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INTRODUCTION

Let $p:Earrow B$ be a $G$-vector bundle. We would like to define an orientation
class in the equivariant setting, so that each of the fixed-point-set bundles axe com-
patibly oriented by that orientation class for all orbit type subgroups of $G$ . As the
paper of S. Costenoble, J. P. May and S. Waner [CMW] writes, there is no satisfactory
answer in the literature except under rather restrictive hypotheses.

Here is an illustrative example of one of the difficulties around this problem.

Definition 0.1. Let $V$ be a $G$ -representation. A G-vector bundle is called to be
of dimension $V$ if each of its fiber representations $V_{x}$ is isomorphic to $V$ as a $G_{x}-$

representation. A naive orientation class is deffied to be acompatible collection of
homotopy classes $\phi(x)$ of $G_{x}$ -linear isometries between $V_{l}$ and $V$ , for each $x$ $\in B$ .

Example 0.2. Let $G=S^{1}$ and Jet it act on $B=S^{2}$ by the axis rotation. There are
two ixed points, which we denote by $n$ and $\mathrm{s}$ . The tangent bundle $\mathrm{o}fB$ should obvi-
ously be equivariantly orientable, but it is difficult to deffie a satisfactory orientation
class for it. In fact, there cannot exist any naive orientation class, because for $x$ in
the $G$-free part of $B$ there is only one homotopy class of $S^{1}$ isometries $Varrow V$ but if
we connect the two ixed points $n$ and $s$ with apath and compare the corresponding
fiber representations the induced pullback isometry bet ween $V_{n}$ and $V_{s}$ is necessarily
orientation reversing. Therefore there cannot be any compatible way to construct a
naive orientation class.

In order to overcome this difficulty, S. Costenoble, J. P. May and S. Waner
[CMW] have constructed anew, categorical definition of orientation for any G-vector
bundle. We will briefly outline their definition in Section 1below
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We would like to algebraically define orientation classes in cohomology the0-
ries, and compare those definitions with Costenoble-May-Waner$\backslash ,\mathrm{s}$ categorical defini-
tion. We will define equivariantly orientable equivariant cohomology theories, and
get some uniqueness theorem of equivariant orientation classes in such theories, thus
proving that those algebraically defined equivariant orientation classes axe equivalent
to $\mathrm{C},\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{b}1\mathrm{e}_{-}- 4\mathrm{f}\mathrm{a}\mathrm{y}-\backslash \mathrm{t}^{}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{r}’ \mathrm{s}$ categorically defined classes, under some circumstances.
The basic reference for equivariant cohomology theories and equivariant homotopy
theory is J. Peter May’s book [M].

The main tool here is the notion of G-CW$(V, \gamma)$-complex studied in the author’s
earlier paper [N].

The notion of aG-CW(\gamma )-complex was defined in [CM$\backslash \mathrm{V}$] in order to construct
anatural notion of a“$G$-orientation”and in order to construct aPoincare Duality
on spaces that are not “ $G$-connected”(See $[\mathrm{C}\mathrm{W}2]$ ). It was impossible to determine
anatural notion of a“dual $G$-cell”under the traditional notion of G-CW-complexes,
but if we use anew notion of a“$G- \mathrm{c}\mathrm{e}U^{j}’$ , as explained below, it is now possible to
obtain anatural “dual cell” and “dual decomposition”. The new building-b ock of a
$i‘ G$-cell”is:

$\gamma(x)=[G/H\cross \mathrm{R}^{p}rightarrow G/H]$

that is, some object that “assembles” a $\mathrm{R}^{p}$-trivial bundle for each orbit $x$ : $G/Harrow X$

in $X$ , functorialy. $(P\geq 0,H <G.)$

The notion of aG-CW(V)-complex was defined by L. G. Lewis in [L] in order to
construct ageneralized “equivariant suspension theorem”. In there, abuilding-b ock
$\sim’‘ G$-cell”is:

$\Sigma^{V+k}G/K^{+}$ ,
which is the compactification of the $(V\oplus \mathrm{R}^{k})$ -trivial bundle over an orbit $G/K(k$ $\geq$

$-1,K<G)$ , for afixed $G$-representation space V. (Here he assu mes that $|V^{G}\}\geq 1.$ )
By assigning acommon representation component $V$ to all of the cells, he tries to
grasp the contribution of a $V$-suspension onto the total space.

In [L], Lewis has constructed anatural “G-Eilenberg-MacLane space”, con-
structed anatural obstruction theory from there, based on the above G-CW(V)-
complexes, still assuming that $|V^{G}|\geq 1$ . He then proved the following theorem:

Suspension Theorem ([L], Theorem 2.5). Assuming that $|V^{G}|\geq 1_{2}$ if $\mathrm{Y}$ is a
$(|V^{*}|-1)$-connecteci, based G-CW-complex, then the morphism

$\tilde{\sigma}:s_{*}\pi_{V}^{G}\mathrm{Y}\simarrow\sim\pi_{V+W}^{G}\Sigma^{W}\mathrm{Y}$

is anatural isomorphism for any representation W.
Here, $s$ . is constructed as aleft adjoint of the natural functor derived from a

forgetful functor
$s$ : $B_{G}(V)arrow B_{G}(V+W)$

between the Burnside categories, and $\sim\pi_{V}^{G}(\mathrm{Y})$ is aMackey functor assigning:

$\sim\pi_{V}^{G}(\mathrm{Y})(G/K)=[\Sigma^{V}G/K^{+}, \mathrm{Y}]_{G}=[\Sigma^{V},\mathrm{Y}]_{K}$
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to each orbit $G/K$ in Y. The details will be explained below.
In $[_{\vee}\backslash ^{\mathrm{v}}]_{1}$ we extended Lewis’ construction under the more general situation where

the condition ] $V^{G}|\geq 1$ is removed:
Suspension Theorem ([N], Theorem $\mathrm{B}$ ). $\mathrm{t}\mathrm{t}’’ \mathrm{i}th$ $the\vee \mathrm{e}_{*}$ as de&ed in the above,
for an.v $(|V^{G}|-1)$ -connected G-CW-complex $\mathrm{Y}$ , the morphism:

$\tilde{\sigma}:s_{*}\pi_{\nu}^{G_{\mathrm{r}}}\mathrm{Y}\simarrow\pi_{V+W}^{G}\sim(\Sigma^{l\mathrm{V}’}\mathrm{Y})$ .
is anatural isomorphism of G-(V+W)-Mackey functors.

Using this result, we $\mathrm{r}\mathrm{e}$-construct orientation classes for “equivariantly ori-
entable cohomology theories”, by patching together classes over orbit bundles, thus
we get some characterization result on equivariant orientation classes on such coh0-
mology $\mathrm{t}$heories.

SECTION 1. $\mathrm{C}\mathrm{o}\mathrm{S}\mathrm{T}\mathrm{E}\aleph.\mathrm{O}\mathrm{B}\mathrm{L}\mathrm{E}$-MAY-WANER’SORIENTATION

Let $G$ be afinite group, and let $V$ be afinite dimensional G-representation
over R. Let $OG$ be the category of $G$-orbits as objects and $G$-maps between them
as morphisms. Let $\mathcal{V}c(\mathrm{n})$ be the homotopy category of $n$-dimensional orthogonal
$G$-bundles over $G$-orbits. Amorphism in $\mathcal{V}_{G}(n)$ is a $G$-homotopy class of bundle
maps. .

For a $G$-space $B$ , let $\pi GB$ be the category consisting of $G$-maps $x$ : $G/Harrow B$,
where $H<G$ , as objects, and any pair $(\sigma,\omega)$ :

$\sigma:G/Harrow G/K$ G-map
$\omega$ : $G/H\mathrm{x}Iarrow B$ $G$-homotopy between $x$ and $y$ $0\sigma$

We will call this $\pi_{G}B$ “the equivariant fundamental groupoid of B.”

Definition 1-1 ([CMW], Definition 7.1). The two categories $\pi cB$ and $\mathcal{V}c(n)$ both
have anatural projection functor $\phi$ onto the category $O_{G}$ . We will call any functor

$\gamma$ : $\pi_{G}Barrow v_{G}$

which is compatible $\mathrm{w}^{r}\mathrm{i}th$ the projections (that is, $\phi$ $0\gamma=\phi$) with the name “an n-
dimensional repres entation of the groupoid $\pi_{G}X.nIfp$ : $Earrow B$ is a $G$-vector bundle,
then arepresentaion

$p^{*}:$ $\pi_{G}Barrow v_{G}$

is naturally deffied via bundle pullback. More generally, any functor
$R:\mathcal{E}arrow \mathcal{R}$

over $\pi GB$ is called a representaion, where 72 is askeletal groupoid (e.g. $\mathcal{V}_{G}$) over $\pi cB$

and $\mathcal{E}$ is any groupoid (e.g. $\pi_{G}B$) over $\pi GB$ .
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Definition 1.2 ([CMW], Definition 2.8). A $G$ -vector bundle $p:Barrow B$ is called
orientable if the functor $p^{*}:$ $\pi GB$ $arrow v_{G}$ satisfies $p^{*}(\omega, \alpha)=p^{*}(\{sJ’, \alpha)$ for every pair
ofmorphisms $(\omega, \alpha)$ and $(\omega’,\alpha)$ with the same source and target and the same image
in $\mathcal{O}_{G}$ . That is, $p^{*}(\omega, \alpha)$ is independent of the choice of the path class \’u’. For example,
for arepresentation $V$ of $G$ , the projection $B\mathrm{x}Varrow B$ is orientable.

Now the point is that there is not any straightforward way to define an orien-
tation class for an orientable $G$-bundle. As Example 0.2 shows, anaive orientation
class is undefinable. In order to overcome this situation, S. Costenoble, J. P. May and
S. Waner made the following construction in [CMW]:

Definition 1.3 ([CMW], Definition 7.6). One can construct anatural “universally
saturated”representation $(S\mathcal{R}, S)$ :

$S:\mathrm{S}\mathcal{R}arrow \mathcal{R}$

such that every faithful representation $(\mathcal{E},$R):

$R:\mathcal{E}arrow \mathcal{R}$

maps into it. In the case where $\mathcal{R}=\mathcal{V}c$ , $\mathcal{E}=\pi_{G}B$ and $R=p^{*}$ for aG-vector
bundle $p:Barrow B$ , its orientation is defined to be amap from the bundle-pullhack
representation $p^{*}$ : $\pi_{G}Barrow \mathcal{V}c$ to the “universal saturation” $\mathrm{o}fp^{*}$ , $S:S\mathcal{V}_{G}arrow \mathcal{V}_{G}$ :

$(F, \phi)$ : $(\pi_{G},p^{*})arrow(\mathrm{S}\mathcal{V}_{G}, S)$ .

Consult Section 7of [CMW] for the details. As the main feature of the defini-
tion, they have the following result:

Corollary 7.7 of [CMW]. A representation is orientable if and only if it has an
order $t$ation.

A $G$ bundle map $(\tilde{f},f)$ : $(Earrow B)arrow(E’arrow B’)$ is orientation preserving if
the natural map

$(\pi_{G}B,p^{*})arrow(\pi_{G}B’, q^{*})$

is compatible with the orientations $(F, \phi)$ : $(\pi GB,p^{*})arrow(S\mathcal{V}_{G}, S)$ and ($F’$ , (?’) :
$(\pi_{G}B’,q^{*})rightarrow(\mathrm{S}\mathcal{V}_{G}, S)$ .

That is, the orientation class is not based on asingle representation space, but
rather based on the $‘’.\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ saturated” system: $(\mathrm{S}\mathcal{V}_{G}, S)$ .

SECTION 2. G-CW(V,$\gamma)$-COMPLEXES
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Now we define a $G- C1\mathrm{t}^{f}(V,\gamma)$ -complex. Let X be a $G$-space, V be aG-
representation and $\eta$ : $\pi cX$ $arrow \mathcal{V}c(n)$ be as above.

Definition 1.1. A G-Cft”(V,\gamma )-structure on $X$ is afiltration

X $=\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{m}X^{n}$

w hich satisfies the following two conditions:

(1) $X^{0}= \prod$ $(G/HX)\underline{x}$ :adisjoint union of $G$-orbits such that

$\gamma(G/Harrow X)f=[G/H\mathrm{x} V\mathrm{x}\mathbb{R}^{\ell}arrow G/H]$

(a trivia] JSunciie over $G/H$);

(2) $X^{n}=X’ \iota-1\bigcup_{\varphi}$. $(\mathrm{I}\mathrm{I}e_{m}^{n})\overline{m}$ , wiere a“core orbit” $x$ : $G/Harrow \mathrm{e}_{m}^{n}$ is specified to

each $e_{n\backslash }^{\mathrm{n}}$ , and aG-homeomorphism

$e_{m}^{n}D\underline{\simeq}(\gamma(x)\oplus \mathbb{R}^{n-p})$

and asub-representation as asplit summand

$\{$

$V \gamma(x)\bigoplus_{rightarrow}$ if $n\geq\ell$

$V\oplus \mathrm{R}^{p-n}\gamma(x)\underline{\oplus}$ if $n<\ell$

are also speciBed.

In other words, this definition adds an extra requirement that all of the $\gamma(x)’ \mathrm{s}$

include $V$ as adirect sum component, into the original definition of G-CW(\gamma )-
complexes by Costenoble-May-Waner in [CMW].

Next, we construct our basic notion of equivariant homotopy set objects, and
define the Burnside category, on which all of the algebraic constructions will be based.

For a $G$ representation $V$ and $G$-spaces $X$ and $\mathrm{Y}$ , $[X, \mathrm{Y}]_{G}$ will denote the set
of $G$-homotopy classes of $G$-maps $f$ : $Xarrow \mathrm{Y}$ (where the base points are not taken
into account). Let $S^{V}=DV/SV$ , the usual one-point compactification of $V$ , and let
$\Sigma^{V}X^{+}=S^{V}$ A $X^{+}$ , the smash product of $S^{V}$ and the space $X^{+}$ that is $X$ attached
with adisjoint base point.

Definition $B_{G}(V)$ denotes the Burnside category $\mathrm{o}fV$ , where the objects are of the
form

$\prod_{j}G/R_{\acute{j}}$
,

affiite disjoint union of $G$-orbits, and for any two objects $A$ and $B$ , the morphism
set is:

$B_{G}(V)(A,B)=[\Sigma^{V}A^{+}, \Sigma^{V}B^{+}]_{G}$

Note that $\mathcal{B}_{G}(V)(A, B)$ is agroup when $|V^{G}|\geq 1$ .
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Definition. $A‘\subset.G- V-_{s}t^{r}facA.e.v$ functor’$\acute,$ is a contravariant functor of the fom

$\wedge\lambda f$ : $B_{G}(V)arrow \mathrm{S}\mathrm{e}\mathrm{t}\mathrm{s}_{*}$

from the $B\mathrm{u}\mathrm{r}\mathrm{z}\mathrm{i}_{\hat{3}}\mathrm{i}de$ category to the category of based sets, which satisfies the condi-
iion that “converts finite coproducts into finite products,” that is, there is anatural
isomorphism between sets:

M(A U B) $\cong \mathrm{A}\mathrm{f}($4) x Af(fl).

Definition. A G-V-Mackey functor $M$ is called ‘lgroupojd-valued $\cdot$,, if the image of
$M$ lies in the subcategory ofgroupoids ($\mathrm{i}.e.$ , all morphisms are invertible).

Definition. Let $du_{G}(V)$ denote the category of all $‘ {}^{t}g\mathrm{r}oupo\mathrm{i}d$-vaIued” G-V-Mackey
functors fro $m$ $B_{G}(V)$ to $\mathrm{S}\mathrm{e}\mathrm{t}\mathrm{s}_{*}$ .

The basic example of aG-V-Mackey functor is the follow ing.

Definition. Define a G-V-Mackey functor $\pi_{V}^{G}\mathrm{Y}:B_{G}(V)\simarrow \mathrm{S}\mathrm{e}\mathrm{t}\mathrm{s}_{*}$ to be:

$\pi_{V}^{G}\mathrm{Y}(A)=\sim[.\Sigma^{V}A^{+}, \mathrm{Y}]_{G}$

on objects, and

$\sim\pi_{V}^{G}\mathrm{Y}(f)=f^{*}:$ $[\Sigma^{V}B^{+},\mathrm{Y}]_{G}arrow[\Sigma^{V}A^{+}, \mathrm{Y}]_{G}$ ,

on morphisms, for an $f$ : $\Sigma^{V}A^{+}arrow\Sigma^{V}B^{+}$ in $g_{G}(V)$ .
It is obvious that $\sim\pi_{V}^{G}\mathrm{Y}$ is always agroupoid-valued Mackey functor.

Definition of an Eilenberg-MacLane space. For a G-V-Mackey functor $AtI$, $a$

space $K_{V^{\mathit{1}}}^{G}1f$ is called a $l’.G- V\sim Eilenberg-\Lambda f\mathrm{a}claJ\mathit{2}e$ space, if it is a $G$ -space which is
$(|V^{*}|-1)$ -connected, is $G$ -homotopic to $a$ -complex, and if it satisfies:

$\sim\pi_{\mathrm{t}’}^{G}(K_{V}^{G}M)=M$, $\sim\pi_{V+k}^{G}(\mathrm{A}_{V}^{\prime G}M)=0$ for any k $>0$ .

We have proved the following theorem in our previous paper [N]:

Theorem A([N]). For any $V$ and any groupoid-valued G-V-Mackey functor $M$, a
$G- V- \mathrm{E}ilenberg-\Lambda facLane$ space $K_{V}^{G}M$ exists. Moreover, the assignment from $\mathrm{J}\prime I$ to
$K_{\mathrm{t}’}^{G}M$ is the categorical right adjoint of the “homoiopy groupoid” construction $\sim\pi_{V}^{G}$ ,

that is, there is anatural isomorphism of sets:

$[X,K_{V}^{G}M]arrow \mathcal{M}_{G}(V)\underline{\simeq}[\pi_{V}^{G}(X)\sim$
’

$r_{\mathrm{t}}^{G}(K_{V}^{G}M)]\sim^{V}=\mathcal{M}_{G}(V)[\sim\pi_{V}^{G}(X),M]$ .
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$\mathrm{S}\mathrm{E}\mathrm{C}\mathrm{T}\mathrm{I}\mathrm{O}_{\wedge}\mathrm{V}3$ . $\mathrm{T}\mathrm{H}\mathrm{F}_{d}\mathrm{S}\mathrm{U}\mathrm{S}\mathrm{P}\mathrm{E}\mathrm{N}\mathrm{S}\mathrm{I}\mathrm{O}.\backslash$
’

$\mathrm{T}\mathrm{I}\mathrm{f}\mathrm{F}_{\vee}\mathrm{O}\mathrm{R}\mathrm{E}\wedge\backslash \mathrm{f}$ AND REPRESENTATION OF
COHOMOLOGY THEORIES

The traditional suspension theorem on (non-equivariant) homotopy sets obvi-
ously fails in the equivariant situation. For the suspension map:

$[X, \mathrm{Y}]_{G}arrow[\mathrm{E}^{W}X, \Sigma^{W}\mathrm{Y}]_{G}$

to be an isomorphism, we need avery strong (and non-natural) restriction about the
dimensions of fixed-point sets $X^{H}$ , $\mathrm{Y}^{H}$ for all subgroups $H$ of $G$ . For example, the
suspension map $[S^{n}, S^{n}]_{G}arrow[S^{W+n}, S^{W+n}]_{G}$ can never be surjective, if $W$ contains
aregular representation.

Therefore, we need adifferent formulation of an “equivariant suspension the-
orem.” Recall that $\vee G\Lambda 4(V)$ $\mathrm{w}\mathrm{a}\mathrm{s}$ the category of all groupoid-valued G-F-Mackey
functors. We have proved the following results:
Lemma ([N], Lemma 2.1). If $V\subset U$ is asub-G-representation, the natural $‘ {}^{t}for-$

$\mathrm{o}\sigma etful$ functor” $s$
.

$:.\mathrm{A}4\mathit{0}(U)arrow \mathcal{M}_{G}(V)$ (that is induced by the canonical functor
$s$ : $B_{G}(V)arrow B_{G}(U))$ has aleft adjoint, that is, there is anatural isomorphism:

$\mathcal{M}_{G}(U)(M, s_{*}N)=\mathcal{M}c(U)(s_{*}s^{*}M, \mathrm{s}\mathrm{m}\mathrm{N})\cong \mathrm{M}\mathrm{c}(\mathrm{V})(s’M,s_{*}N)$ .

Definition. For arepresentation space $W$, deffie a“suspension morphism”:
$\sigma$ $:\pi_{V}^{G}\mathrm{Y}\simarrow s^{*}\pi_{V+W}^{G}\sim(\Sigma^{W}\mathrm{Y})$

by assigning the suspension map:

$\sigma_{A}$ : $[\Sigma^{V}A^{+}, \mathrm{Y}]_{G}arrow[\Sigma^{W+V}A^{+}, \Sigma^{W}\mathrm{Y}]$

to each object $A$ in Bq(V). Since this $\sigma$ is naturally atransformation of Mackey
functors, it is afunctor from $\mathcal{M}_{G}(V)$ to $\mathcal{M}_{G}(V+W)$ . Therefore, by Lemma 2.1, $\mathfrak{n}\prime e$

have its left adjoint:
$\tilde{\sigma}:s_{*}r_{1}^{G}\mathrm{Y}\sim^{V}arrow\sim^{V+W}r_{\mathrm{t}}^{G}(\Sigma^{W}\mathrm{Y})$ .

Lemma ([N], Lemma 2.2). Consider the suspension functor $s$ : $B_{G}(V)arrow \mathrm{B}\mathrm{c}(V)$

$lV)$ . For any $(V+W)$-Macicey functor $\mathit{1}\mathrm{V}$ , we have a $G$ -homotopy equivalence
$\theta$ : $\Omega^{W}K_{V+W}^{G}N$ $arrow K_{V}^{G}(s^{*}N)$

which makes the following diagram of natural isomorphisms to commute:

$\sim\pi_{V}^{G}(\Omega^{W}K_{V+W}^{G}N)$
$arrow\theta$.

$\sim\pi_{V}^{G}(K_{V}^{G}(_{S\acute{4}}.\mathrm{V}))$

$(s^{*}\pi_{V+W}^{G})\sim(K_{V+W}^{G}N)\{\rho\downarrowarrow$
$s^{l}N\downarrow$

.
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Theorem B (Suspension Theorem, [N]). With the $s_{*}$ as defined in the above,
for aJzy $(|V^{G}|-1)$ -connected G-CW-complex Y, the morphism:

$\tilde{\sigma}:\mathit{8}_{*}\pi_{V}^{G}\mathrm{Y}\simarrow\pi_{V+W}^{G}(\Sigma^{W}\mathrm{Y})\sim$ .

is anatural isomorphism of G-(V+W)-Mackey functors.
Remark that the morphism is based on the category of groups if $|V^{G}|\geq 1$ (and

of abelian groups if $|V^{G}|\geq 2$ ), but it is merely on the category of sets, if $|V^{G}|=0$ ,

In Theorem Aabove, we have constructed aG-V-Eilenberg-MacLane space
using the explicit cel structure of G-CW(V, 7)-complexes. Therefore, the G-V-
Eilenberg-MacLane space $K_{V}^{G}M$ satisfies the standard obstruction theory properties,
(cf. [N], Section 3)

With the presence of the Suspension Theorem, the existence of the equivari-
ant Eilenberg-MacLane spaces and the standard obstruction theory techinques, the
representation theorem of Brown type ([Bro]) for generalized equivariant cohomology
theories can be proved by the standard argument:

Theorem C. (cf $\dagger t’’ an\mathrm{e}\mathrm{r}\acute{s}$ Definition 4.2 in Chapter $X$ of [U]) For aG-V-Mackey
functor $M$ , an $RO(G)$-graded ordinary cohomology theory $H_{G}^{*}$ ($X$ ;A#) can be ddned
by

$H_{G}^{V+n}(X;M)$ $=H^{|V|+n}\mathrm{H}\mathrm{o}\mathrm{m}o_{\sigma}(C_{*}^{V}(X), M)$

for G-CW-complexes $X$ , using the G-CW(V, $\gamma$)-cell structures.
Theorem $\mathrm{D}$ (Brown Representability Theorem, [Bro]). (Theorem 3.1 in Chap-
ter XIII of [U] $)$ A contravariant set-valued functor $k$ on the homotopy category ofG-
connected based G-CW(V, $\gamma$)-complexes is representable in the form $k(X)\cong[X, K]_{G}$

for abased $G-CW(V,\gamma)$-complex If if and only if $k$ satisfies the wedge and Mayer-
Vietoris axioms: $k$ takes wedges to products and takes homotopy pushouts to weak
pullbacks.

Using these theorems, together with the above-mentioned Suspension Theorem
and the existence of Eilenberg-MacLane spaces for general G-V-Mackey functors, we
see that there is acompatible method for the construction of classifying space for
G-V-M ackey functors, that is, such G-V-Mackey functors are classified as an $RO(G)-$

graded system, as asystem indexed by the representation $V$ .
Now that we have the basic tools readily available, we can proceed to investigate

the comparison of generalized equivariant cohomology theories.

SECTION4. EQUIVAHIANTLY ORIENTED cOffOkIOLOGY THEORIES
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We define ageneralized equivariant cohomology theory orientable when it acl-
admits an orientation class for any orientable $G$-vector bundle in the sense of Definition
1,2. Let $BU(V, \gamma, S)$ be the classifying space for oriented $(V, \gamma)$-bundles constructed
in Theorem 22.4 of $[\mathrm{C}.\backslash \mathrm{f}1\mathrm{t}^{J}r]$ .
Definition 4.1. Let $E_{G}^{*}$ be ageneralized $RO(G)$ -graded cohomology theory in the
sense of Chapter XIII of Peter May’s book [M]. $E_{G}^{*}$ is called orientable if there is a
class $\sigma(V, \wedge[_{i}S)\in E_{G}^{*}(BU(V, \gamma, S))$ that maps to an orientation class when restricted
to any $H$-fixed point sets of all subgroups $H$ of G. This class $\sigma(V,\gamma,S)$ is called the
$E_{G}^{*}$ -orientation class.

For any orientable $G$-vector bundle p : E $arrow B$ and its classifying map B $arrow$

$BU(1”,\gamma,$S), we call $p^{*}(\sigma(V,\gamma, S))\in E_{G}^{*}(B)$ be the orientation class of p.

Proposition 4.2, The equivariant $K$-theory, $K_{G2}^{*}$ is orientable.

Proof. For the definition and basic properties of the equivariant $K$-theory, consult
Chapter XIV of [M]. To the universal oriented bundle over the classifying space
BU$( \mathrm{V}, S)$ , we assign the A-cohomology classes that consist of the building-blocks
for the class $\sigma(V,\gamma, S)$ inductively, by the categorical definition and construction per-
formal in the original method of Costenoble-May-Waner in [$\mathrm{M}\mathrm{J}$ . The construction is
purely straightforward, following the non-equivariant method in each step, using the
functorial properties of bundle lifting. Since the construction of the orientation is
purely categorical, this can be done by using only formal arguments. Now the proof
is just the standard routine work.

In the case when $B$ is asmooth $G$-manifold, the definition reduces to the
classical definition of the orientation class via the Thom complex, (cf. Chapter XVI
of $[\mathrm{h}\mathrm{t}])$

Definition 4.3. $Ifp:Earrow B$ is an $n$ -plane $G$-bundle, then an $E_{G}^{*}$ orientation class of
$p$ is deffied to be $\mathrm{a}\mathrm{J}1$ element $\mu\in Eq(Tp)$ for some $\mathrm{a}\in RO(G)$ of virtual dimension $n$

such that, for each inclusion $i$ : $G/Harrow B$ , the restriction $of\mu$ to the Thom complex.
of the pullback $i^{*}\mu$ is agenerator of the free $E^{*}(S^{0})$ -module $E_{G}^{*}(Ti^{*}p)$ .

In this situation, Costenoble and Waner have proved avariant of Thorn IsO-
morphism Theorem and the Poincar\‘e Duality:

Thom Isomorphism (Theorem 9.2, Chapter XVI of [M]). Let $\mu\in Eq(Tp)$ be
an orientation of the $G$ -vector bundle p over B. Then

$\mathrm{U}\mu:E_{G}^{\beta}(B_{+})arrow E_{G}^{\alpha+\beta}(Tp)$

is an isomorphism for all $\beta$ .

Poincare Duality (Definition 9.3, Chapter XVI of [M]). If $M$ is aclosed
smooth manifold such that its tangent bundle $\tau$ is oriented via $\mu\in E_{G}^{V}(T\tau)$ , then one
can define the composite of the Thom and Spanier-W hitehead duality isomorphis$ms$

$D$ : $E_{G}^{\beta}(\mathrm{A}f+)arrow E_{G}^{V-a+\beta}(T\nu)arrow E_{\alpha-\beta}^{G}(M)$
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where $\nu$ is the no rmal bundle, ancl [A#] $=\text{\^{E}}(\mathrm{M})\in E_{a}^{G}(\mathrm{A},I)$ is called the fundamental
class associated with the orientation.

Now we specialize to the case where the base space $B$ is asingle orbit $G/H$ .
Since

$[\Sigma^{}G/H^{+}, 1^{r}]_{G}=[\Sigma^{V},\mathrm{Y}]_{H}$ ,

SVe have $E_{G}^{1’}(G/H)=E_{H}^{V}(pt)$ , and this is where the orientation class lives in this
case. Next, for any morphism $\sigma$ : $G/Harrow G/K$ in the category $\prime r_{\mathrm{t}G}B$ , we get a
map $\sigma^{*}$ : $E_{h}^{V}.(pt)arrow E_{H}^{V}(pt)$ , so we get astraight covariant representation from the
category $r,GB$ into the system $\{E_{H}^{V}(pl)\}$ with all subgroups $H$ of $G$ .
Proposition 4.4. For any orientable generalized $RO(G)-_{o}\sigma raded$ cohomology theory
$E_{G}^{*}$ and any oriented $G$-vector bundle $p:Earrow B$, the restriction $i^{*}p^{*}(\sigma(V,\gamma, S))\in$

$E_{G}^{*}(G/H)$ of the orientation class $p^{*}(\sigma(V,\gamma, S))\in E_{G}^{*}(B)$ is uniquely defined, and
must coincide with the one defined in Defition 4.1, in order that it gives a(non-
equivaxiant) orientation class in the sense of Thorn.

Proof. Definition 4.3 and the Thom Isomorphism Theorem determines those classes
at the $E_{H}^{V}(pt)$ level. Since the orientation of Costenoble May-Waner is naturally
constructed by the purely categorical construction, the result follows in the same
way as in the proof of Proposition 4.2, making use of the naturality provided by our
Suspension Theorem (Theorem B) for generalized equivariant cohomology theories.

We no$\backslash \mathrm{v}$ discuss the effect of the change of groups regarding the orientation
classes for the more general base space $B$ (cf. Section 17 of [CMW].) Let $H\subset G$ . We
have the functor

$i_{*}$ : $O_{H}arrow O_{G}$

given by $i_{*}(H/K)=G\mathrm{x}_{H}(H/K)\cong G/K$ on objects and $\mathrm{i}_{*}(\alpha)=G\cross_{H}\alpha$ on
morphisms. Then, any representation 7: $\pi_{G}Barrow \mathcal{V}_{G}$ naturally pulls back to

$i^{*}\gamma$ : $\pi HB\cong i^{*}\pi GXarrow v_{G}\cong v_{H}$

where $i^{*}$ simply restricts everything to those orbits $G/K$ in $\pi_{G}B$ such that If is a
subgroup of $H$ .

For a $G$ bundle $p:Earrow B$ , we can take its H-5xed point bundle $p^{H}$ : $E^{H}arrow$

$B^{H}$ , and it becomes a $WH=NH/H$-equivariant bundle. In the situation with the
projection map $q:Garrow J=G/N$, for $N$ anormal subgroup of agroup $G$ , we have
the functor

$q^{*}:$ $O_{J}arrow O_{G}$

given by $q^{*}(J/K)=G/H$ on objects, where $H=q^{-1}K$ , Then, $G/H$ and $J/K$ are
isomorphic as $G$-spaces via $\mathrm{g}$ , and so we also have the functor

$q_{*}:$ $O_{G}arrow O_{J}$

that sends a $G$-orbit $G/H$ to the $J$ orbit $J\cross cG/H\cong G/HN\cong J/K$ , where A $=$

$H\mathrm{A}^{\overline{/}}/N$ .
Aroutine check shows that $q_{*}\pi cX$ and $\pi_{J}X^{N}$ are isomorphic over $O_{J}$ , and

that $q^{*}q_{*}\pi cX$ and $\pi_{G}X^{N}$ are isomorphic over $O_{G}$ , for any $G$ space $X$ .
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Proposition 4.6 (Proposition 17.6 of $[\mathrm{C}\mathrm{M}\backslash \mathrm{V}]$ ). Let p:E $arrow B$ be aG-bundle
and let $p_{N}$ be tie complementary $G$ -bundle to the $N$ -Bxed point $J$ -bundle $p^{N}$ over

$B^{A}\backslash \mathrm{r},\cdot$ so that $p^{N}\oplus,pN\cong p|_{B^{N}}$ as $G$ -bundles. The representation $(p^{N})^{*}:$ $7\overline{‘}JB^{N}arrow v_{J}$

is isomorphic to the composite

$\pi_{J}B^{Nl\cdot p}\cong q_{\mathrm{s}^{\tilde{J|}}G}Barrow$

.
$q_{*}\mathcal{V}_{G}arrow v_{J}$ .

The representation $(pN)^{*}:$ $\pi cB^{4}\mathrm{v}$ $arrow v_{G}$ is isomorphic to the composite

$\pi_{G}B^{N\dot{\mathrm{f}}\mathrm{f}}\cong q^{*}q_{*G}r_{\iota}B\underline{.}$ $\cdot q^{*}q_{*}\mathcal{V}_{G}q.arrow q’q_{\mathrm{r}}\mathcal{V}_{G}arrow \mathcal{V}_{G}\Phi_{N}\Gamma$ ,

w here
$\Phi_{N}$ : $q.V_{G}arrow q_{*}V_{G}$

sends $G\cross_{H}V$ to $G\mathrm{x}HVN$ , and

$\Gamma:q^{*}q_{*}V_{G}arrow v_{G}$

sends $aa$ object $(G/H, G\mathrm{x}_{HN}Varrow G/HN)$ to the pullback $G\mathrm{x}_{H}Varrow G/H$ along
the quotient $G$ -rnap7: $G/Harrow G/HN$.

$\mathrm{b}^{+}\mathrm{o}\mathrm{w}$ that we have the necessary change-0f-groups information available, we can
proceed to investigate the comparison of orientation classes.

SECTION 5. UNIQUENESS OF EQUIVARIANT ORIENTATION CLASSES

Let us recall that the author’s earlier work $[\mathrm{N}1]$ , $[\mathrm{N}2]$ characterized certain
classifying spaces via some equivariant surgery exact sequences, and the key step there
was aconstruction of an explicit characteristic class (called “the structure invariant”
there) which lived in acertain equivariant cohomology group. Even earlier result of
Ib Madsen and M. Rothenberg $[\mathrm{M}\mathrm{R}2]$ characterized the equivariant homotopy type
of arelated classifying space, and their key step was the construction of acertain
class in the equivariant $K$-theory. Here we will extend their methods to fit into the
current situation, that is, we will try to relate the construction of the orientation
class for an orientable $G$-vector bundle in equivariant generalized cohomology with
the categorical characterization of the orientation.

When we say “uniqueness” of orientation, we do not mean that the choice of
the cohomology orientation class is unique. In fact, there axe multiple choices of ori-
entation (two, in the non-equivariant case, and more, in general, in the equivariant
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case) for asingle $G$-bundle. By “uniqueness”, we mean the following: For the coeffi-
cient module $E_{G}^{*}(p1)$ of the generalized $RO(G)$-graded cohomology, the cohomology
orientation class is naturally determined directly from the categorical definition of the
orientation, in the methods of Costenoble-May-Waner $\mathrm{I}^{\mathrm{C}}-[searrow] \mathrm{f}\mathrm{W}$], because they live in
the system of bundles over one-point

$\rangle$
that is, over the equivariant vector spaces (rep-

resentations) themselves. $\backslash \mathrm{Y}^{r}\mathrm{e}$ say that the cohomology orientation class is “unique”
when achoice of the orientation classes in this system of $E_{G}^{*}(pt)$ can be uniquely
extended to aclass in $E_{G}^{*}(B)$ for any orientable $G$-bundle $p:Earrow B$ .

Hereafter we assume that $G$ is afinite group, and we proceed by the induction
on the orbit types, in the same way as in $[\mathrm{h}’ 1]$ and { $\mathrm{N}2]$ . First, we apply the slice
theorem to the bundle $p:Earrow B_{\backslash }$ to single out amaximal orbit

G xG、V\rightarrow G/Gエ.

Then let $J=G/G_{f}$ and push things down via

$q$. : $\mathcal{O}_{G}arrow O_{J}$ .

Using Proposition 4.5, all cohomological information in the $J$-level can be recovered
back onto the $G$-level, and so we can construct acohomology class in the maximal
orbit piece $p:E|arrow B_{\max}$ .

On the other hand, the complementary pieces $\mathrm{p}$ : $E\{arrow(B-B_{\max})$ can be
uniquely patched together, due to the induction hypotheses, and Proposition 4.4
provides the uniquely extended orientation class there.

As the last step, we $\mathrm{r}\mathrm{e}$-constructa class on $p$ : $Earrow B$ from the above two
pieces, using the Mayer-Vietoris exact sequence in the $E_{G^{\backslash }}^{*}.- \mathrm{c}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}1\mathrm{o}\mathrm{a}\mathrm{e}$ (Theorem $\mathrm{D}$ ).
The technical background tools are described in Chapter XVIII of Peter May’s book
[M]. The double-cose fo rmula in the G-V-M ackey functor provides the relationship
bet ween the global class in the cohomology of $B$ and the local classes coming from the
fiber-direction and transferred back from the $J$-equivariant cohomology classes via the
map $q_{*}$ above. The $E_{G}^{\mathrm{r}}$-cohomology Mayer-Vietoris exact sequence now provides a
uniquely determined global class, in the formal way which is similar to the arguments
in $[\mathrm{N}1]$ and $[\mathrm{N}2]$ , and therefore ensures both the existence and the uniqueness of the
global orientation class in the cohomology group $E_{G}^{*}(B)$ . Thus we have obtained the
following theorem:

Theorem 5.1. Let $G$ is afinite group, $B$ is acompact $G$-manifold and $p:Earrow B$ is
an oriented $G$-vector bundle in the sense of Costenoble-May-Waner (De&ition 1,2).
If $E_{G}^{*}$ is an orientable equivariant generalized cohomdogy in the sense of DeRnition
4.1, then for any choice of acompatible system of local pointwise orientation dasses
(as discussed in the above), there exists aunique global orientation class in the cohO-
mology group $E_{G}^{*}(B)$ which extends the given local data

81



REFERENCES
$\acute{\dot{1}}$Bre] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., no. 34, Springer

Verlag, Berlin, 1967.
[Bro] Brown, Cohomology theories, Ann. of Math. 75 (1962), 467-484.
[CMW] S. R. Costenoble, J. P. May and S. Waner, Equivariant orientation theory, Preprint (2001).
[CW 1] S. R. Costenoble and S. Waner, The equivaiant Spivak normal bundle and equivariant

surgery, Michigan Math. J. 39 (1992), 415-424.
$[\mathrm{C}\mathrm{W}2]$ S. R. Costenoble and S. Waner, Eguivariant Poincare Duahty, Michigan Math. J. 39 (1992),

325-351.
$[\mathrm{t}\mathrm{D}]$ T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., no.

766, Springer-Verlag, Berlin, 1979,

[DR] K. H. Dovermann and M. Rothenberg, Equivariant surgery and classification of finite group
actions on manifolds, Memoirs Amer. Math. Soc. 379 (1988), 1-117.

[D] A. $\mathrm{D}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}_{1}$ Induction and structure theorems for orthogonal representations of finite groups, Ann.
of Math. 102 (1975), $291rightarrow 325$ .

[Du] E. J. Dubuc, $Kan$ Extensions in enriched category theory, Lecture Notes in Math., no. 145,
Springer Verlag, Berlin, 1970.

[E] A. D. Eimendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), $27\mathrm{S}-284$ .
[K] G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes Series

64, Cambridge University Press, Cambridge, 1982.
[L] L. Gaunce Lewis Jr., Equivariant $E\dot{\iota}lenberg$-MacLane spaces and the equivariant Seifert-van

Kampen and suspension theorems, Topology and its Applications 48 (1992), 25-61.
$[\mathrm{L}2]$ L. Gaunce Lewis Jr., The equivariant Hurewicz maP, Trans. Amer. Math. Soc. 329 (1992),

$433\triangleleft 72$ .
[LMS] L. G. Lewis, Jr., J. P. May and M. Steinberger, with contribution by J. E. McClure, Equi-

variant stable homotopy $theo\prime y_{t}$ Lecture Notes in Math., no. 1213, Springer-Verlag, Berlin, 1986.
[LM] W. Luck and I. Madsen, Equivariant $L$ -groups:Definitions and calculations, Math. Z. 203

(1990), 503-526.
[M] J. P. May, et al., Equivariant homotopy and cohomology theory, $\mathrm{N}\mathrm{S}\mathrm{F}\sim \mathrm{C}\mathrm{B}\mathrm{M}\mathrm{S}$ Regional Conference

Series in Mathematics No. 91, Amer. Math. Soc, 1986.
[MM] I. Madsen and R. J. Milgram, The classifying space for surgery and cobordism of manifolds,

Annals of Math. Studies, 92, Princeton University Press, Princeton, 1979.
[MR 1] I. Madsen and M. Rothenberg, On the classification of $G$ spheres $I$: Equivariant transver-

sality, Acta Math. 160 (1988), 65-104.
[MR 2] I. Madsen and M. Rothenberg, On the classification of $G$ spheres It.$\cdot$ $PL$ automorphism

groups, Math. Scand. 64 (1989), 161-218.
(MR 3] I. Madsen and M. Rothenberg, On the classification of $G$ spheres $tII.\cdot$ Top automorphism

groups, Aarhus University Preprint Series (1987), Aarhus.
[MR 4] I. Madsen and M. Rothenberg, On the homotopy theory of equivariant automorphism groups,

Invent. Math. 94 (1988), 623-637.
[N] M. Nagata, Equivariant suspension theorem and G-CW(V, $\gamma$)-comptexes, Preprint (1997).
$[\mathrm{N}1]$ M. Nagata, The Equivariani Homotopy TyPe of the Classifying Space of No rmal Maps, Disser-

tation, August 1987, The University of Chicago, Department of Mathematics, Chicago, Illinois,
U.S.A..

$[\mathrm{N}2]$ M. Nagata, The classifying space of normal maps $\dot{\mathrm{s}}n$ the equivariant surgery exact sequence
and its equivariant homotopy type, to appear in Illinios J. Math..

[W] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970.
[Wa] S. Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980),

$38\overline{\mathrm{a}}405$ .

KITASHIRAKAWA, SAKYO-KU, Kyoto 606-8502, JApAN

82


