ .

Our results extend to general equation (2.5) provided that $F$ satisfies properties $(Fl)-$

(F4). In paticular it applies that anisotropic curvature flow motion of spilrals of the
form

$b( \mathrm{n})V=-\sum_{j=1}^{2}\frac{\partial}{\partial x_{j}}\frac{\partial H}{\partial p_{j}}(\mathrm{n})+C$ on $\Gamma_{t}$ ,

where $b\in C(\mathbb{R}^{2}\backslash \{0\})$ is positive on $S^{1}$ and $H\in C^{2}(\mathbb{R}^{2}\backslash \{0\})$ is positively homogeneous
of degree 1. In fact, our results can extend to the equation (2.5) for

$F(p, X)=-\mathrm{t}\mathrm{r}\{A(\overline{p})X\}+B(p)$ (2.7)

$A( \overline{p})=\frac{1}{b(-\overline{p})}\nabla^{2}H(-\overline{p})$ , $B(p)= \frac{-c|p|}{b(-\overline{p})}$ , $\overline{p}=\frac{p}{\}p1}$ .

It is easy to show that (2.7) satisfies $(Fl)-(F\mathit{4})$ .
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3Comparison principle

As usual, we suppose that

$\sigma=\max\{u^{*}(t, x)-v_{*}(t, x);(t, x)\in[0, T]\cross\overline{W}\}>0$ , (3.1)

and we lead acontradiction. To lead acontradiction, we use amaximum principle for
semicontinuous functions(see [CIL, Theorem 8.3]). However, if we would use that directly
to our problems, we would have to handle the problem with moving singularity in $\nabla u$ . In
fact, the equation is singular at $\nabla u(t, x)=\nabla\theta(x)$ depending on $x$ . We are tempting to
consider $u-\theta$ instead of $u$ , i.e., we are tempting to handle the function

$\Phi(t, x, y)=u^{*}(t, x)-\theta(x)-(v_{*}(t, y)-\theta(y))-\Psi(t, x, y)$ (3.2)

instead of $\Phi(t, x, y)=u^{*}(t, x)-v_{*}(t, x)-\Psi(t, x, y)$ . However, this function is multi-value.
So we have to localize adomain of $\Phi$ so that $\Phi$ has amaximum value. To determine a
domain of 4in asuitable way, we introduce some covering space so that 0is single-value.

To overcome the difficulty caused by the Neumann boundary condition we choose a
good test function as in [GS1].

3.1 Test function

We shall define agood test function as in [GS1] to lead acontradiction.
Since $\partial W$ is $C^{2}$ , there is apositive constant $C_{0}$ such that

$\langle\vec{\nu}(x), x-y\rangle\geq-C_{0}|x-y|^{2}$ for $x\in\partial W$, $y\in\overline{W}$ . (3.3)

Moreover, for all $\beta>0$ , there exists $\varphi\in C^{2}(\overline{W})$ satisfying

$- \frac{\beta}{2}<\varphi<0$ in $W$, $\varphi=0$ on $\partial W$, (3.1)

$\vec{\nu}=\frac{\nabla\varphi}{|\nabla\varphi|}$ on $\partial W$, (3.5)

We fix $\beta>0$ and take $\varphi\in C^{2}(\overline{W})$ satisfying (3.4)-(3.5) and

$| \nabla\varphi|\geq\max\{8C_{0}\beta, 1\}$ on $\partial W$. (3.6)

For $\epsilon>0$ , $\delta>0$ and $\gamma>0$ , we define

$\Psi(t, x, y)$ $=$ $\frac{--(-x,y)}{\epsilon}+\delta G(x, y)+\frac{\gamma}{T-t}$ , (3.7)

–$(-X, y)$ $=$ $|x-y|^{4}G(x, y)$ , (3.8)
$G(x, y)$ $=$ $\varphi(x)+\varphi(y)+2\beta$ . (3.9)
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See [GS1] to know some properties which 1holds.

3.2 Covering space

We introduce acovering space so that $u-\theta$ is viewed as asingle valued function. We set

$x$ $=\{$ $(x, \xi)\in\overline{W}\cross \mathbb{R}^{n}$ ;
$\xi=(\xi_{1}, \xi_{2}, \ldots, \xi_{n})$ ,
$x-a_{j}=|x-a_{j}|(\cos\xi_{j}, \sin\xi_{j})(j=1,2, \ldots, n)\}$

We define $u_{\theta}$ , $v_{\theta}$ : $[0, T]$ $\cross\overline{W}\cross \mathbb{R}^{n}arrow \mathbb{R}$ by

up $(t, x, \xi)$ $=$ $u^{*}(t, x)- \sum_{j=1}^{n}m_{j}\xi_{j}$ ,

$v_{\theta}(t, x, \xi)$ $=$ $v_{*}(t, x)- \sum_{j=1}^{n}m_{j}\xi_{j}$ .

If we restrict the definition of $u_{\theta}$ on $[0, T]$ $\cross\overline{x}$, we can consider $\theta(x)$ formally

$\theta(x)=u(t, x)-u_{\theta}(t, x, \xi)$ .

We still denote by $u_{\theta}$ and $v_{\theta}$ their restriction in $[0, T]$ $\cross\overline{x}$ .
We define $\Phi\sim$ : $[0, T)\cross\overline{x}\cross\overline{x}arrow \mathbb{R}$ by

$\tilde{\Phi}(t, x, \xi, y, \eta)=u_{\theta}(t, x, \xi)-v_{\theta}(t, y, \eta)-\Psi(t, x, y)$ ,

where $\xi=$ $(\xi_{1}, \xi_{2}, \ldots, \xi_{n})$ , $\eta=(\eta_{1}, \eta_{2}, \ldots, \eta_{n})$ and $\Psi$ is defined in the previous section.
Since $\tilde{\Phi}$ is not bounded because of the term of arguments, we introduce anew covering
space $\mathfrak{Y}$ instead of $X$ $\cross X$ :

$\mathfrak{Y}$ $=\{(x, \xi, y, \eta)\in\overline{X}\cross\overline{\mathfrak{X}};\xi_{j}-\pi\leq\eta_{j}\leq\xi_{j}+\pi(j=1,2, \ldots, n)\}$ .

We consider (I) on $[0, T)$ $\cross\overline{\mathfrak{Y}}$ rather than on $[0, T)$ $\cross\overline{X}\cross\overline{X}$ . On this set $\arg(x-a_{j})$ and
$\arg(y-a_{j})$ take same branch of arguments.

We shall prove aexistence of maximum value of (I) on $[0, T)\cross \mathfrak{Y}$ . We need to consider
asubset $3\subset \mathfrak{Y}$ defined by

$3=\{(x, \xi, y, \eta)\in \mathfrak{Y};0\leq\xi_{j}<2\pi(j=1,2, \ldots, n)\}$ .
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Proposition 3.1
The function $\Phi\sim has$ a maximum value on [0,$T)\cross \mathfrak{Y}$ and

$[0,T) \cross \mathfrak{Y}[0,T)\cross 3\max\tilde{\Phi}=\max\tilde{\Phi}$.

Proof.
It suffices to consider 4on $[0, T)\cross\overline{3}$ . Since $\Psi>0$ we observe that

$\tilde{\Phi}(t, x, \xi,y, \eta)$ $\leq$ $u_{\theta}(t,$ $x$ , $()-v_{\theta}(t, x, \eta)$

$\leq$ $[0,T] \mathrm{x}\overline{W}[]\mathrm{x}\overline{W}\max u^{*}-\min_{0,\tau}v_{*}+\pi\sum_{j=1}^{n}|m_{j}|<\infty$ .

Thus $\tilde{\Phi}$ is bounded from above. Then there exists asequence $\{(t_{j}, x_{j}, \xi^{j}, y_{j}, \eta^{j})\}\subset[0, T)\cross$

$3$ satisfying
$\lim_{jarrow\infty}\tilde{\Phi}(t_{j}, x_{j},\xi^{j},y_{j}, rj)$

$= \sup 1^{0,T})\cross 3$

O.

Since $(t_{j}, x_{j}, \xi^{j}, yj, r|^{j})\in[0, T)\cross 3$ $\subset[0, T]\cross\overline{3}$, we may assume that

$t_{j}arrow\hat{t}\in[0,T]$ , $(x_{j}, \xi^{j}, y_{j}, ’|^{j})arrow(\hat{x},\hat{\xi},\hat{y},\hat{\eta})\in\overline{3}$ as $jarrow\infty$

by taking asubsequence of $(t_{j}, x_{j}, \xi^{j}, y_{j}, \eta^{j})$ . If $\hat{\xi}_{j}=2\pi$ for some $j$ we can consider $\hat{\xi}_{j}=0$

by replacing $\hat{\eta}_{j}$ with $\hat{\eta}_{j}-2\pi$ . Therefore it suffices to prove $\hat{t}<T$ .
Suppose that $\hat{t}=T$ . Then we get

$\tilde{\Phi}(t_{j}, x_{j}, \xi^{j}, y_{j}, \eta^{j})\leq\max u^{*}-\min_{0[0,T]\mathrm{x}\overline{W}[,T]\mathrm{x}\overline{W}}v_{*}+\pi\sum_{j=1}^{n}|m_{j}|-\frac{\gamma}{T-t_{j}}$.

Since $\overline{\tau}_{-}^{\Delta}\overline{t_{j}}arrow-\infty$ as $jarrow\infty$ , we obtain

$\lim_{jarrow\infty}\tilde{\Phi}(t_{j}, x_{j}, \xi^{j}, y_{j}, \eta^{j})=-\infty$ .

This contradicts $\sup_{[0,T]\mathrm{x}\overline{3}}\tilde{\Phi}>-\infty$ . $\square$

We denote by $(\hat{t},\hat{x},\hat{\xi},\hat{y},\hat{\eta})\in[0, T)\cross \mathfrak{Y}$ the maximum point of $\tilde{\Phi}$ over $[0, T)\cross \mathfrak{Y}$ , i.e.,

$\Phi(\hat{t},\hat{x},\hat{\xi},\hat{y},\hat{\eta})=\max\Phi[0,T)\mathrm{x}\mathfrak{Y}$. (3.10)

The next proposition is standard once we know that $\tilde{\Phi}$ is taken its maximum on $[0, T)\cross \mathfrak{Y}$ .

20



Proposition 3.2
Assume that

$\sigma=\max(u^{*}-v_{*})>0[0,T]\mathrm{x}\overline{W}$.

Let $(\hat{t},\hat{x},\hat{\xi},\hat{y},\hat{\eta})\in[0, T)\cross \mathfrak{Y}$ be taken as (3.10).

(i) There exists constants $\delta_{0}>0$ and $\gamma_{0}>0$ such that the estimate of the form

$[) \cross \mathfrak{Y}\max_{0,T}\tilde{\Phi}>\frac{\sigma}{2}$

holds for $0<\epsilon$ $<1,0<\delta<\delta_{0}$ and $0<\gamma<\gamma_{0}$

(ii) $|\hat{x}-\hat{y}|arrow \mathrm{O}$ uniformly as $\epsilon$ $arrow 0$ on $0<\delta<\delta_{0}$ and $0<\gamma<\gamma_{0}$ .

(ii) $\cup--(\hat{x},\hat{y})/\epsilonarrow \mathrm{O}$ uniformly as $\epsilon$ $arrow 0$ on $0<\delta<\delta_{0}$ and $0<\gamma<\gamma_{0}$ .

(i)Suppose that $u^{*}(0, x)\leq v_{*}(0, x)$ for $x\in\overline{W}$ . Then there exists aconstant $\epsilon_{0}>0$

such that
$\hat{t}>0$ for $0<\epsilon<\epsilon_{0}$ .

We can prove Proposition 3.2 by using astandard arguments of the theory of the
viscosity solution. But we need to modifty the standard argument to prove Proposition
3.2(iii) because of the term of $\xi_{j}-\eta_{j}$ .

By Proposition 3.2 (ii) and the compactness of $\overline{W}$ we may assume that

$\hat{x}(\epsilon, \delta),\hat{y}(\epsilon, \delta)arrow\overline{x}(\delta)$ as $\epsilon$ $arrow 0$

by taking asubsequence of $\epsilon$ . We moreover may assume that

$\overline{x}(\delta)arrow x_{0}\in\overline{W}$ as $6arrow 0$

by taking subsequence $\delta$ . We set

$\rho_{0}=\min\{\rho_{1}, \rho_{2}, \ldots, \rho_{n}\}$

and
$U_{\rho 0}(x_{0})=B_{\rho 0}(x_{0})\cap\overline{W}$,

where $B_{\rho 0}(x_{0})=\{x\in \mathbb{R}^{2};|x-x_{0}|<\rho 0\}$ . We are now in position to define $\theta(x)$ . We now
fix

$\alpha_{j}\in\{\xi_{j}+2k\pi;k\in \mathbb{Z}, 0\leq\xi<2\pi, x_{0}-a_{j}=|x_{0}-a_{j}|(\cos\xi_{j}, \sin\xi_{j})\}$ ,
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and we define $\psi_{j}$ : $[ \alpha_{j}-\frac{\pi}{2}, \alpha_{j}+\frac{\pi}{2}]arrow \mathrm{S}^{1}$ by

$\psi_{j}(\alpha)=(\cos\alpha, \sin\alpha)$ .

We define $\theta_{j}$ : $U_{\rho 0}(x_{0}) arrow[\alpha_{j}-\frac{\pi}{2}, \alpha_{j}+\frac{\pi}{2}]$ by

$\theta_{j}(x)=\psi^{-1}(\frac{x-a_{j}}{|x-a_{j}|})$ ,

We note that $\theta_{j}$ is single- a $\mathrm{n}\mathrm{d}$ and $\theta_{j}\in C^{2}(U_{\beta 0}(x_{0}))$ . We define $\theta:U_{\rho 0}(x_{0})arrow \mathbb{R}$ by

$\theta(x)=\sum_{j=1}^{n}\theta_{j}(x)$ .

We define $\Phi:[0, T)\cross U_{\rho 0}(x_{0})\cross U_{\rho 0}(x_{0})arrow \mathbb{R}$ so that

$\Phi(t, x, y)=u^{*}(t, x)-\theta(x)-(v_{*}(t, x)-\theta(x))-\Psi(t, x, y)$ (3.11)

for $0<\epsilon<\epsilon_{1},0<\delta<\delta_{1}$ and $0<\gamma<\gamma_{0}$ , where $\epsilon_{1}$ , $\delta_{1}>0$ satisfy the following:

$\hat{x}(\epsilon, \delta),\hat{y}(\epsilon, \delta)\in U_{n}(x_{0})$

for $0<\epsilon<\epsilon_{1}$ and $0<\delta<\delta_{1}$ .

Proposition 3.3
The function $\Phi$ attains its maximum on [0,$T)\cross U_{\beta 0}(x_{0})\cross U_{\rho 0}(x_{0})$ at $(\hat{t},\hat{x},\hat{y})$ .

Proof.
This follows from

$\tilde{\Phi}(\hat{t},\hat{x},\hat{\xi},\hat{y},\hat{\eta})=\Phi(\hat{t},\hat{x},\hat{y}).\square$

By the above preparation it sufficies to apply the result in [$\mathrm{G}\mathrm{S}1$ , Theorem 2.1] to prove
Theorem 2.1. But their proof has asmall flaw (p. 1224, line 6). They argued that $A\leq B$

implies $A^{2}\leq B^{2}$ , but this is not true for matrices. One should replace the righthand of
matrix inequality by

$(\begin{array}{ll}X OO \mathrm{Y}\end{array})\leq A+\lambda A^{2}$ ,

where $A=\nabla_{x,y}^{2}\Psi(\hat{t},\hat{x},\hat{y})$ . Fortunately the remaining argument is similar
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4Construction of asolution
In this section, we prove the existence of aviscosity solution for the initial-boundary
value problem applying Perron’s method. For that purpose, we construct asubsolution
(denoted by $f$ ( $t$ , $x$ )) and asupersolution (denoted by $g(t,$ $x)$ ) satisfying

$f(t, x)\leq g(t, x)$ for $(t, x)\in(0, T)\cross\overline{W}$ , (4.1)

with some positive $T$ independent of $u_{0}\in C(\overline{W})$ and satisfying the initial condition, i.e.,

$f(0, x)=g(0, x)=u_{0}(x)\in C(\overline{W})$ for $x\in\overline{W}$ , (4.2)

with the continuity at time zero:

$f$ and $g$ are continuous at $t=0$ . (4.3)

The solution constructed by Perron’s method satisfies the initial condition.
We construct $f$ and $g$ satisfying (4.1), (4.2) and (4.3). The construction of supersolu-

tion and subsolution is symmetric, so we only construct the supersolution.
Suppose that $\partial\Omega$ is $C^{2}$ . We recall the exterior ball condition (3.3) and also recall that

there exists $\varphi\in C^{2}(\overline{W})$ satisfying (3.4)-(3.5) with $\beta=2C_{0}$ . Since the initial value $u_{0}$ is
uniformly continuous on $\overline{W}$ , for fixed $\epsilon$ $>0$ there exists apositive constant $A_{\epsilon}$ such that

$|u_{0}(x)-u_{0}(y)|<A_{\epsilon}e^{-C_{0}}|x-y|^{2}+\epsilon$ for $x$ , $y\in\overline{W}$. (4.1)

Because the function 0is Lipschitz continuous if we choose abranch the value of 0there
exists $\delta=\delta(\epsilon)>0$ such that the following holds;

$|\theta(x)-\theta(y)|<\epsilon$ if $|x-y|<\delta$. (4.5)

We now fix $y\in\overline{W}$ and set $U_{\delta}(y)=B_{\delta}(y)\cap\overline{W}$ , and we consider the function 0on $\overline{U_{\delta}(y)}$ .
We fix abranch of the value of 0on $U_{\delta}(y)$ . We define the function $v_{\epsilon,y}$ : [0, \infty ) $\cross$ U$(y) $arrow \mathbb{R}$

by
$v_{\epsilon,y}(t, x)=B_{t}+A_{\epsilon}e^{\varphi(x)}|x-y|^{2}+2\epsilon+\theta(x)-\theta(y)$. (4.6)

Proposition 4.1
(i) $v_{\epsilon,y}$ satisfies the boundary condition, i.e.

$\langle\vec{\nu}, \nabla(v_{\epsilon,y}-\theta)\rangle\geq 0$ on $(0, \infty)$ $\cross(Us(y)\cap\partial W)$ .
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(ii) There exists aconstant $B_{\epsilon}$ such that the following holds: if $B\geq B_{\epsilon}$ , then

$\frac{\partial v_{\epsilon,y}}{\partial t}(t, x)+F^{*}(\nabla(v_{\epsilon,y}(t, x)-\theta(x)),$ $\nabla^{2}(v_{\epsilon,y}(t, x)-\theta(x)))\leq 0$

for $(t, x)\in(0, \infty)\cross(U_{\delta}(y)\cap W)$ .

Proof.
We calculate derivatives of $v_{\epsilon,y}$ :

$\frac{\partial v_{\epsilon,y}}{\partial t}(t, x)$ $=$ $B$ , (4.7)

$\nabla(v_{\epsilon,y}(t, x)-\theta(x))$ $=$ $A_{\epsilon}e^{\varphi(x)}(|x-y|^{2}\nabla\varphi(x)+2(x-y))$ , (4.8)

$\nabla^{2}(v_{\epsilon,y}(t, x)-\theta(x))$ $=A_{\epsilon}e^{\varphi(x)}(|x-y|^{2}\nabla\varphi(x)$ @ $\nabla\varphi(x)$

$+2(\nabla\varphi(x)\otimes(x-y)+(x-y)\otimes\nabla\varphi(x))$

$+|x-y|^{2}\nabla^{2}\varphi(x)+2I)$ . (4.9)

(i) By (3.3), (4.8) and $\nabla\varphi=2C_{0}\vec{\nu}$ on $\partial W$ we get

$\langle\tilde{\nu}(x), \nabla(v_{\epsilon,y}(t-x)-\theta(x))\rangle$ $=A_{\epsilon}e^{\varphi(x)}(|x-y|^{2}\langle\vec{\nu}, \nabla\varphi(x)\rangle+2\langle\vec{\nu}, x-y\rangle)$

$\geq A_{\epsilon}e^{\varphi(x)}(2C_{0}|x-y|^{2}-2C_{0}|x-y|^{2})=0$ .

(ii) We set

$p=p(x, y)$ $=e^{\varphi(x)}(|x-y|^{2}\nabla\varphi(x)+2(x-y))$ ,

$X=X(x, y)$ $=e^{\varphi(x)}(|x-y|^{2}\nabla\varphi(x)\otimes\nabla\varphi(x)$

$+2(\nabla\varphi(x)\otimes(x-y)+(x-y)\otimes\nabla\varphi(x))$

$+|x-y|^{2}\nabla^{2}\varphi(x)+2I)$ ;

in other words,

$\nabla(v_{\epsilon,y}(t, x)-\theta(x))=A_{\epsilon}p$,
$\nabla^{2}(v_{\epsilon,y}(t, x)-\theta(x))=A_{\epsilon}X$ .

By the definition of $p$ and $X$ the set $\{(p(x, y), X(x, y));(x, y)\in\overline{W}\cross\overline{W}\}$ is bounded
in $\mathbb{R}^{2}\cross \mathrm{S}_{2}$ . So there exists acompact set $K$ such that $K$ is independent of $u_{0}$ sat-
isfying

$K\supset\{(p(x,y),X(x, y));(x, y)\in\overline{W}\cross\overline{W}\}$ .
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Since $F_{*}$ is lower semicontinuous on acompact set $K$ , $F_{*}$ has aminimum value on
$K$ . We set

$R=- \min\{F_{*}(p, X);(p,X)\in K\}$ .

By the definition of $F$ , we get

$\frac{\partial v_{\epsilon,y}}{\partial t}(t, x)+F^{*}(\nabla(v_{\epsilon,y}(t, x)-\theta(x)),$ $\nabla^{2}(v_{\epsilon,y}(t, x)-\mathrm{O}(\mathrm{x}))$

$\geq B+F_{*}(A_{\epsilon}, A_{\epsilon}X)$

$=B+A_{\epsilon}F_{*}(p,X)$

$\geq B-A_{\epsilon}R$ .

So it is enough to see 2) that we set $B_{\epsilon}=A_{\epsilon}R$ . $\square$

We need to extend the function $v_{\epsilon,y}$ (resp. $u_{\epsilon,y}$ ) on $(0, T)$ $\cross\overline{W}$ . For this purpose we
use Invar Since Lemma(See [GS2]). We obtain adesired viscosity supersolution to take
infimum of supersolutions with respect to $\epsilon>0$ and $y\in\overline{W}$.

To construct asubsolution of (2.3)-(2.4), we define $u_{\epsilon,y}$ : $[0, \infty)$ $\cross U_{\delta}(y)arrow \mathbb{R}$ by

$u_{\epsilon,y}(t, x)=-B’t-A_{\epsilon}e^{\varphi(x)}|x-y|^{2}-2\epsilon+0(\mathrm{x})-\theta(y)$ , (4.10)

where $B’$ is apositive constant. We may assume that $B’=A_{\epsilon}R$ by take

$R= \max\{F^{*}(p, X);(p, X)\in K\}$ .

We apply the Perron’s method to obtain adesired viscosity solution.
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