
Numerical simulation of the flow around across-flow wind turbine

お茶の水女子大学大学院人間文化研究科 河村哲也, 佐藤祐子
Tetuya KAWAMURA, Yuko SATO

Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo

TwO-dimensional flows around the cross-flow tyPe wind turbine are investigated by numerical

simulation. The turbine studied in this paper has cylindrical shape with 12 small blades

along its periphery. Incompressible Navier-Stokes equation is used for this simulation. A
rotating coordinate system, which rotates at the same speed of the turbine, is used in order
to simplify the boundary conditions on the blades of the turbine. Additionally, aboundary
fitted coordinate system is employed in order to express the shape of the blades precisely.

The fractional step method is used to solve the basic equations. Athird order upwind scheme
is chosen for the approximation of the non-linear terms since it can compute the flow field
stably even at high Reynolds number without any turbulent models.

1. INTRODUCTION

Recently, wind energy has been received much attention as anatural energy source. The wind turbine

is one of the best candidates for this purpose. While the number of wind power plants for electricity have

increased recently, we focus on awind turbine that is applicable to pumping water for irrigation since we

are interesting on the environmental problems in arid lands. The wind turbine of cross-flow type is suitable

for this purpose due to its ability of getting high torque. Another advantage is its lesser dependence on
the wind direction. Among many kinds of cross flow turbine, we look at the cylindrical turbine with many

blades since we can find few investigations about this turbine and its performance is not well known. The

purpose of the present study is to investigate the flow field around the cylindrical turbine numerically

and to estimate the torque and power coefficients. These information give us fundamental data for the

design of the turbine. Also, we intend to show the effectiveness of the numerical simulation on the study

of the wind turbine.

2. NOTATIONS IN THIS STUDY

Following symbols are used in this paper. Other basic fluid dynamical quantities have their usua
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$\mathrm{R}$ : Radius of the turbine
$\mathrm{D}$ : Diameter of the blade
$\theta$ : Rotation angle
$\omega$ : Angular velocity
$U_{\infty}$ : Uniform wind speed far from the rotor
$\mathrm{A}$ : Cross sectional area of the rotor
$\mathrm{q}$ : Dynamic pressure $=\rho U_{\infty}^{2}/2$

$\mathrm{T}$ : Torque
A:Tip speed ratio $=R\omega/U_{\infty}$

$c_{t}$ : Torque coefficient $=\mathrm{T}/\mathrm{q}\mathrm{R}\mathrm{A}$

$c_{p}$ : Power coefficient $=\mathrm{A}C_{t}$

$x$ , $y$ : Position in the stational Cartesian coordinate
$X$ , $Y$ : Position in the rotating Cartesian coordinate Fig. 1 Schematic figures of the

cylindrical cross-flow
turbine and notations3. NUMERICAL METHOD

Since the cross-flow turbine rotates rather slowly, the flow is governed by the incompressible Navier-
Stokes equations. Along the axis of the rotation (with the same angular velocity $\omega$ as the rotor), these
equations become as follows:

$\frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=0$, (1)

$\frac{\partial U}{\partial t}+U\frac{\partial U}{\partial X}+V\frac{\partial U}{\partial Y}-\{v^{2}X+2\omega V$
$=- \frac{\partial p}{\partial X}+\frac{1}{Re}(\frac{\partial^{2}U}{\partial X^{2}}+\frac{\partial^{2}U}{\partial Y^{2}})$ , (2)

$\frac{\partial V}{\partial t}+U\frac{\partial V}{\partial X}+V\frac{\partial V}{\partial Y}-\omega^{2}Y-2\omega U=-\frac{\partial p}{\partial Y}+\frac{1}{Re}(\frac{\partial^{2}V}{\partial X^{2}}+\frac{\partial^{2}V}{\partial Y^{2}})$ . (3)

where $(x, y)$ and $(u, v)$ are the position and velocity components in stational coordinate, $(X, Y)$ and

$(U, V)$ are those in the rotational coordinate (see Fig.2).

Fig. 2Schematic figure of the relation between stational and rotational coordinate
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The following relations hold between the coordinate systems:

$x=X\cos\theta+Y\sin\theta$ , $X=x\cos\theta-y\sin\theta$ ,

$y=-X\sin\theta+Y\cos\theta$ , $Y=x\sin\theta+y\cos\theta$ , (4)

$u=U\cos\theta+V\sin\theta+\omega y$, $U=u\cos\theta-v\sin\theta-\omega y$ ,

$v=-U\sin\theta+V\cos\theta-\omega x$ , $V=u\sin\theta+v\cos\theta+\omega x$ . (5)

These equations are solved by the fractional step $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}^{4)}$ . This method is summarized briefly for

the present equations as follows. At first, temporal velocity components are computed by the following

equations

$u^{*}=u+ \Delta t(-(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y})+\frac{1}{Re}(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}))$,

(6)$v^{*}=v+ \Delta t(-(u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y})+\frac{1}{Re}(\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial^{2}v}{\partial y^{2}}))$ .

The right-hand-side of the equations (6) is calculated by using the velocity components at ’n’th time

step. These equations are obtained by omitting the pressure term from the original momentum equations.

Then, the pressure is determined from the Poisson equation:

$\frac{\nabla\cdot v^{*}}{\Delta t}=\Delta p^{n+1}$ . (7)

The new velocity components at ’$n+1$ ’th time step are calculated from

$u^{n+1}=u^{*}+\Delta t(-\nabla p^{n+1})$ ,

$v^{n+1}=v^{*}+\Delta t(-\nabla p^{n+1})$ . (8)

This procedure is continued until it reaches to the prescribed time steps.

In order to impose boundary conditions precisely on the blades (no slip in rotating coordinate system),

the boundary-fitted coordinate system is employed. The transformed equations are solved by the finite

difference method.

All the spatial derivatives except nonlinear terms are approximated by central difference. Nonlinear

terms are approximated by third order upwind difference since it provides astable solution without any

turbulence models even at very high Reynolds number.

Then the torque acting on the segment of the blade can be calculated from

$\Delta T$ $=$ $y\Delta f_{x}+x\Delta f_{y}$

$=$ $(y\Delta y +x\Delta x)(p_{2}-p_{1})$ . (9)
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The total torque acting on the blade is obtained by summing uP the contribution from each segment

to give

$T= \sum_{\dot{l}=1}^{n}\Delta T_{\dot{1}}$ . (10)

where the parameters are as follows:

$p_{1}$ , $P2$ : the pressures on either sides of the blade obtained by the flow calculation

$x$ , $y$ : the position of the center of the segment

$\Delta x$ , $\Delta y$ : the $x$ , $y$ components of the length of the segment

$f_{x}$ , $f_{y}$ : the $x$ , $y$ components of pressure force acting on the segment

(see Fig.3)

Fig. 3Definition diagram for the calculation of torque

In this study, the cylindrical cross-flow turbine with 12 blades is tested. The shape of the cross section

of the blade is apart of the circle. The thickness of the blade is assumed to be zero in this computation.

Considering the shape of the cross-flow turbine, the grid generation is enough to only one twelfth

region. At first, the grid is generated algebraically with grid concentration enforced near the blade (see

Fig.4(a) $)$ . Then, the whole grid is obtained from this grid by rotating 30 $(=360/12)$ degrees 12 times (see

Fig.4(b) $)$ . The number of grid points is $92\cross 184$ .

The boundary of each region is overlapped and the following boundary conditions are imposed on

each boundary a)On the blade (e.g. along BC in Fig.4(c)), no slip condition is applied, b)on the

other boundary (e.g. along AB and $\mathrm{C}\mathrm{D}$ ), the velocity and pressure are replaced by average value of the

neighboring grid points (e.g. $\mathrm{P}$ and Q) at each time step, c)on the far boundary, the velocity is assumed

to be uniform and the pressure is extrapolated.

Initially, uniform velocity and pressure field are set in the whole region. Since the grid is not very fine,

the Reynolds number (based on the uniform flow and diameter of the rotor) is fixed to 2000
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(a) One-twelfth region

(b) Whole grid near the blade

(c) Lower boundary of the region shown in (a)

Fig. 4Grid generation

$4.\mathrm{R}\mathrm{E}\mathrm{S}\mathrm{U}\mathrm{L}\mathrm{T}\mathrm{S}$

Numerical simulation of the flow around the rotating cylindrical cross-flow turbine is performed, and

both the torque and power coefficients are calculated to evaluate its performance.

4.1 Basic Flow Field

Figure 5shows the velocity field and the pressure contours around the cross-flow wind turbine after the

flow becomes periodic. It shows the flow fields at $\theta=10^{0}$ and $\theta=25^{\mathrm{O}}(=10^{\mathrm{O}}+15^{\mathrm{o}})$ as the typical cases

since the wind turbine has aperiod of 30 degrees. The tip speed ratio is 0.2. Roughly speaking, the flow

around the turbine is similar to the one around aconcentric cylinder with radius $\mathrm{R}$ , i.e. the pressure is
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high near the front side and Karman vortex can be seen behind the body. In the figure of the velt

field, the flow into the turbine pushes the blades on the downstream side once again Fig.6). It is

clear that the strong vortices are generated and shed at the edge of the blades in the upper side $0$

turbine where the blades are pushed by the flow. These vortices flow downstream. In the lower $\mathrm{s}\mathrm{i}\mathrm{I}$

the turbine where the blades are moved against the flow, we can see the weak vortices.

(c) Pressure field at $\theta=25^{\mathrm{o}}$ (d) Velocity field at $\theta=25^{\mathrm{o}}$

Fig. 5Flow field near the cross-flow turbine (A $=0.2$)

Fig. 6Close-up of the velocity field near the blade in Fig.5(b
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4.2 The effect of the tip speed ratio

The tip speed ratio Ais an important parameter which determines the performance of the wind turbine.

Figure 7shows the effect of the tip speed ratio on both the torque and power coefficients. It is clear from

this figure that the torque coefficient becomes smaller as the tip speed ratio increases while the power

coefficient has its maximum value around $\mathrm{A}=0.28$ .

Fig. 7The effect of the tip speed ratio on the torque and power coefficients

4.3 The effect of the guide vane

We also compute the flow field around the cross-flow turbine with the guide vanes to promote its

performance. Figure 8shows the shape and location of the guide vanes. Figure 9is the flow field around

this turbine. The guide vane on the upstream side (e.g. Ain Fig.8) makes the flow slow behind the vane,

which prevents the drag acting against the rotation of the turbine. The guide vane on the downstream

side (e.g. $\mathrm{B}$ in Fig.8) causes the more fluid come inside of the turbine compared to the case without the

vane. This flow helps the rotation of the turbine. We can also see the large separation vortices generated

by the guide vane on the downstream side.

Fig. 8The shape and location of the guide vanes
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(c) Pressure field at $\theta=25^{\mathrm{o}}$ (d) Velocity field at $\theta=25^{\mathrm{o}}$

Fig. 9Flow field near the cross-flow turbine with guide vanes (A $=0.2$ )

5. SUMMARY

Owing to the demand for the energy sources not harmful to the environment, the wind power draws

attention of public. The wind turbine is widely used to obtain such wind energy. In this study, we show

one numerical method to calculate the complex flow fields around the cylindrical cross-flow turbine and to

compute the torque and power coefficients. This kind of wind turbine is suitable for the pumping water

system in arid lands. The basic equations are expressed in the rotational coordinate system and the

fractional step method is used to solve these equations. The computational region is divided into small

regions and connected to each other since the shape of the wind turbine is not simple in general. Not only

the flow field but also the effect of the tip speed ratio on these coefficients are investigated. Moreover,

the effect of the guide vane which is equipped on the turbine in order to promote its performance is

examined. Although the wind turbine of cross-flow tyPe with 12 blades are chosen, the method used in

this study is applicable to calculate the flow field and compute the performance of many kinds of wind

turbine.
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