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ABSTRACT. As being pointed out by several authors, finite topological spaces have more
interesting topological properties than one might at first expect. In this article, we study
the homeomorphism groups of finite topological spaces as finite topological groups. In
particular, we obtain ashort exact sequence of finite topological groups which contains
Homeo(X).

1. INTRODUCTION

Let $X$ be afinite set, and let $X_{n}$ denote the $n$-point set $\{x_{1}, x_{2}, \cdots, x_{n}\}$ . Let $\mathcal{T}$ be a
topology on $X$ , that is, $\mathcal{T}$ is afamily of subsets of $X$ which satisfies:

(1) $\emptyset\in \mathcal{T}$ , $X\in \mathcal{T}$ ;
(2) $A$ , $B\in \mathcal{T}\Rightarrow A\cup B\in \mathcal{T}$ ;
(3) $A$ , $B\in \mathcal{T}$ $\Rightarrow A\cap B\in \mathcal{T}$.

Afinite set $X$ with atopology is called afinite topological space or finite space briefly. A
finite topological group is also defined canonically, but it is not assumed to satisfy any
separation axioms. We say that afinite topological space $(X, \mathcal{T})$ is afinite $T_{0}$ space if it
satisfies the $T_{0}2\mathrm{V}\mathrm{s}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ axiom.

As several authors have pointed out, finite topological spaces have more interesting
topological properties than one might at first expect. It is remarkable that for every finite
topological space $X$ , there exists asimplicial complex $K$ such that $X$ is weak homotopy
equivalent to $|K|([5])$ , and that the classification of finite topological spaces by homotopy
type is reduced to acertain homeomorphism problem ([14]). Some relations with simple
homotopy theory are revealed in [8]. Group actions on finite spaces have been also studied
by several authors ([1], [3], [15]). In [15], Stong proved rather surprising results for the
equivariant homotopy theory for finite $T_{0}$-spaces. One can find asurvey of the theory of
the finite topological spaces from topological viewpoints in [2].

For discussing the theory of topological transformation groups on afinite topological
space $(X, \mathcal{T})$ , it is necessary to consider Homeo(X), the homeomorphism group of $X$ . The
purpose of the present article is to study the homeomorphism groups of finite topological
spaces as finite topological groups. Concerning its topological structure, Proposition 3.3
and Corollary 3.7 say that Homeo(X) decomposes into the disjoint union of connected
components equipped with trivial topologies which are homeomorphic to each other.

According to [5], for every finite space $X$ , there exists aquotient space $\hat{X}$ of $X$ such
that $\hat{X}$ is homotopic to $X$ and satisfies $T_{0}$-separation axiom. Then, in Theorem 4.7 we
have the following spliting exact sequence
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1 $arrow\prod_{[x]\in\hat{X}}$ Homeo([x]) $arrow\iota$ Homeo(X) $arrow\pi$ Homeox $(\hat{X})$ $arrow$ $1$ ,

where $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ is asubgroup of Homeo(X).
The rest of this article is organized as follows. Section 2gives abrief introduction to the

theory of finite topological spaces. In section 3, we investigate finite topological groups
and the homeomorphism groups of finite topological spaces from atopological viewpoint.
Section 4is devoted to proving Theorem 4.7 which is our main result of this article. In
the last section, we present acouple of examples including the homeomorphism groups of
finite topological groups.

2. PRELIMINARIES

Let $(X_{n}, \mathcal{T})$ be afinite topological space. Let $U_{i}$ denote the minimal open set which
contains $x_{i}$ , that is, $U_{i}$ is the intersection of all open sets containing $x_{i}$ . We see that
$\{U_{1}, U_{2}, \cdots U_{n}\}$ is an open basis of $\mathcal{T}$ . For $\mathcal{T}$ , we define an $n\cross n$ -matrix $A=(a_{ij})$ by

$a_{ij}=\{$
1 $x_{j}\in U_{i}$

0otherwise.

This matrix is called the topogenous $matr\dot{\tau}x$ of $(X_{n}, \mathcal{T})$ by Shiraki in his works on finite
topological spaces ([12], [13]). If amatrix $A$ is the topogenous matrix of some finite
topological space, $A$ is simply called atopogenous $mat\dot{m}$. This matrix has been investi-
gated by several authors ([4], [6], [7], [9], [10], [11], [12], [13]) for enumerating the possible
topologies on $X_{n}$ or creating some topological invariants of finite topological spaces. The
following theorem by H. Sharp Jr. is fundamental.

Theorem 2.1 ([10] : Theorem 4). A matrix $A=(a_{ij})$ is a topogenous matrix if and only
if $A$ satisfies the follow ing conditions.

(1) $a_{ij}=0$ or 1.
(2) $a_{ii}=1$ .
(3) $A^{2}=A$ , where $mat\dot{m}$ multiplication involves Boolean arithmetic.

Let $X$ be afinite topological space. We define an equivalence relation $\sim \mathrm{o}\mathrm{n}$ $X$ by

$x_{i}\sim x_{j}$ if $U_{i}=U_{j}$ .

Let $\hat{X}$ be the quotient space $X/\sim$ , and $\iota/_{X}$ : $Xarrow\hat{X}$ the quotient map. We note that
$\nu_{X}(x_{i})=U_{i}\cap C_{i}$ ,

where $C_{i}$ is the smallest closed set containing $x_{i}$ . From now on, we denote $\mathfrak{l}/x(x)\in\hat{X}$

by $[x]$ . For simplisity we will often use the notation $[x]$ for $\nu_{X}^{-1}([x])$ which is asubset of
$X$ , The following theorem bridges the gap between general finite topological spaces and
finite $T_{0}$ spaces.

Theorem 2.2 ([5] : Theorem 4). Let $X$ and $Y$ be finite topological spaces. Then the
follow $ing$ hold.

(1) The quotient map $\nu_{X}$ : $Xarrow\hat{X}$ is a homotopy equivalence.
(2) The quotient space $\hat{X}$ is a finite $T_{0}$ space.
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(3) For each continuous map $\varphi$ : $Xarrow Y$ , there exists a unique continuous map $\hat{\varphi}$

$\hat{X}arrow\hat{Y}$ such that $\nu_{Y}\varphi=\hat{\varphi}’/_{X}$ .

3. FINITE TOPOLOGICAL GROUPS AND THE HOMEOMORPHISM GROUPS OF FINITE

TOPOLOGICAL SPACES

In this section, we propose some basic properties on finite topological groups and the
homeomorphism groups of finite topological spaces.

Definition 3.1. Afinite set $G$ is called finite topological group if $G$ satisfies the following
conditions.

(1) $G$ is agroup.
(2) The maps ce: $G\cross Garrow G$ and $\beta$ : $Garrow G$ defined by $\alpha(g, h)=gh$ and $\beta(g)=g^{-1}$

are continuous. Here $G\cross G$ is equipped with the product topology.

Remark 3.2. (1) In the definition of topological groups it is usually assumed to be a
Hausdorff space. However we do not require the $T_{2}$-separation axiom on finite topological
groups. We note that every finite Hausdorff space has the discrete topology.
(2) From now on, for afinite topological group $G$ , the minimal open set which contains
an element $g$ will be denoted by $U_{g}$ as well as $U_{x}$ the minimal open neighbourhood of $x$

in finite topological space $X$ .

Let $G$ be afinite topological group. For given element $g\in G$ , the map $L_{g}$ : $Garrow G$

defined by $L_{g}(h)=gh$ is called the left transfor mation map by $g$ , and the map $R_{g}$ : $Garrow G$

defined by $R_{g}(h)=hg$ is called the right transfor mation map by $g$ . We see that $L_{g}$ and $R_{g}$

are homeomorphisms of $G$ onto itself. On the topological structures of finite topological
spaces, the following result holds.

Proposition 3.3. Let $G$ be a finite topological group, $g$ an element of G. Let $U_{g}$ denote
the minimal open set which contains $g$ . Then, the following hold.

(1) For $g$ , $h\in G_{f}U_{g}$ is homeomorphic to $U_{h}$ .
(2) For $g$ , $h\in G$ , $U_{g}\cap U_{h}\neq\emptyset$ implies $U_{g}=U_{h}$ .
(3) $U_{g}$ has the trivial topology.
(4) Let $e$ be the unit of G. There exists a subset $\{e, g_{1}, \ldots, g_{k-1}\}$ of $G$ such that $G$ has

the decomposition into the connected components as follows:
$G=U_{e}\cup U_{g_{1}}\cup\cdots\cup U_{\mathit{9}k-1}$ (disjoint union).

Proof. (1) Since $L_{h}\circ L_{g^{-1}}(U_{g})$ is an open set which contains $h$ , we obtain $U_{h}\subset L_{h}\mathrm{o}$

$L_{g^{-1}}(U_{g})$ . Simillarly we have $U_{g}\subset L_{g}\circ L_{h^{-1}}(U_{h})$ . Hence it holds that $U_{h}=L_{h}\mathrm{o}L_{g^{-1}}(U_{g})$ .
(2) If $U_{g}\cap U_{h}\neq\emptyset$ , take any element $k\in U_{g}\cap U_{h}$ . Then (1) follows that $U_{g}=U_{k}=U_{h}$ .
(3) It is an immediate consequence of (2).
(4) By (2), there exists adecomposition as

$G=U_{e}\cup U_{g_{1}}\cup\cdots\cup U_{\mathit{9}k-1}$ (disjoint union).

By (3), each component is connected. Asubset of afinite topological space is aconnected
component if and only if it is an open and closed connected subset. Hence, the above is
adecomposition into the connected components. $\square$
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For studying topological groups, it is useful to investigate the connected component $G_{0}$

which contains $e$ . Proposition 3.3 implies that $G_{0}=U_{e}$ . Moreover we have:

Theorem 3.4. Let $G$ be a finite topological group. Let $e$ be the unit of G. and $U_{e}$ the
minimal open set which contains $e$ . Then, $U_{e}$ is a closed and open norrmal subgroup of $G$ .

Proof. Since $U_{e}$ is aconnected component, it is sufficient to show that it is anormal
subgroup of $G$ . Since both $\alpha(U_{e}\cross U_{e})$ and $\beta(U_{e})$ are connected subset which contains $e$ ,
we have $\alpha(U_{e}\cross U_{e})\subset U_{e}$ and $\beta(U_{e})\subset U_{e}$ , that is, $U_{e}$ is asubgroup of $G$ . For any $g\in G$ ,
by asimilar discussion as above, we have

$gU_{e}g^{-1}=L_{g}\mathrm{o}R_{g^{-1}}(U_{e})\subset U_{e}$ ,

that is, $U_{e}$ is normal. [Il

Corollary 3.5. Let $I_{r}$ be an $r\cross$ r-matr.x whose all entries are equal to 1. Let $G$ be $a$

finite topological group, and A the topogenous matrix of G. Then, $A$ is equivalent to the
matrix of the $fom$

$E_{k}\otimes I_{r}=$ $(\begin{array}{llll}I_{r} I_{r} \ddots I_{r}\end{array})$

for some integers $r$ and $k$ , that is, there exists a per mutation mati $P$ such that ${}^{t}PAP=$

$E_{k}\otimes I_{r}$ . Conversely, if the topogenous matrix of a finite topological space $X$ is equivalent
to $E_{k}\otimes I_{r}$ for some integers $r$ and $k_{f}$ we can define a finite topological group $st$ ucture on
$X$ .

Proof. Decompose G as
$G=U_{g0}\cup U_{\mathit{9}1}\cup\cdots\cup U_{\mathit{9}k-1}$ (disjoint union),

as in Proposion 3.3, where $g_{0}=e$ . Suppose that $U_{\mathit{9}i}$ has $r$ elements for $0\leqq i\leqq k-1$ .
Put $U_{g_{i}}=\{g_{i1}, \ldots, g_{ij}, \ldots, g_{ir}\}$ . If we regard $g_{ij}$ as the $(ri+j)$-th element of $G$ , the
topogenous matrix $A$ of $G$ is $E_{k}\otimes I_{r}$ .

Conversely, if the topogenous matrix of afinite topological space $X$ is equivalent to
$E_{k}\otimes I_{r}$ for some integers $r$ and $k$ , $X$ is decomposed into the disjoint union of connected
components with trivial topology as

$X=U_{1}\cup U_{2}\cup\cdots\cup U_{k}$ (disjoint union),

where $\# U_{i}=r$ for each 1 $\leqq i\leqq k$ . Let $C_{kr}=<t>\mathrm{b}\mathrm{e}$ afinite cyclic group of
order $kr$ which is generated by $t$ . We define subsets of $C_{kr}$ , $V_{1}$ , $V_{2}$ , $\ldots$ , $V_{k}$ by $V_{i}=$

$\{t^{i}, t^{i+k}, \ldots)t^{i+(r-1)k}\}$ . We now consider atopological space $C_{kr}$ with the topology gen-
erated by $\{V_{1}, V_{2}, \ldots, V_{k}\}$ . Then, we see that it is afinite topological group and $C_{kr}$ is
isomorphic to $X$ as topological spaces. $\square$

Now, we consider the topologies of the homeomorphism group of afinite topological
space. When it is equipped with the compact open topology, it becomes not only a
topological space, but also afinite topological group.
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Proposition 3.6. The topological space Homeo(X) is a topological group, that is, the
maps $\alpha$ : Homeo(X) $\cross \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ $arrow$ Homeo(X) and $\beta$ : Homeo(X) $arrow$ Homeo(X)

defined by $\alpha(g, f)=g\circ f$ and $\beta(f)=f^{-1}$ are continuous. Moreover, the canonical action
0:Homeo(X) $\cross Xarrow X$ defined by $\theta(f, x)=f(x)$ is continuous.

Proof. For asubset $K$ of $X$ and an open subset $U$ of $X$ , set
$O(K, U)=\{f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)|f(K)\subset U\}$ .

We note that $O(K, U)= \bigcap_{x\in K}O(\{x\}, U)$ .
First, we show the continuousity of $\alpha$ . It is sufficient to prove that $\alpha^{-1}(O(\{x\}, U))$ is

an open subset of Homeo(X) $\cross \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\mathrm{X})$ for every point $x\in X$ and every open subset
$U$ . Suppose that $(f, g)\in\alpha^{-1}(O(\{x\}, U))$ . Set $V=g^{-1}(U)$ . Then, we see that

$(g, f)\in \mathrm{O}(\mathrm{K}, U)\cross O(\{x\}, V)\subset\alpha^{-1}(O(\{x\}, U))$ ,

that is, $(g, f)$ has an open neighbourhood in $\alpha^{-1}(O(\{x\}, U))$ .
Next, we prove that $\beta$ is acontinuous map. Suppose that $f\in\beta^{-1}(O(\{x\}, U))$ , where

$x\in X$ and $U$ is an open subset of $X$ . Set $V=\mathrm{f}(\mathrm{x})$ . Then we have $f\in O(U, V)$ and
$x\in V$ . Suppose $g\in O(U, V)$ . Since $g$ is ahomeomorphism, we have $g(U)=V$ , thus we
obtain that $g^{-1}(x)\in U$ . This implies $g\in\beta^{-1}(O(\{x\}, U))$ , which means $O(U, V)$ is an
open neighbourhood of $f$ included in $\beta^{-1}(O(\{x\}, U))$ .

Let $U$ be an open set of $X$ . For any $(f, x)\in\theta^{-1}(U)$ , by putting $W=f^{-1}(U)$ , we have
$(f, x)\in O(W, U)\cross W\subset\theta^{-1}(U)$ ,

which implies the continuity of 0. $\square$

The following corollary is an immediate result of Proposition 3.3 and Proposition 3.6.

Corollary 3.7. There exists a subset $\{id, f_{1}, \ldots, f_{k-1}\}$ ofHomeo(X) such that Homeo(X)
decomposes as

Homeo(X) $=U_{id}\cup U_{f_{1}}\cup\cdots\cup U_{f_{k-1}}$ (disjoint union),

where $U_{id}$ and each $U_{f_{i}}$ are connected components of Homeo(X).

In the following proposition, we treat one of the special cases of Corollary 3.7.

Proposition 3.8. Let $X$ be a finite topological space. The homeomorphism group Homeo(X)
has the discrete topology if and only if $X$ is a $T_{0}$ space.

Proof. Let $X$ be afinite $T_{0}$-space. By Corollary 3.7 it suffices to show that Homeo(X)
satisfies the $T_{0}$-separation axiom. Let $f$ and $g$ be different homeomorphisms on $X$ . Then,
there exists apoint $x\in X$ such that $f(x)\neq g(x)$ . We may assume that there exists an
open neighbourhood $U$ of $f(x)$ which does not contain $g(x)$ without loss of generality.
Then, we see that $O(\{x\}, U)$ is an open set containing $f$ , but not $g$ .

Conversely, suppose $X$ does not satisfy the $T_{0}$-separation axiom. Then, there exist
different points $z$ and $y$ of $X$ such that $z\in U_{y}$ and $y\in U_{z}$ . We note that $U_{y}=U_{z}$ . Define
amap $f$ : $Xarrow X$ by

$f(x)=\{$

$z$ $(x=y)$

$y$ $(x=z)$

$x$ (otherwise)
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Then, $f$ is ahomeomorphism, but is not the identity map on $X$ . Suppose that $id_{X}\in$

$O(K, U)$ , where $K\subset \mathrm{X}$ and $U$ is an open subset of $X$ . Then, $K=id_{X}(K)\subset U$ and
$\mathrm{f}(\mathrm{K})\subset\bigcup_{x\in K}U_{x}\subset U$. Hence $f\in O(K, U)$ . This means that every open neighbourhood
of $id_{X}$ contains $f$ , that is, $f\in U_{id_{X}}$ . Similarly we have $id_{X}\in U_{f}$ . Thus Homeo(X) does
not satisfy the $T_{0}$-separation axiom. $\square$

The following proposition also holds as usual.

Proposition 3.9. Let $X$ be a finite topological space, and $G$ a topological group. Let
$\varphi:G\cross Xarrow X$ be a continuous action of $G$ on X. Then, there exists unique continuous
homomorphism $\Phi$ : $Garrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ such that $\varphi=\theta\circ(\Phi\cross id_{X})$ .

Proof. Since every element $g\in G$ defines ahomeomorphism $\Phi(g)$ on $X$ by $\Phi(g)=$

$\varphi(g, x)$ where $x\in X$ , we obtain amap (I): $Garrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ . The equality
$\Phi(gh)(x)=\varphi(gh, x)=\varphi(g, \varphi(h, x))=\Phi(g)(\Phi(h)(x))=\Phi(g)\circ\Phi(h)(x)$

shows that (I) is agroup homomorphism. Suppose that $g\in\Phi^{-1}(O(\{x\}, U))$ where $x\in X$

and $U$ is an open subset of $X$ . Since $\varphi$ is continuous, there exists an open neighbourhood
$W$ of $g$ and an open neighbourhood $V$ of $x$ such that $\varphi(W\cross V)\subset U$ . Since for $h\in W$

it holds that $\Phi(h)(x)=\varphi(h, x)\in\varphi(W\cross V)\subset U$ , we have $h\in\Phi^{-1}(O(\{x\}, U))$ . Thus
we have $g\in W\subset\Phi^{-1}(O(\{x\}, U))$ , which implies that (I is continuous. By definition, we
obtain

$(g) $x)=\Phi(g)(x)=\theta(\Phi(g), x)=\theta\circ(\Phi\cross id_{X})(g, x)$

for every $(g, x)\in G\cross X$ .
Such amap $\Phi$ : $Garrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ is uniquely determined since if amap (I)’ : $Garrow$

Homeo(X) satisfies $\varphi=\theta\circ(\Phi’\cross id_{X})$ , it holds that
$\Phi’(g)(x)=\theta(\Phi’(g), x)=\theta\circ(\Phi’\cross id_{X})(g, x)=\varphi(g, x)=\Phi(g)(x)$

for every $(g, x)\in G\cross X$ . $\square$

Proposition 3.9 indicates that if atopological group $G$ acts on afinite topological space
effectively, then it must be afinite topological group, and that the compact open topology
is the weakest topology which makes the action of Homeo(X) on $X$ continuous.

4. THE STRUCTURE OF Homeo(X)

Now we consider the group structure of Homeo(X). We prepare the following lemma
in order to reduce the problem of Homeo(X) to Homeo(X).

Lemma 4.1. Let $X$ be a finite topological space. Then, the map $\varphi$ : Homeo(X) $\cross\hat{X}arrow\hat{X}$

defined by $\varphi(f, [x])=[f(x)]$ is a continuous action of Homeo(X) on $\hat{X}$ .

Proof. Since ahomeomorphism preserves the equivalence relation, $\varphi$ is well-defined.
Since in the following commutative diagram, $id\cross \mathfrak{l}J_{X}$ is able to be regarded as aquotient
map, the continuity of $lJ_{X}\circ\theta_{X}$ implies the continuity of $\varphi$ .

Homeo(X) $\cross Xarrow\theta_{X}X$

$id\mathrm{x}\nu_{X\downarrow}$ $\downarrow\nu_{X}$

Homeo(X) $\cross\hat{X}\vec{\varphi}\hat{X}$
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Since
$\varphi(f\mathrm{o}g, [x])=[f\circ g(x)]=[f(g(x))]$

$=\varphi(f, [g(x)])=\varphi(f, \varphi(g, [x]))$

and

$\varphi(id, [x])=[id(x)]=[x]$ ,

$\varphi$ is aHomeo(X)-action on $\hat{X}$ . $\square$

Lemma 4.2. There eists unique continuous homomorphism $\pi$ : Homeo(X) $arrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$

such that the following diagram commutes:

Homeo(X) $\cross Xarrow\theta_{X}X$

$\pi\cross\nu \mathrm{x}\downarrow$ $\downarrow\nu_{X}$

Homeo(X) $\cross\hat{X}\vec{\theta_{\overline{X}}}\hat{X}$

Proof. It follows from Lemma 4.1 that there exists unique homomorphism $\pi$ : Homeo(X)\rightarrow
Homeo(X) such that $\varphi=\theta_{\hat{X}}\circ(\pi\cross id_{\hat{X}})$ , where $\varphi$ is the map obtained in Lemma 4.1.
Then,

$\theta_{\overline{X}}\mathrm{o}(\pi\cross\nu_{X})(f, x)=\theta_{\hat{X}}\mathrm{o}(\pi\cross id_{\hat{X}})(f, [x])$

$=\varphi(f, [x])=[f(x)]=[\theta_{X}(f, x)]=\nu_{X}0\theta_{X}(f, x)$.

Suppose that $\theta_{\overline{X}}\circ(\pi’\cross\nu_{X})=\nu_{X}\circ\theta_{X}$ for another map $\pi’$ : Homeo(X) $arrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ .
Then,

$\pi’(f)([x])=\pi’(f)(\nu_{X}(x))=\theta_{\hat{X}}(\pi’(f), \nu_{X}(x))$

$=\theta_{\hat{X}}\mathrm{o}(\pi’\cross\nu_{X})(f, x)=\nu_{X}\circ\theta_{X}(f, x)=\pi(f)([x])$ .

This shows the uniqueness of $\varphi$ . $\square$

The product $\prod_{[x]\in\overline{X}}$ Homeo([x]) is identified with the set of maps $F:\hat{X}arrow\coprod_{[x]\in\hat{X}}$ Homeo([x])
with $F([x])\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}([x])$ for every $[x]\in\hat{X}$ . Let $F$ be an element of $\prod_{[x]\in\hat{X}}$ Homeo([x]).
Then, $F$ defines amap $\iota(F)$ : $Xarrow X$ by $\mathrm{t}(\mathrm{F})(\mathrm{x})=F([x])(x)$ , under above identification.
For $F$, $G \in\prod_{[x]\in\hat{X}}$ Homeo$([x])$ ,

$\iota(GF)(x)=GF([x])(x)=G([x])\mathrm{o}F([x])(x)$

$=G([x])(F([x])(x))$

$=\iota(G)(\iota(F)(x))=\iota(G)0\iota(F)(x)$

for every $x\in X$ since it holds that $\nu_{X}((F([x]))(x))=\nu_{X}(x)$ . This implies that $\iota(GF)=$

$\iota(G)\circ\iota(F)$ for every $F$, $G \in\prod_{[x]\in\hat{X}}$ Homeo([x]). Then, we have the following theorem.

Theorem 4.3. The map $\iota$ is continuous and the sequence
1 $arrow$ $\prod_{[x]\in\hat{X}}$ Homeo([x]) $arrow\iota$ Homeo(X) $arrow\pi$ $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{X})$

is an exact sequence offinite topological groups
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Proof. By definition, it is clear that $\iota$ is amonomorphism. For any open set $O(K, U)\subset$

Homeo(X), we see that

$\iota^{-1}(O(K, U))=\{$ $\prod_{\emptyset}[x]\in\hat{X}$

Horneo $([\mathrm{x}])$ (if $\bigcup_{x\in K}U_{x}\subset U$ )

(otherwise).

This shows that $\iota$ is continuous.
According to definition, we obtain

$((\pi\circ\iota)(F))([x])=[\iota(F)(x)]=[F([x])(x)]=[x]=id_{\hat{X}}([x])$

for every $F \in\prod_{[x]\in\hat{X}}$ Homeo([x]) and every $[x]\in\hat{X}$ . Hence, it holds that $\pi\circ\iota(F)=id_{\hat{X}}$

for every $F \in\prod_{[x]\in\hat{X}}$ Homeo([x]). Let $f$ be an element of $\mathrm{k}\mathrm{e}\mathrm{r}\pi$ . Then, $f(x)\in[x]$ for
every $x\in X$ , thereby $f$ defines an element $F \in\prod_{[x]\in\hat{X}}$ Homeo([x]) by $F([x])(x)=f(x)$
for every $x\in X$ . Then $\iota(F)=f$ . $\square$

Remark 4.4. For $[x]\in\hat{X}$ , define ahomomorphism $\iota[x]$ : Homeo([x]) $arrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ by
setting

$(\iota_{[x]}(F_{[x]}))([y])=\{$
$F_{[x]}(y)$ $(y\in[x])$

$y$ (otherwise),

where $\mathrm{F}[\mathrm{x}]\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}([x])$ Then, $\alpha\circ(\iota[x]\cross\iota[y])=\alpha\circ(\iota[y]\cross\iota[x])$ for every $[x]$ , $[y]\in\hat{X}$ and $\iota$

coincides with $\prod[x]\in\overline{x}\iota[x]$ followed by the composition.

Corollary 4.5. Let $X$ be a finite topological space. Let $U_{id_{X}}$ be the identity component
of Homeo(X). Then, we have

$U_{id_{X}}= \mathrm{k}\mathrm{e}\mathrm{r}(\pi)={\rm Im}(\iota)\cong\prod_{[x]\in\hat{X}}$
Homeo$([x])$ ,

as finite topological groups.

Proof. By definition, $\hat{X}$ satisfies the $T_{0}$ separation axiom. It follows from Proposition
3.8 that Homeo(X) has the discrete topology. Therefore the identity component $U_{id_{X}}$ is
contained in $\mathrm{k}\mathrm{e}\mathrm{r}(\pi)$ . Since $\prod_{[x]\in\hat{X}}$ Homeo([x]) has the trivial topology and connected, we
have ${\rm Im}(\iota)\subset U_{id_{X}}$ . Thus we obtain that $U_{id_{X}}=\mathrm{k}\mathrm{e}\mathrm{r}(\pi)={\rm Im}(\iota)$ .

Since the map $\overline{\iota}$ : $\prod_{[x]\in\overline{X}}$ Homeo([x]) $arrow{\rm Im}(\iota)$ defined by $\iota$ is an isomorphism between
groups equipped with the trivial topology, $\iota$ is also ahomeomorphism. $\square$

Remark 4.6. Proposition 3.8 is acorollary of Corollary 4.5.

Set asubset $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ of $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{X})$ by

$\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{\mathrm{X}})=\{f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{X})|\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}\mathrm{a}\mathrm{s}\# f([x])=\neq[x]\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}[x]\in\hat{\mathrm{X}}$’subsets of
$X\}$ .

We see that $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ is asubgroup of $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{X})$ . Between any $[x]$ , $[y]\subset X$ with
$\#[x]=\#[y]$ , we can construct afamily of homeomorphism

$h_{[x],[y]}$ : $[x]arrow[y]$

138



HOMEOMORPHISM GROUPS OF FINITE SPACES

to satisfy the following conditions:

$\{$

$h_{[y],[z]}\mathrm{o}h_{[x],[y|}=h_{[x\rfloor,[z\rfloor}$

$h_{[y],[x]}\mathrm{o}h_{[x],[y|}=id_{[x\rceil}$
for every $[x]$ , $[y]$ , $[]$ $\in\hat{X}$ .

For every $f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ , define amap $\sigma(f)$ : $Xarrow \mathrm{X}$ by

$(\sigma(f))(x)=h_{[x],f([x])}(x)$

for every $x\in X$ . Then, we have

$(\sigma(f^{-1})\circ\sigma(f))(x)=\sigma(f^{-1})(h_{[x],f([x])}(x))=h_{f([x]),f^{-1}(f([x]))}(h_{[x],f([x])}(x))$

$=h_{f([x]),[x]}(h_{[x],f([x])}(x))=h_{f([x]),[x]}\mathrm{o}h_{[x],f([x])}(x)$

$=id_{[x]}(x)=x$ ,

and similarly
$(\sigma(f)0\sigma(f^{-1}))(x)=x$

for every $x\in X$ . Hence $\sigma(f)$ is abijection. For every $x\in X$ ,

$\nu_{X}(\sigma(f)(x))=\nu_{X}(h_{\mathrm{f}^{x}],f([x])}(x))=f([x])=f(\nu_{X}(x))$ ,

that is, it holds that $\nu_{X}\circ\sigma(f)=f\circ \mathrm{J}J_{X}$ . Let $U$ be an open subset of $X$ . Since $U=$

$\nu_{X}^{-1}(\nu_{X}(tt))$ , $\nu_{X}(U)$ is an open subset of $\hat{X}$ and $\sigma(f)$ is continuous because

$\sigma(f)^{-1}(U)=\sigma(f)^{-1}(\nu_{X}^{-1}(|/x(U)))=(\nu_{X}0\sigma(f))^{-1}(\nu_{X}(U))$

$=(f\mathrm{o}\nu_{X})^{-1}(|/_{X}(U)))=\nu_{X}^{-1}(f^{-1}(\nu_{X}(U)))$

is an open subset of $X$ . Since $\sigma(f)^{-1}=\sigma(f^{-1})$ , $\sigma(f)^{-1}$ is also continuous, thereby, $\sigma(f)$

is ahomeomorphism on $X$ . Let $f$ and $g$ be elements of $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ . Then,

$\sigma(f\mathrm{o}g)(x)=h_{[x],f\mathrm{o}g([\tau])}(x)=h_{[x],f(g([x]))}(x)$

$=h_{g([x]),f(g([x]))}\mathrm{o}h_{[x],g([x])}(x)$

$=h_{g([x]),f(g([x]))}(h_{[x],g([x])}(x))$

$=\sigma(f)(\sigma(g)(x))=(\sigma(f)0\sigma(g))(x)$

for every $x\in X$ . This implies that $\sigma$ : Homeo (X) $arrow \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\mathrm{X})$ is ahomomorphism.
Since $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ has the trivial topology, ais continuous.

Now we have prepared to state the following theorem.

Theorem 4.7. Let $X$ be a finite topological space. Then, the following hold.
(1) $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})={\rm Im}(\pi)$ , where $\pi$ is the homomorphism defined in Lemma 4.2.
(2) The sequence

1 $arrow$ $\prod_{[x]\in\hat{X}}$ Homeo$([x])$ $arrow\iota$ Homeo(X) $arrow\pi$ $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{\mathrm{X}})$ $arrow$ 1

is exact, where the same symbol yr is used for the map defined by $\pi$ in Lemma 4.2.
(3) $\pi$ $0\sigma$ $=id_{\mathrm{H}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{o}_{X}(\hat{X})}$ .
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Proof. Suppose that $f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\mathrm{X})$ . Then, $f$ defines abijection $f|_{[x]}$ : $[x]arrow f([x])=$

$\pi(f)([x])$ for every $[x]\in\hat{X}$ . This implies that $\#\pi(f)([x])=\#[x]$ for every $[x]\in\hat{X}$ , and
hence $\pi(f)\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ , that is, $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{\mathrm{X}})\supset{\rm Im}(\pi)$ . Suppose that $f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ .
Then, $\sigma(f)\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(X)$ and $\pi(\sigma(f))=f$ . Thus, we have $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})\subset{\rm Im}(\pi)$ , which
completes the proof of the part(l) of the theorem.

The rest of the theorem is directly obtained from Lemma 4.2 and the part (1) of this
theorem. $\square$

For $f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$ , define amap $\rho(f)$ : $\prod_{[x]\in\hat{X}}\cdot \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}([x])arrow\prod_{[x]\in\hat{X}}$ Homeo([x]) by
$\rho(f)(F)=\iota^{-1}(\sigma(f)\iota(F)\sigma(f^{-1}))$ ,

where $F \in\prod_{[x]\in\hat{X}}$ Homeo([x]). Then, $\rho(f)\in \mathrm{A}\mathrm{u}\mathrm{t}$ ( $\prod_{[x]\in\hat{X}}$ Homeo([x])) and $\rho:\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$

Aut( $\prod_{[x]\in\hat{X}}$ Homeo([x])) is acontinuous homomorphism.
As an corollary of Theorem 4.7 we obtain:

Corollary 4.8. Define a map
$\kappa$ : Homeo$(X)arrow$ (

$[x \prod_{1\in\dot{X}}$

Homeo$([x])$ ) $\mathrm{x}_{\rho}\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{X})$

by $\kappa(f)=(\iota^{-1}(f\circ(\sigma(\pi(f^{-1})))), \pi(f))$, where $f\in \mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\mathrm{X})$ . Then, $\kappa$ is an isomorphism
offinite topological groups.

Example 4.9. Let $(X_{8}, \mathcal{T})$ be afinite topological space with the topology which has the
following open basis.

$\{\{x_{1}, x_{2}\}, \{x_{1}, x_{2}, x_{3}\}, \{x_{4}, x_{5}\}, \{x_{4}, x_{5}, x_{6}\}, \{x_{7}\}, \{x_{7}, x_{8}\}\}$ .

Then, the quotient space $\hat{X}$ is the set of six points
$\{[x_{1}]=[x_{2}], [x_{3}], [x_{4}]=[x_{5}], [x_{6}], [x_{7}], [x_{8}]\}$

with the topology generated by aopen basis
$\{\{[x_{1}]\}, \{[x_{1}], [x_{3}]\}, \{[x_{4}]\}, \{[x_{4}], [x_{6}]\}, \{[x_{7}]\}, \{[x_{7}], [x_{8}]\}\}$ .

We see that
$\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{X})$ $\cong \mathfrak{S}_{3}$ ,

$\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{X}(\hat{\mathrm{X}})\cong \mathbb{Z}_{2},\prod_{[x]\in\hat{X}}$

Homeo([x]) $\cong \mathbb{Z}_{2}$ $\cross \mathbb{Z}_{2}$ ,

and consequently,
Homeo(X) $\cong(\mathbb{Z}_{2}\cross \mathbb{Z}_{2})\mathrm{n}$ $\mathbb{Z}_{2}\cong D_{4}$ ,

where $D_{4}$ is adihedral group of order 8.

Remark 4.10. There are infinitely many finite topological groups which are not isomor-
phic to any homeomorphism groups of finite spaces as topological groups. As an example,
consider the case that Homeo(X) has the trivial topology, Proposition 3.8 and Theorem
4.7 follow that Homeo(X) $\cong\prod_{[x]\in\hat{X}}$ Homeo([x]). We see that $\prod_{[x]\in\hat{X}}$ Homeo([x]) is $\mathrm{i}\mathrm{s}+$

morphic to adirect product of symmetric groups. Thus, for example, there are no finite
spaces whose homeomorphism groups are isomorphic to finite cyclic groups of order $m\geqq 3$

with the trivicd topology
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5. SOME SPECIAL cases

Let us consider some special cases in which the homeomorphism groups have rather
simple structures.

Proposition 5.1. Let $G$ be a finite topological group with $n$ points and $k$ connected com-

ponents. Put $\ell=\frac{n}{k}$ . Then,

Homeo(X) $\cong(\mathfrak{S}_{l}^{t7\mathrm{B}})^{k}\mathrm{x}_{\rho}\mathfrak{S}_{k}^{dis}$

as topological groups, where $\mathfrak{S}_{\ell^{7\mathrm{Y}}}^{t}$ denotes the $\ell$ -th symmetr$\mathit{7}ric$ group with the $t7\dot{\tau}vial$ topology
and $\mathfrak{S}_{k}^{dis}$ denotes the $m$ -th $symmetr\dot{\tau}c$ group with the discrete topology and $\rho$ : $\mathfrak{S}_{k}^{dis}arrow$

$\mathrm{A}\mathrm{u}\mathrm{t}((\mathfrak{S}_{l}^{tn})^{k})$ is the continuous homomorphism defined by
$\rho(g)(\tau_{1}, \tau_{2}, \ldots, \tau_{k})=(\tau_{g^{-1}(1)}, \tau_{g^{-1}(2)}, \ldots, \tau_{g^{-1}(k)})$

for ever$ry$
$(\tau_{1}, \tau_{2}, \ldots, \tau_{k})\in(\mathfrak{S}_{\ell}^{tn})^{k}$ and $g\in \mathfrak{S}_{k}^{dis}$ which is rega rded as the set of all permu-

tations on $\{$ 1, 2, $\ldots$ , $k\}$ .

Proof. According to Proposition 3.3, each connected component has $\ell$ number of
points. For any $g\in G$ , it holds that Homeo([p]) $\cong \mathfrak{S}_{\ell}^{tn}$ . Since $\hat{G}$ has trivial topology, we
obtain that $\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}_{G}(\hat{G})=\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(\hat{G})\cong \mathfrak{S}_{k}^{d\iota s}$ . By using Corollary 4.8, we complete the
proof.

$\square$

Remark 5.2. The group obtained in Proposition 5.1 is so called the wreath product of
$\mathfrak{S}_{l}^{tn}$ and $\mathfrak{S}_{k}^{dis}$ . It is usually written as $\mathfrak{S}_{\ell}^{tn}l$ $\mathfrak{S}_{k}^{dis}$ .

More generally, we have the following result. We can easily prove it by asimilar
discussion as Proposition 5.1.

Proposition 5.3. Let $X$ be a finite topological space with $n$ points. If the canonical action
Homeo(X) $\cross Xarrow X$ is transitive, then there eist positive integers $\ell$ and $k$ satisfing $k\ell=n$

such that
Homeo(X) $\cong \mathfrak{S}_{\ell}^{tn}$ ? $\mathfrak{S}_{k}^{dis}$

as topological groups.
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