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HOMEOMORPHISM GROUPS OF FINITE TOPOLOGICAL SPACES
SUSUMU KONO AND FUMIHIRO USHITAKI t

ABSTRACT. As being pointed out by several authors, finite topological spaces have more
interesting topological properties than one might at first expect. In this article, we study
the homeomorphism groups of finite topological spaces as finite topological groups. In
particular, we obtain a short exact sequence of finite topological groups which contains
Homeo(X).

- 1. INTRODUCTION

Let X be a finite set, and let X, denote the n-point ‘set {z1,Z2,-+- ,zn}. Let T be a

topology on X, that is, 7 is a family of subsets of X which satisfies:

(1) 0eT, X eT,

(2) A, BeT=AUBEeT;

3) AABeT=ANBeT. ;
A finite set X with a topology is called a finite topological space or finite space briefly. A
finite topological group is also defined canonically, but it is not assumed to satisfy any
separation axioms. We say that a finite topological space (X,7) is a finite To- -space 1f it
satisfies the Ty-separation axiom.

As several authors have pointed out, finite topological spaces ‘have more interesting
topological properties than one might at first expect. It is remarkable that for every finite
topological space X, there exists a simplicial complex K such that X is weak homotopy
equivalent to |K| ([5]), and that the classification of finite topological spaces by homotopy
type is reduced to a certain homeomorphism problem ([14]). Some relations with simple
homotopy theory are revealed in [8]. Group actions on finite spaces have been also studied
by several authors ({1}, [3], [15]). In [15], Stong proved rather surprising results for the
equivariant homotopy theory for finite Ty-spaces. One can find a survey of the theory of
the finite topological spaces from topological viewpoints in [2].

For discussing the theory of topological transformation groups on a finite topological
space (X, 7T), it is necessary to consider Homeo(X'), the homeomorphism group of X. The
purpose of the present article is to study the homeomorphism groups of finite topological
spaces as finite topological groups. Concerning its topological structure, Proposition 3.3
and Corollary 3.7 say that Homeo(X) decomposes into the disjoint union of connected
components equipped with trivial topologies which are homeomorphic to each other.

According to [5], for every finite space X, there exists a quotient space X of X such
that X is homotopic to X and satisfies Ty-separation axiom. Then, in Theorem 4.7, we
have the following spliting exact sequence
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1 H[z]ekﬂomeo([az]) —— HOIHGO(X) -/ HomeoX(X) — 1’

where Homeox (X) is a subgroup of Homeo(X).

The rest of this article is organized as follows. Section 2 gives a brief introduction to the
theory of finite topological spaces. In section 3, we investigate finite topological groups
and the homeomorphism groups of finite topological spaces from a topological viewpoint.
Section 4 is devoted to proving Theorem 4.7 which is our main result of this article. In
the last section, we present a couple of examples including the homeomorphism groups of
finite topological groups.

2. PRELIMINARIES

Let (X,,7) be a finite topological space. Let U; denote the minimal open set which
contains z;, that is, U; is the intersection of all open sets containing xz;. We see that
{Uy,Us,---U,} is an open basis of 7. For 7, we define an n x n - matrix A = (a;;) by

1l =z 5 € Uz
a;; = .
0 otherwise.

This matrix is called the topogenous matriz of (X,,7) by Shiraki in his works on finite
topological spaces ([12], [13]). If a matrix A is the topogenous matrix of some finite
topological space, A is simply called a topogenous matriz. This matrix has been investi-
gated by several authors ([4], (6], [7], [9], [10], [11], [12], [13]) for enumerating the possible
topologies on X, or creating some topological invariants of finite topological spaces. The
following theorem by H. Sharp Jr. is fundamental.

Theorem 2.1 ([10] : Theorem 4). A matriz A = (a;;) is a topogenous matriz if and only
if A satisfies the following conditions. '

(1) a;j =0 or 1.

(2) Qi = 1.

(3) A? = A, where matriz multiplication involves Boolean arithmetic.

Let X be a finite topological space. We define an equivalence relation ~ on X by
zi~z; if U;=Uj
‘Let X be the quotient space X/ ~, and vx : X — X the quotient map. We note that
| vx(zi) = UsN Gy,
where C; is the smallest closed set containing z;. From now on, we denote vx(z) € X
by [z]. For simplisity we will often use the notation [z] for vy’ ([z]) which is a subset of

X. The following theorem bridges the gap between general finite topological spaces and
finite Tp-spaces.

Theorem 2.2 ([5] : Theorem 4). Let X and Y be finite topological spaces. Then the
following hold.

(1) The quotient map vx : X — X is a homotopy equivalence.
(2) The quotient space X is a finite Ty-space.
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(3) For each continuous map ¢ : X — Y, there ezists a unique continuous map ¢ :
X — Y such that vyp = pryx.

3. FINITE TOPOLOGICAL GROUPS AND THE HOMEOMORPHISM GROUPS OF FINITE
TOPOLOGICAL SPACES

In this section, we propdse some basic properties on finite topological groups and the
homeomorphism groups of finite topological spaces.

Definition 3.1. A finite set G is called a finite topological group if G satisfies the following
conditions. v , '
(1) G is a group. ,
(2) The maps @ : G x G — G and 3 : G — G defined by a(g, h) = gh and 3(g) = g™*
are continuous. Here G x G is equipped with the product topology.

Remark 3.2. (1) In the definition of topological groups it is usually assumed to be a
Hausdorff space. However, we do not require the T>-separation axiom on finite topological
groups. We note that every finite Hausdorff space has the discrete topology.

(2) From now on, for a finite topological group G, the minimal open set which contains
an element g will be denoted by U, as well as U, the minimal open neighbourhood of =
in finite topological space X.

Let G be a finite topological group. For given element g € G, the map Ly, : G —» G
defined by Ly(h) = gh is called the left transformation map by g, and themap R, : G — G
defined by R,(h) = hg is called the right transformation map by g. We see that L, and Ry
are homeomorphisms of G onto itself. On the topological structures of finite topological
spaces, the following result holds.

Proposition 3.3. Let G be a finite topological group, g an element of G. Let Uy denote
the minimal open set which contains g. Then, the following hold.
(1) For g,h € G, Uy is homeomorphic to U.
(2) For g,h € G, UyN Uy # 0 implies Uy = Uy,
(3) Uy has the trivial topology. o
(4) Let e be the unit of G. There erists a subset {e, g1, .. ,9gk-1} of G such that G has
the decomposition into the connected components as follows:

G=UUU, U---UU,,_, (disjoint union).

Proof. (1) Since Lyo L,-1(U,) is an open set which contains h, we obtain Uy C Ly 0
Lg-1(Uy). Simillarly we have U, C Lyo Ly-1(Us). Hence it holds that U = Lp 0 Lg-1(Uj).
(2) IfU,NU, # 0, take any element k € U; N Up. Then (1) follows that Uy = Uy = Uh.
(3) It is an immediate consequence of (2).

(4) By (2), there exists a decomposition as

G=UUU,U---UU,_, (disjoint union).

By (3), each component is connected. A subset of a finite topological space is a connected
component if and only if it is an open and closed connected subset. Hence, the above is
a decomposition into the connected components. 0
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For studying topological groups, it is useful to investigate the connected component Gy
which contains e. Proposition 3.3 implies that Gy = U,. Moreover we have:

Theorem 3.4. Let G be a finite topological group. Let e be the unit of G. and U, the
minimal open set which contains e. Then, U, s a closed and open normal subgroup of G.

Proof. Since U, is a connected component, it is sufficient to show that it is a normal
subgroup of G. Since both a(U, x U,) and B(U,) are connected subset which contains e,
we have a(U, x U,) C U, and B(U.) C Uk, that is, U, is a subgroup of G. For any g € G,
by a similar discussion as above, we have

gU.g™" = Ly o Ry-1(U) C U,

that is, U, is normal. ) O

Corollary 3.5. Let I, be an r X r-matriz whose all entries are equal to 1. Let G be a
finite topological group,- and A the topogenous matriz of G. Then, A is equivalent to the
matrixz of the form L
. ‘[7' .
. I,
Ek ® Ir =

I,

for some integers v and k, that is, there exists a permutation matriz P such that *PAP =
Eir ® I.. Conversely, if the topogenous matriz of a finite topological space X is equivalent
to Ex.® I, for some integers r and k, we can define a finite topological group structure on

X.

Proof. Decompose G as
G=U,UU,U---U Ug._, (disjoint union),

as in Proposion 3.3, where gy = e. Suppose that U, has r elements for 0 < S k- 1.
Put Us, = {9a,---,9ijy--- »9ir}- If we regard g,; as the (ri + j)-th element of G, the
topogenous matrix A of G is Ey ® I,.

Conversely, if the topogenous matrix of a finite topologlcal space X is equlva.lent to
Ey ® I, for some integers r and k, X is decomposed into the disjoint union of connected
components with trivial topology as

X =U,UU0;U---UU; (disjoint union),

where #U; = r for each 1 £ ¢ £ k. Let Ci, =< t > be a finite cyclic group of
order kr which is generated by t. We define subsets of Cyi,, V},V,,... ,Vk by V, =
{¢', ¢k, ...t (~DF} We now consider a topological space C, with the topology gen-
erated by {V1,V,,...,Vik}. Then, we see that it is a finite topologlcal group and Cy, is
isomorphic to X as topologlcal spaces. O

Now, we consider the topologies of the homeomorphism group of a finite topological
space. When 'it is equipped with the compact open topology, it becomes not only a
topological space, but also a finite topological group.
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Proposition 3.6. The topological space Homeo(X) is a topological group, that is, the
maps o« : Homeo(X) x Homeo(X) — Homeo(X) and 3 : Homeo(X) — Homeo(X)
defined by a(g, f) = go f and B(f) = f~! are continuous. Moreover, the canonical action
 : Homeo(X) x X — X defined by 0(f,x) = f(x) is continuous.

Proof. For a subset K of X and an open subset U of X, set
O(K,U) = {f € Homeo(X)|f(K) C U}.

We note that O(K,U) = NyexO({z},U).

First, we show the continuousity of a. It is sufficient to prove that a~}(O({z},U)) is
an open subset of Homeo(X) x Homeo(X) for every point € X and every open subset
U. Suppose that (f,g) € ™1 (O({z},U)). Set V = g7'(U). Then, we see that

(9, f) € O(V,U) x O({z}, V) c a” (O({=}, U)),

that is, (g, f) has an open neighbourhood in o~ }(O({z},U)).
Next, we prove that 3 is a continuous map. Suppose that f € ~1(O({z},U)), where
z € X and U is an open subset of X. Set V = f(U). Then we have f € O(U,V) and
z € V. Suppose g € O(U, V). Since g is a homeomorphism, we have g(U) =V, thus we
obtain that g~!(z) € U. This implies g € 37(O({z},U)), which means O(U, V) is an
open neighbourhood of f included in 8~}(O({z},U)). ‘ '
Let U be an open set of X. For any (f,z) € 8~'(U), by putting W = f~1(U), we have

(f,3) € OW,U) x W C §7}(U),
which implies the continuity of 6. ' . ‘ d
The following corollary is an immediate result of Proposition 3.3 and Proposition 3.6.

Corollary 3.7. There exists a subset {id, fi1,..., fr_1} of Homeo(X) such that Homeo(X)
decomposes as S

Homeo(X) =U;yUU;, U---UUy,_, (disjoint union),
where Uy and each Uy, are connected components of Homeo(X).
In the following proposition, we treat one of the special cases of Corollary 3.7.

Proposition 3.8. Let X be a finite topolbgical space. The homeomorphism group Homeo(X)
has the discrete topology if and only if X is a Ty-space.

Proof. Let X be a finite Ty-space. By Corollary 3.7, it suffices to show that Homeo(X)
satisfies the Ty-separation axiom. Let f and g be different homeomorphisms on X. Then,
there exists a point x € X such that f(z) # g(z). We may assume that there exists an
open neighbourhood U of f(z) which does not contain g(z) without loss of generality.
Then, we see that O({z},U) is an open set containing f, but not g.

Conversely, suppose X does not satisfy the Ty-separation axiom. Then, there exist
different points z and y of X such that z € U, and y € U,. We note that U, = U,. Define
amap f: X — X by

z (z=y)
fl@)=qy (z=2)

z (otherwise).
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Then, f is a homeomorphism, but is not the identity map on X. Suppose that idx €
O(K,U), where K C X and U is an open subset of X. Then, K = idx(K) C U and
f(K) C U,ex Us C U. Hence f € O(K,U). This means that every open neighbourhood
of idx contains f, that is, f € Ui, . Similarly we have idx € Us. Thus Homeo(X) does
not satisfy the Ty-separation axiom. (I

The following proposition also holds as usual.

Proposition 3.9. Let X be a finite topological space, and G a topological group. Let
0 :Gx X — X be a continuous action of G on X. Then, there exists unique continuous
homomorphism ® : G — Homeo(X) such that ¢ = 8o (P x idx).

Proof.  Since every element g € G defines a homeomorphism ®(g) on X by ®(g) =
¢(g,z) where £ € X, we obtain a map ® : G — Homeo(X). The equality

®(gh)(z) = p(gh,z) = ¢(g, p(h, z)) = 2(9)(®(h)(2)) = &(g) © @(h)(z)
shows that ® is a group homomorphism. Suppose that g € ®~1(O({z},U)) where z € X
and U is an open subset of X. Since ¢ is continuous, there exists an open neighbourhood
W of g and an open neighbourhood V' of z such that (W x V) C U. Since for h € W
it holds that ®(h)(z) = @(h,z) € (W x V) C U, we have h € ®1(O({z},U)). Thus
we have g € W C & 1(O({z},U)), which implies that ® is continuous. By definition, we

obtain
p(g,z) = 2(9)(z) = 6(®(g),z) =00 (P x idx)(g, )

for every (g,z) € G x X. ,

Such a map ® : G — Homeo(X) is uniquely determined since if a map ' : G —
Homeo(X) satisfies ¢ = 6 o (@’ x idx), it holds that

®'(g)(z) = 0(¥'(9),2) = 00 (P x idx)(g, %) = »(g,2) = B(9)()

for every (g,z) € G x X. O

Proposition 3.9 indicates that if a topological group G acts on a finite topological space

effectively, then it must be a finite topological group, and that the compact open topology
is the weakest topology which makes the action of Homeo(X) on X continuous.

4. THE STRUCTURE OF Homeo(X)

Now we consider the group structure of Homeo(X ). We prepare the following lemma
in order to reduce the problem of Homeo(X) to Homeo(X).

Lemma 4.1. Let X be a finite topological space. Then, the map ¢ : Hgmeo(X )xX — X
defined by o(f, [z]) = [f(z)] is a continuous action of Homeo(X) on X.

Proof. Since a homeomorphism preserves the equivalence relation, ¢ is well-defined.
Since in the following commutative diagram, i¢d x vx is able to be regarded as a quotient
map, the continuity of vx o fx implies the continuity of ¢.

Homeo(X) x X X, x

'idXVxl Jf’x

Homeo(X) x X —— X
- e
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Since
o(fog[z]) =[f o g(z)] = [f(9(z))]
= o(f,19(@)]) = o(f, ¢(g, [z]))
and
p(id, la]) = [id(z)] = [2), |
¢ is a Homeo(X)-action on X. a

Lemma 4.2. There ezists unique continuous homomorphism m : Homeo(X) — Homeo(X)
such that the following diagram commutes:

Homeo(X) x X XL X

ﬂxuxl lVX

Homeo(X) x X — X

X

Proof. It follows from Lemma 4.1 that there exists unique homomorphism 7 : Homeo(X) —

Homeo(X ) such that ¢ = 03 o (r x idy), where ¢ is the map obtained in Lemma 4.1.
Then,

Oz o (m x vx)(f,z) =05 o (7 x idg)(f,[z])
(f,[z]) = [f(z)] = [0x(f,2)] = vx 0 Ox(f, z).

Suppose that §4; o (7' X vx) = vx 0 0x for another map 7’ : Homeo(X) — Homeo(X).
Then,

P (1)l = 7()x(z)) = O (1), vx(a)
= 0% o (v x vx)(f, 2) = vx 0 Ox(f, ) = m(f)([z])-
This shows the uniqueness of ¢. a

The product [ ], x Homeo([]) is identified with the set of maps F": X - Hizjex Homeo([x])

with F([z]) € Homeo([z]) for every [z] € X. Let F be an element of [ zje x Homeo([z]).
Then, F defines a map «(F) : X — X by «(F')(z) = F([z}])(x), under above identification.
For F, G € [];)cx Homeo([z]), ”

UGF)(z) = GF([z])(z) = G([z]) o F([z])(z)
= G([=])(F([z])(x))
= UG)(F)(z)) = «(G) o U F)(x)
for every z € X since it holds that vx((F([z]))(z)) = vx(z). This implies that «(GF) =
(G) o u(F) for every F, G € [];)cx Homeo([z]). Then, we have the following theorem.
Theorem 4.3. The map ¢ is continuous and the sequence
1 —— [[yex Homeo([z]) —— Homeo(X) —— Homeo(X)

1s an ezact sequence of finite topological groups.
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Proof. By definition, it is clear that ¢ is a monomorphism. For any open set O(K,U) C
Homeo(X ), we see that

[iex Homeo([z]) (if U,ex Uz C U)
0 (otherwise).

“HO(K,U)) = {

This shows that ¢ is continuous.
According to definition, we obtain

((m o )(F))([z]) = [(F)(=)] = [F([z])(z)] = [z] = id([z])
for every F € []jex Homeo([z]) and every [z] € X. Hence, it holds that 7 o t(F) = id 4
for every F' € [[;cx Homeo([z]). Let f be an element of kerm. Then, f(z) € [z] for

every ¢ € X, thereby f defines an element F' € [] . x Homeo([z]) by F ([z)(z) = f(z)
for every x € X. Then ((F) = f. O

Remark 4.4. For [z] € X, define a homomorphlsm ) Homeo([z]) — Homeo(X) by

setting '
v~(L[I](Fim]?)([?{]) = {y | (otherwise),

where Fi;; € Homeo([z]) Then, a o (tjg) X tfy)) = a0 (4 X ) for every [z], [y] € X and ¢
coincides with H[l, jex Yal followed by the composition.

Corollary 4.5. Let X be a finite topological space. Let Usqy be the identity component
of Homeo(X). Then, we have

Uiay = ker(m) = Im(b) = H Homeo([z]),
[z]leX

as finite topological groups.

Proof. By definition, X satisfies the Ty separation axiom. It follows from Proposition
3.8 that Homeo(X ) has the discrete topology. Therefore the identity component Usg, is
contained in ker(r). Since [, x Homeo([z]) has the trivial topology and connected, we
have Im(¢) C U,q, . Thus we obtain that Uy, = ker(w) = Im(s).

Since the map 7 : H[m]e « Homeo([z]) — Im(¢) defined by ¢ is an isomorphism between
groups equipped with the trivial topology, ¢ is also a homeomorphism. O

Remark 4.6. Proposition 3.8 is a corollary of Corollary 4.5.
Set a subset Homeox(X) of Homeo(X) by

TN o\ | #f([z]) = #[z] for every [x] € X
Homeox (X} = {f € Homeo(X) where the numbers are counted as subsets of X

We see that Homeox(X) is a subgroup of Homeo(X). Between any [z, [y] € X with
#[z] = #ly], we can construct a family of homeomorphisms :

Aoy (2] = [yl
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to satisfy the following conditions:

Pyl (2} © Pzl y] = Pz f2) ;
’ ’ [whE for every [z, [y], [2] € X.
{ Ayl e} © Pzl ) = da)

For every f € Homeox(X), define a map o(f) : X — X by
(c()(@) = hay, ptap) ()

for every x € X. Then, we have

(@(f) o a((@) = o(f ) hiasan(2)) = Psiiah,s-1(r ) (Pl £012) ()
= (i) o) (Pal £ (o)) (2)) = Pz la) © Pzl f(1z) (€)
= id[x](li) =T,

and similarly
(a(f)oa(fH)(z) =2

for every z € X. Hence o(f) is a bijection. For every z € X,

vx(o(f)(z)) = I{x(h[z],f([mz)(x)) = f([z]) = f(vx(=)),

that is, it holds that vx o o(f) = f o rx. Let U be an open subset of X. Since U=
vy (vx(U)), vx(U) is an open subset of X and o(f) is continuous because

o(£)(U) = o(£) R v (0))) = (vx 0 () (vx (D))
= (f ovx) TN (rx(U))) = v (f 7} (vx(U)))

is an open subset of X. Since o(f)™' = o(f!), o(f)~! is also continuous, thereby, o(/)
is a homeomorphism on X. Let f and g be elements of Homeox(X). Then,

o(f 0 g)(z) = P fog(te) (%) = izl £(g(1z)) (2)
= hy((a)),f(gl)) © Pla)g(lz) (%)

= hyg((z)),f(g(a))) (Plz),9((a) (%))
= o(f)(o(g9)(x)) = (o(f) o a(9))(z)

for every z € X. This implies that o : Homeox(X) — Homeo(X) is a homomorphism.

Since Homeox (X ) has the trivial topology, o is continuous.
Now we have prepared to state the following theorem.

Theorem 4.7. Let X be a finite topological space. Then,: the following hold.

(1) Homeox(X) = Im(w), where 7 is the homomorphism defined in Lemma 4.2. "
(2) The sequence ' ' ' '

1 —— []jex Homeo([z]) —* Homeo(X) —— Homeox(X) —= 1

is exact, where the same symbol 7 is used for the map defined by ™ m Lemma 4.2.
(3) TOoO = idHomeox(f()'
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Proof. Suppose that f € Homeo(X). Then, f defines a bijection fly; : [z] — f([z]) =
m(f)([z]) for every [z] € X. This implies that #m(f)([z]) = #[z] for every [z] € X, and
hence 7(f) € Homeox(X), that is, Homeox(X) D Im(7). Suppose that f € Homeox(X).

Then, o(f) € Homeo(X) and 7(c(f)) = f. Thus, we have Homeox(X) C Im(n), which
completes the proof of the part(1) of the theorem.

The rest of the theorem is directly obtained from Lemma 4.2 and the part (1) of this
theorem. O

For f € Homeox(X), define a map p(f) : [ jzje x Homeo([z]) — [];)cx Homeo([z]) by

P(AIF) = Ha(HUF)a(f7),

where F' € []i,1cx Homeo(([z]). Then, p(f) € Aut(]];cx Homeo([z])) and p : Homeox (X)
Aut(]](;jcx Homeo({z])) is a continuous homomorphism.
As an corollary of Theorem 4.7, we obtain:

Corollary 4.8. Define a map
k : Homeo(X) — ( H Homeo([z])) %, Homeox (X)
[z]ex
by k(f) = (¢ (fo(a(m(f1)))), n(f)), where f € Homeo(X). Then, & is an isomorphism
of finite topological groups. ‘
Example 4.9. Let (Xs,7) be a finite topological space with the topology which has the
following open basis.
{ {.’1?]_, 1'2}, {xlv Z2, $3}y {x‘la 1.5}7 {$4, s, zG}) {1'7}, {.’t’], mS} }

Then, the quotient space X is the set of six points

{lz1] = [z2], [z3], [z4] = [z5], [w6], [z7], [s]}

with the topology generated by a open basis

{lz11}, {[=1], (3]}, {lzal}, {[zal, (6]}, {[z7]}, {[7], [s]}} -

We see that
Homeo()z)' > G,, Homeox(X) >~ Zo, H Homeo([z]) & Zy X Z,,

[zleX
and consequently,
Homeo(X) = (Zy x Zy) X Zg = Dy,
where D, is a dihedral group of order 8.

Remark 4.10. There are infinitely many finite topological groups which are not isomor-
phic to any homeomorphism groups of finite spaces as topological groups. As an example,
consider the case that Homeo(X) has the trivial topology, Proposition 3.8 and Theorem
4.7 follow that Homeo(X) = [];)c x Homeo([z]). We see that [];cx Homeo([z]) is iso-
morphic to a direct product of symmetric groups. Thus, for example, there are no finite
spaces whose homeomorphism groups are isomorphic to finite cyclic groups of order m 2 3
with the trivial topology.



141

HOMEOMORPHISM GROUPS OF FINITE SPACES

5. SOME SPECIAL CASES

Let us consider some special cases in which the homeomorphism groups have rather
simple structures.

Proposition 5.1. Let G be a finite topological group with n points and k connected com-
ponents. Put { = % Then,

Homeo(X) = (&) x, G

as topological groups, where Gi™ denotes the £-th symmetric group with the trivial topqlogy
and Ggis'denotes the m-th symmetric group with the discrete topology and p : 68 —
Aut((&i)*) is the continuous homomorphism defined by

p(g)(Tl,Tg, Ce ,Tk) = (Tg—l(l),Tg—l(Q), . ,Tg-—l(k))

for every (11,7, ... ,7k) € (6F7)* and g € G which is regarded as the set of all permu-
tations on {1,2,... ,k}.

Proof. According to Proposition 3.3, each connected component has ¢ number of
points. For any g € G, it holds that Homeo([g]) = &}™. Since G has trivial topology, we
obtain that Homeog(G) = Homeo(G) = G@¥. By using Corollary 4.8, we complete the
proof. O

Remark 5.2. The group obtained in Proposition 5.1 is so called the wreath product of
St and 6. It is usually written as S 1 &,

More generally, we have the following result. We can easily prove it by a similar
discussion as Proposition 5.1.

Proposition 5.3. Let X be a finite topological space with n points. If the canonical action
Homeo(X)x X — X is transitive, then there exist positive integers ? and k satisfingkl = n
such that

Homeo(X) = G 1 G
as topological groups.
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