
SINGULARITIES OF VISCOSITY SOLUTIONS OF FULLY
NONLINEAR ELLIPTIC EQUATIONS

DENIS A. LABUTIN

1. INTRODUCTION

In this report we discuss some aspects of qualitative theory for fully non-
linear second order elliptic equations. By qualitative theory we understand
the circle of questions concerning removability of singularities of solutions,
Liouville-type theorems, characterisation of behaviour of solutions near sin-
gularities, potential theory, and so on. Currently rather complete answers
to such questions are available for linear and quasilinear equations of the
form

divA($\mathrm{a};$ , $u$ , Du)+B$(x, u, Du)=0$ .

The equation is (degenerately) elliptic if

$(\mathrm{A}(x, r,\xi), \xi)\geq 0$ for all $\xi\in \mathrm{R}^{n}$ .

The pioneer papers for these classes of equations are due to Serrin and
Maz’ya in the 1960-s. For the current state of art we refer to the monographs
[23], [12], [19], [20], [21]. The main tools for quasilinear equations are integral
estimates for Sobolev weak solutions. Sometimes such estimates are very
subtle and not easy to prove.

After the fundamental papers by Crandall, Lions, Ishii, Jensen, Caffarelli,
and Trudinger, we have the flexible notion of viscosity generalised solution
for fully nonlinear (nonlinear on the second derivatives) elliptic equations.
In their papers the basic questions of existence, uniqueness, and regularity
for the elliptic equations of the form

$F$ ($x,u$ , Du, $D^{2}u$ ) $=0$

have been resolved. Such equation is (degenerately) elliptic if

$\sum_{i,j=1}^{n}\frac{\partial F}{\partial S_{ij}}(x,r, \eta, S)\xi_{i}\xi_{j}\geq 0$ for all $\xi\in \mathrm{R}^{n}$ .

Here we report on our attempts to develop the qualitative theory for viscosity
solutions. The main difficulty is that viscosity solutions do not have an
integral nature similar to the distributional or weak solutions. However,

it was possible to understand some questions of qualitative theory rather
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completely. In what follows we describe some results [15], [16], [17], [18] in
this direction.

Our main topic will be the singularities of viscosity solutions.This does
not exhaust all qualitative theory for PDEs. Recently results on Liouville
and Phragmen-Lidel\"of type theorems were obtained by I. Capuzzo Dolcetta,
A. Cutri, and F. Leoni [11] [5], [6], [10].

This report is based on the talk Igave in October 2001 at the conference
in RIMS, Kyoto. Iwish to thank Hitoshi Ishii and Shigeo Koike for the
invitation to attend it. Ialso wish to thank Shigeo for his kind hospitality
during my visit to Kyoto and the University of Saitama. Ialso thank Hitoshi
Ishii for his friendly patience during preparation of this paper.

2. $\mathrm{p}_{\mathrm{U}\mathrm{L}\mathrm{L}\mathrm{Y}}$ NONLINEAR EQUATIONS AND VISCOSITY SOLUTIONS

Let ( $\cdot$ , $\cdot$ ) be the Euclidean inner product in Rn, $n\geq 2$ . $B(x, R)$ denotes
an open ball in $\mathrm{R}^{n}$ with centre $x$ and radius $R$ , $B_{R}=B(0, R)$ . By $\mathrm{S}^{n}$ ,
$n\geq 2$ , we denote the space of real $n\mathrm{x}$ $n$ symmetric matrices equipped with
its usual order; that is for $N\in \mathrm{S}^{n}$ the condition

$N\geq 0$

means that
$(Nx, x)\geq 0$ for all $x\in \mathrm{R}^{n}$ .

In the equation
$F(D^{2}u)=0$

we have $F$ : $\mathrm{S}^{n}arrow \mathrm{R}^{1}$ . We will assume that $F$ is auniformly elliptic operator.
That is, there are two constants

$A\geq a>0$

(which are called the ellipticity constants), such that for any $M\in \mathrm{S}^{n}$

$a\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(N)\leq F(M+N)-F(M)\leq A\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(N)$ for all $N\geq 0$ ,

or equivalently

a $id \leq[\frac{\partial F(M)}{\partial M_{ij}}]\leq Aid$ .

The ratio $\lambda$ ,
$\lambda=\frac{A}{a}$ , $\lambda\geq 1$ ,

is called the ellipticity of $F$ . Examples of fully nonlinear uniformly elliptic
equations arising in applications are the Bellman and Isaacs equations.

Important operators for the viscosity theory (and for our work) are the
Pucci extremal operators $P_{\lambda}^{\pm}$ . If $\mu j$ , $j=1$ , $\ldots$ , $n$ are the eigenvalues of
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M $\in \mathrm{S}^{n}$ and $\lambda\geq 1$ , then

$\mathcal{P}_{\lambda}^{+}(M)=\sup_{id\leq A\leq\lambda id}(\sum_{i,j=1}^{n}A_{ij}M_{ij})=\lambda\sum_{\mu_{j}\geq 0}\mu_{j}+\sum_{\mu_{j}<\leq 0}\mu_{j}$ ,

$\mathcal{P}_{\lambda}^{-}(M)=\inf_{id\leq A\leq\lambda id}(\sum_{i,j=1}^{n}A_{ij}M_{ij})=\sum_{\mu_{j}\geq 0}\mu_{j}+\lambda\sum_{\mu_{j}\leq 0}\mu_{j}$ .

For an arbitrary uniformly elliptic operator $F$ with the ellipticity $\lambda$ , the
following property of viscosity sub- and supersolutions is well known:

$F(D^{2}u)\geq 0\Rightarrow P_{\lambda}^{+}(D^{2}u)\geq-F(0)$ ,
$F(D^{2}u)\leq 0\Rightarrow P_{\lambda}^{-}(D^{2}u)\leq-F(0)$ .

The fundamental solutions $E^{+}$ , $e^{+}$ to the operator $P_{\lambda}^{+}$ are defined by

$E^{+}(x)=E_{\lambda}^{+}(x)=\{\frac{1}{-|x^{\frac{(n-1)|}{\lambda}}-\mathrm{l}|x|^{\frac{(n-1)}{\mathrm{o}\mathrm{g}|x|^{1-}\lambda}-1}}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}n-1<\lambda\lambda=n-11\leq\lambda<n,-1$

$e^{+}(x)=e_{\lambda}^{+}(x)=\{\frac{-1}{\frac{}{\mathrm{l}},|x|^{\lambda-1}|x|^{\lambda(n-1)-1}\mathrm{o}\mathrm{g}|x|-1}$
$\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}\lambda=1\mathrm{a}\mathrm{n}\mathrm{d}n=2\lambda>1\mathrm{a}\mathrm{n}\mathrm{d}n=2\lambda\geq 1\mathrm{a}\mathrm{n}\mathrm{d}n\geq 3$

.
Note that

$E_{\lambda}^{+}\neq-e_{\lambda}^{+}$ if $\lambda>1$ .
Using the rotational invariance of the Pucci extremal operators, it is easy
to check that $E^{+}$ , $e^{+}$ satisfy
(2.1) $P_{\lambda}^{+}(D^{2}u)=0$

. in $\mathrm{R}^{n}\backslash \{0\}$ .
It is only (2.1) that justifies the term “fundamental solution”. As adirect
consequence of the comparison principle in spherical shells any radial solu-
tion to (2.1) has either the form $cE^{+}+d$ , or $ce^{+}+d$ , where $c\geq 0$ , $d\in \mathrm{R}^{1}$ .
We define the fundamental solutions $E^{-}$ , $e^{-}$ , to the operator $P_{\lambda}^{-}$ by

$E^{-}=-E^{+}$ , $e^{-}=-e^{+}$ .
We will consider only the operator $P_{\lambda}^{+}$ Using the equality

$P_{\lambda}^{+}(M)=-\mathcal{P}_{\lambda}^{-}(-M)$

$\mathcal{P}_{\lambda}^{+}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{s}$

easy to formulate and prove results for $P_{\lambda}^{-}$ parallel to the results for

In several our theorems below we impose the condition
$\lambda\leq n-1$
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for the operators $P_{\lambda}^{\pm}$ (or for $F(D^{2}u)$ ). It is completely analogous to the
condition

$p\leq n$

for the p-Laplacian
$\triangle_{p}u=\mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du)$ , $p>1$ ,

or to the well known growth restriction for general quasilinear operators in
divergence form. For

(2.2) $\lambda>n-1$ ,

the fundamental solution $E_{\lambda}^{+}$ for the operator $\mathcal{P}_{\lambda}^{+}$ is H\"older continuous at the
nonremovable singularity, as in the case for the fundamental solution for the
$p$-Laplacian for $p>n$ . Consequently, in removability statements like, say,
our Theorem 4.1 the absolute value restrictions are no longer sufficient in
the case (2.2). Nevertheless, the ideas behind Theorems 4.1-4.3 work for any
A. For example, using “tilting” arguments as in the proof of Theorem 4.1,
cf. [15], it is easy to show that if the ellipticity of $F$ satisfies (2.2) and if

$|u(x)-u(0)|\leq C|x|^{\beta}$

for some
$\beta>1-((n-1)/\lambda)$

then 0is aremovable singularity for
$F(D^{2}u)=0$ .

The example of $P_{\lambda}^{+}$ and $E^{+}$ shows that this condition on $\beta$ is sharp. More-
over, the proof of the characterisation in Theorem 4.3 can be easily adapted
to embrace the case (2.2), see [14] for the case of the $P$-Laplacian with $p>n$ .

3. SINGULAR SETS AND CAPAC1TIES

For adomain $\Omega\subset \mathrm{R}^{n}$ and $\lambda\geq 1$ , let $\Psi_{\lambda}(\Omega)$ be the set of all lower
semicontinous viscosity solutions to inequality

$P_{\lambda}^{+}(D^{2}u)\leq 0$ in $\Omega$ ,

such that
$u(x)\not\equiv 0$ , $x\in\Omega$ .

Elements of $\Psi_{\lambda}(\Omega)$ are called $\lambda$ -superharrnonic functions. For example, if
for $1\leq\lambda\leq n-1$ we define by continuity

$E_{\lambda}^{+}(0)=+\infty$ ,

then $E_{\lambda}^{+}$ becomes lower semicontinuous in $\mathrm{R}^{n}$ and consequently
$E_{\lambda}^{+}\in\Psi_{\lambda}(\mathrm{R}^{n})$ .

Now we give an equivalent definition in the spirit of potential theory

48



Proposition 3.1. A lower semicontinuous function $u:\Omegaarrow \mathrm{R}^{1}\cup\{+\infty\}$ ,
$u(x)\not\equiv+\infty$ , is $\lambda$ -superharmonic if and only if for any subdomain $\Omega’\subset\subset\Omega$

the implication

(3.1) { $P_{\lambda}^{+}(D^{2}h)=0$ in $\Omega’$ , $h\leq u$ on $\partial\Omega’$ } $\Rightarrow h\leq u$ in $\Omega’$ .
holds for any such $h$ .

Any function $h$ in (3.1) is $C^{2,\alpha}$-smooth by the Evans-Krylov regularity. The
condition

$h\leq u$ on $\partial\Omega’$

in (3.1) means that

$\lim_{xarrow\partial}\sup_{\Omega}$, $(h(x)-u(x))\leq 0$ .

Proposition 3.1 for $\lambda=1$ is proved in [13]. In general csise it is possible to
follow the same lines, cf. also [4].

From Proposition 3.1 the cone $\Psi_{1}(\Omega)$ is in fact the cone of classical super-
harmonic functions. The classical (1-) superharmonic functions are essen-
tially in one-t0-0ne correspondence with with the distributions $U\in D’(\Omega)$

satisfying
$-\triangle U\geq 0$ .

Now we are going to give asimilar characterisation for A-superharmonic
functions when $\lambda>1$ , cf. Proposition 3.2 below. We remind that for a
distribution $f\in D’(\Omega)$ , the condition

$f\geq 0$

means that
$\langle f, \eta\rangle\geq 0$ for every $\eta\in C_{0}^{\infty}(\Omega)$ such that $\eta\geq 0$ .

Every nonnegative distribution is aRadon measure, see e.g. [24].

The set $\Psi_{\lambda}(\Omega)$ is aconvex functional cone, and
$\Psi_{\lambda}(\Omega)\subset\Psi_{\nu}(\Omega)$ , when A $\geq\nu\geq 1$ .

Hence A-superharmonic functions are harmonic in the classical sense, and
in particular

$\Psi_{\lambda}(\Omega)\subset L_{1\mathrm{o}\mathrm{c}}^{1}(\Omega)$ .
Also the viscosity definitions (or characterisation (3.1)) imply that

$u,$ $v \in\Psi_{\lambda}(\Omega)\Rightarrow\min\{u, v\}\in\Psi_{\lambda}(\Omega)$ .
Proposition 3.2. If $u\in\Psi_{\lambda}(\Omega)$ then

(3.2) - $\sum_{i,j=1}^{n}AijDijU\geq 0$ in $D’(\Omega)$

for all $A\in G_{\lambda}$ . Conversely, if $U\in D’(\Omega)$ satisfies (3.2) for all matrices
$A\in G_{\lambda}$ then $U$ is equivalent to a unique $u\in\Psi_{\lambda}(\Omega)$ .
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Proposition 3.2 for smooth $u$ follows directly from the definitions via the
simple linear algebra. The proof in the general case is based on the suitable
smooth approximation and can be found in [15].

As aconsequence of Proposition 3.2 we will now prove that for any $u\in$

$\Psi_{\lambda}(\Omega)$ , $\lambda>1$ , all the second derivatives $D_{ij}u$ , $i$ , $j=1$ , $\ldots$ , $n$ , are signed
Radon measures in $\Omega$ , cf. Corollary 3.3. Of course this is not true for
classical (l-)superharmonic functions, for which only the combination

$-\Delta u=-D_{11}u-\cdots-D_{nn}u$

is aRadon measure. Properties of functions whose Hessian matrices are
signed Radon measures have been investigated in the literature, see e.g. [1]
and references therein. Thus Corollary 4.3 implies that the results of [1]
hold for functions in $\Psi_{\lambda}(\Omega)$ with $\lambda>1$ .

Corollary 3.3. If $u\in\Psi_{\lambda}(\Omega)$ , $\lambda>1$ , then the distributional derivatives
DijU are signed Radon measures for all $i,j=1$ , $\ldots$ , $n$ .

When investigating the local properties of $\lambda$-superharmonic functions, we
can restrict ourselves to the case $\Omega=B_{R}$ , for some fixed $R>0$ . In what
follows we set

$\Psi_{\lambda}=\Psi_{\lambda}(B_{R})$ .

Aset $E\subset\subset B_{R/2}$ is called $\lambda$-polar if there exists afunction $u\in\Psi_{\lambda}$ such
that

$u|_{E}=+\infty$ .

Acompact set $K\subset B_{R/2}$ is called removable for an operator $F$ if the follow-
ing implication holds:

$F(D^{2}u)=0$ in $B_{R}\backslash K$, $u\in L^{\infty}(B_{R})\Rightarrow F(D^{2}u)=0$ in $B_{R}$ .

To study removable sets for fully nonlinear uniformly elliptic operators $F$ ,
we introduce the capacity suitable for A-superharmonic functions [17]. The
capacity will be defined on sets $E\subset\subset B_{R/2}$ . Fix apoint $X_{0}$ ,

$X\circ\in B_{R}\backslash B_{R/2}$ , $|X_{0}|=2R/3$ .

Let $K\subset B_{R/2}$ be acompact set:
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First we define the capacitary potential of $K$ . Set
$\mathcal{U}_{\lambda}(K)=$ { $u\in\Psi_{\lambda}$ : $u\geq 0$ in $B_{R}$ , $u\geq 1$ on $K$}

Define the function $u_{K}$ : $B_{R}arrow \mathrm{R}$ by writing
(3.3) $u_{K}(x)=u_{K,\lambda}(x)= \inf\{u(x) : u\in \mathcal{U}_{\lambda}(K)\}$ .
Clearly

$u_{I\mathrm{f}}=1$ on $K$.
The capacitary potential $\overline{u}_{K}$ of $K$ is the lower semicontinuous regularisation
of $u_{K}$ :

$\overline{u}_{K}(x)=\lim_{yarrow}\inf_{x}u_{K}(y)$ , $x\in B_{R}$ .
Standard arguments in viscosity theory [3], [7], [8] give

$\overline{u}_{K}\in\Psi_{\lambda}$ .
Applying the strong minimum principle for the classical superharmonic func-
tions we see that

either $\overline{u}_{I\mathrm{f}}>0$ in $B_{R}$ , or $\overline{u}_{K}\equiv 0$ in $B_{R}$ .
Moreover, $\overline{u}_{IC}$ is the (upper) Perron solution to the Dirichlet problem

(3.4) $\{\begin{array}{l}P_{\lambda}^{+}(D^{2}u)=0\mathrm{i}\mathrm{n}B_{R}\backslash Ku=0\mathrm{o}\mathrm{n}\partial B_{R}u=1\mathrm{o}\mathrm{n}K\end{array}$

Viscosity theory and Evans-Krylov local regularity give
$u_{K}=\overline{u}_{K}$ in $B_{R}\backslash K$ , $u_{K}\in C_{1\mathrm{o}\mathrm{c}}^{2,\alpha}(B_{R}\backslash K)$ .

For general $K$ we can only say that
$\overline{u}_{K}\leq u_{K}$ in $B_{R}$ .

But for sufficiently regular $K$ (say, $K$ satisfying the cone condition) problem
(3.4) has the unique classical solution [9]. Therefore

$u_{K}=\overline{u}_{I\mathrm{f}}$ in $B_{R}$ , $u_{K}\in C(\overline{B}_{R})\cap C_{1\mathrm{o}\mathrm{c}}^{2,\alpha}(B_{R}\backslash K)$

for such regular $K$ .
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Next we define the $\lambda$ -capacity of acompact set $K\subset B_{R/2}$ as
$C_{\lambda}(K)=\overline{u}_{K}(X_{0})=u_{K}(X_{0})$ .

It has the following properties:

Cx(Ki) $\leq C_{\lambda}(K_{2})$ for $K_{1}\subset K_{2}\subset B_{R/2}$ ,
$C_{\lambda}(K_{1}\cup K_{2})\leq \mathrm{C}\mathrm{x}(\mathrm{K}\mathrm{i})+\mathrm{C}\mathrm{X}$ (K2) for any $K_{1}$ , $K_{2}\subset B_{R/2}$ .

These properties essentially follow directly from (3.3). The next important
property of $C_{\lambda}$ is slightly less trivial. We claim that for amonotone sequence
of compact sets $B_{R/2}\supset K_{1}\supset K_{2}\supset\cdots$ we have

(3.5) $C_{\lambda}( \cap K_{j})j=1\infty=\lim_{jarrow\infty}C_{\lambda}(K_{j})$ .

The proof is omitted.

So far the capacity has been defined only on compact sets. It is monotone,
subadditive, and satisfies (3.5) Let us know briefly describe the axiomatic
procedure of its extension to arbitrary sets. First define the outer capacity
for any open set $O\subset\subset B_{R/2}$ as

$C_{\lambda}^{*}(O)= \sup${$C_{\lambda}(K):K\subset O$ , $K$ compact}.

Then for arbitrary $E\subset\subset B_{R/2}$ we set
$C_{\lambda}^{*}(E)= \inf$ { $C_{\lambda}^{*}(O):O\supset E$ , $O$ open}.

It easy to show that $C_{\lambda}^{*}$ is monotone and subadditive on all subsets of $B_{R/2}$ .
It is correctly defined on open sets. Moreover, for acompact set $K\subset B_{R/2}$

we have

(3.6) $C_{\lambda}^{*}(K)=C_{\lambda}(K)$ .

Next, the abstract arguments allow to derive from the subadditivity, (3.5),

and (3.6) that

$C_{\lambda}^{*}( \cup E_{j})j=1\infty=\lim_{Jarrow\infty}C_{\lambda}^{*}(\cup E_{j})j=1J$ .

for any sequence $\{E_{j}\}$ such that

$(\cup E_{j})j=1\infty\subset\subset B_{R/2}$ .

Finally, the Choquet abstract theorem asserts that for any Borell (even more
generally, for any Suslin) set $E$ CC $B_{R/2}$ we have

$C_{\lambda}^{*}(E)= \sup${ $C_{\lambda}(K)$ : $K\subset E$ , $K$ compact}.

Sets with such property are called capacitable. In particular, statement (3.6)

says that compact sets are capacitable.
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In what follows we use the outer capacity $C_{\lambda}^{*}$ for non-compact sets
$E\subset\subset B_{R/2}$ . However we omit the star and denote it by $C_{\lambda}$ .

To illustrate the definitions let us calculate the capacity of the ball $B_{r}$ ,
$r<R/2$ . Using the radial fundamental solution $E_{\lambda}^{+}$ we derive the formula
for the capacitary potential of $\overline{B}_{r}$ , or in other words for the solution to (3.4)
with $K=\overline{B}_{r}$ :

$u_{\overline{B}_{r}}(x)= \min\{1$ , $\frac{E_{\lambda}^{+}(x)-E_{\lambda}^{+}(R)}{E_{\lambda}^{+}(r)-E_{\lambda}^{+}(R)}\}$ , for $x\in B_{R}$ .

Hence from the definition

$C_{\lambda}(B_{r})=C(n, \lambda)\frac{r^{\frac{n-1}{\lambda}-1}}{R^{\frac{n-1}{\lambda}-1}-r^{\frac{n-1}{\lambda}-1}}$ for $1\leq\lambda<n-1$ ,

$C_{n-1}(B_{r})=C \frac{1}{\log(R/r)}$ for $\lambda=n-1$ ,

$C_{\lambda}(B_{r})=C(n, \lambda)\frac{R^{1-\frac{n-1}{\lambda}}}{R^{1-\frac{n-1}{\lambda}}-r^{1-\frac{n-1}{\lambda}}}$ for $\lambda>n-1$ .

It follows that for $\lambda>n-1$ the singletons have positive capacity. Conse-
quently

$C_{\lambda}(E)=0\Leftrightarrow E=\emptyset$ .
provided $\lambda>n-1$ .

Capacities defined for different choices of $X\circ$ are equivalent. Indeed, for
any $K\subset B_{R/2}$ the function $\overline{u}K$ solves uniformly elliptic equation (3.4) in
$B_{R}\backslash B_{R/2}$ . Utilising the Krylov-Safonov Harnack inequality we conclude
that

$\frac{1}{C}\overline{u}_{I<}(Y_{0})\leq\overline{u}_{K}(X_{0})\leq C\overline{u}_{IC}(\mathrm{Y}_{0})$ for all $X_{0}$ , $\mathrm{Y}_{0}\in B_{R-\delta}\backslash B_{R/2+\delta}$

for any $\delta>0$ with aconstant $C>0$ , $C=C(n, \lambda, \delta/R)$ . For A $=1$ our
capacity $C_{1}$ is the classical (electrostatic) capacity for the Laplace operator.

Now we state main theorems on removable sets [17].

Theorem 3.4. Let $K\subset B_{R/2}$ $be$ a compact set, and let $\lambda\geq 1$ . The following
statements are equivalent:
(i) The set $K$ is $\lambda$ -polar.
(ii) The set $K$ is removable for bounded solutions of the equation

$F(D^{2}u)=0$

for all uniformly elliptic operators $F$ with the ellipticity A.
(ii) $C_{\lambda}(K)=0$ .

It is important that Theorem 3.4 allows to obtain some geometric in-
formation on removable and polar sets. For this purpose we will need the
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notions of the Riesz capacities $\mathrm{C}\mathrm{a}\mathrm{p}_{\alpha}$ and the Hausdorff measures $\mathcal{H}^{\alpha}$ . They
can be found e.g. in [22].

Theorem 3.5. Let $K\subset B_{R/2}$ be a compact set, and let $1\leq\lambda$ $\leq n-1$ .
Then:
(i) $\mathrm{C}\mathrm{a}\mathrm{p}_{\frac{n-1}{\lambda}-1}(K)=0\Rightarrow C_{\lambda}(K)=0$ .
(ii) $\prime H^{\frac{n-1}{\lambda}-1}(K)<+\infty\Rightarrow C_{\lambda}(K)=0$ .

4. JSOLATED SINGULARITIES

In this section we consider the case when the singular set is an isolated
point. The results in this case are quite complete [15], [16]. Let us state
some of them.

Theorem 4.1. Let $u\in C_{1\mathrm{o}\mathrm{c}}(B_{R}\backslash \{0\})$ solve

(4.1) $F(D^{2}u)=0$ in $B_{R}\backslash \{0\}$ ,

where $F$ is a uniformly elliptic operator with the ellipticity $\lambda$ , $1\leq\lambda\leq n-1$ .
If
(4.2) $u(x)=o(E_{\lambda}^{+}(x))$ when $xarrow \mathrm{O}$ ,

then the singularity at 0is removable and ti is a solution of (4.1) in the
entire ball $B_{R}$ .

The next result concerns the Pucci operators $P_{\lambda}^{+}$ . It sates that any one
side bounded solution to the equation

$\mathcal{P}_{\lambda}^{+}(D^{2}u)=0$

in the punctured ball is either extendible to the solution in the entire ball,
or can be controlled near the centre of the ball by means of the fundamental
solution.

Theorem 4.2. Let $u\in C_{1\mathrm{o}\mathrm{c}}^{2}(B_{R}\backslash \{0\})$ , $u\geq 0$ , satisfy

(4.3) $P_{\lambda}^{+}(D^{2}u)=0$ in $B_{R}\backslash \{0\}$ ,

where $B_{R}\subset \mathrm{R}^{n}$ , $n\geq 2,1\leq\lambda$ $\leq n-1$ . Then either the singularity at 0
is removable and $u$ is a classical solution of (4.3) in the entire ball $B_{R}$ , or
there exists a real number $\gamma>0$ such that

$u(x)=\gamma E_{\lambda}^{+}(x)+O(1)$ , $xarrow \mathrm{O}$ ,

and

$D^{\alpha}u(x)= \gamma D^{\alpha}E_{\lambda}^{+}(x)+o(\frac{1}{|x|^{\frac{n-1}{\lambda}-1+|\alpha|}})$ , $xarrow \mathrm{O}$ ,

for all multi-indices $\alpha$ with $1\leq|\alpha|\leq 2$ , $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ .
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According to the Evans-Krylov estimates, any viscosity solution to (4.3)
enjoys $C_{1\mathrm{o}\mathrm{c}}^{2,\alpha}$ regularity and, consequently, is aclassical solution. Because of
the lack of differentiability of the matrix function $P_{\lambda}^{+}$ we cannot in general
expect the existence of derivatives of order 3and higher for solutions of
(4.3). For A $=1$ we have

$P_{\lambda}^{+}(D^{2}u)=\Delta u$ .
The proof of Theorem 4.2 is based on the scale invariance of the opera-
tor and the classical maximum principle. It uses ablow-up construction
of Kichenassamy and Veron [14]. Because of the Evans-Krylov regularity
estimates it is possible to avoid viscosity solutions entirely in the proof. The
condition

$\lambda\leq n-1$

has been discussed in section 2.

We conclude with the result on the unconditionally removable isolated
singularities [16]. We define

(4.4) $q( \lambda)=\frac{n-1+\lambda}{n-1-\lambda}$ .

Assume that the function $f$ : $\mathrm{R}^{1}arrow \mathrm{R}^{1}$ is continuous and satisfies

$\lim_{tarrow+}\sup_{\infty}\frac{f(t)}{|t|^{q(\lambda)}}<0$

(4.5)
$\lim_{tarrow-}\inf_{\infty}\frac{f(t)}{|t|^{q(\lambda)}}>0$ .

Theorem 4.3. Let $F$ be a uniformly elliptic operator in Sn, $n\geq 3$ , with
the ellipticity $\lambda$ , $1\leq\lambda<n-1$ , and let $u\in C_{1\mathrm{o}\mathrm{C}}(BR\backslash \{0\})$ be a solution to
(4.6) $F(D^{2}u)+f(u)=0$ in $B_{R}\backslash \{0\}$ ,
where the continuous function $f$ satisfies (4.5). Then $u$ can be defined at 0
as a solution to the equation in (4.6) in the entire ball $B_{R}$ .

The semilinear case $\lambda=1$ in Theorem 4.3 was proved by Brezis and
Veron in their seminal paper [2]. As acorollary of Theorem 4.3 we obtain
that isolated singularities are removable for the fully nonlinear equation
(4.7) $\mathcal{P}_{\lambda}^{+}(D^{2}u)-|u|^{q-1}u=0$ , $q>1$ ,

if and only if
$1\leq\lambda<n-1$ and $q\geq \mathrm{g}(\mathrm{X})$ ,

where $q(\lambda)$ is defined by (4.4). To see that the “only if” part holds it is
enough to note the following. For

$\lambda\geq n-1$ , and any $q>1$ ,

or for
$1\leq\lambda<n-1$ and $1<q<\mathrm{g}(\mathrm{X})$
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equation (4.7) has asolution of the form

$u(x)= \frac{A_{1}}{|x|^{\frac{2}{q-1}}}$ , $A_{1}>0$ .

For
$1<q< \frac{\lambda(n-1)+1}{\lambda(n-1)-1}$ and any A $\geq 1$

equation (4.7) has also asolution of the form

$u(x)=- \frac{A_{2}}{|x|^{\frac{2}{q-1}}}$ , $A_{2}>0$ .

Constants $A_{1,2}(\lambda, \Lambda, n, q)$ can easily be calculated.

For further comments on the results similar to Theorems 4.2, 4.3 we refer
to [15], [16], [17].
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