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ON THE UNIQUENESS OF
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INTRODUCTION

Let p: E — B be a G-vector bundle. We would like to define an orientation
class in the equivariant setting, so that each of the fixed-point-set bundles are com-
patibly oriented by that orientation class for all orbit type subgroups of G. As the
paper of S. Costenoble, J. P. May and S. Waner [CMW] writes, there is no satisfactory
answer in the literature except under rather restrictive hypotheses. '

Here is an illustrative example of one of the difficulties around this problem.

Definition 0.1. Let V be a G-representation. A G-vector bundle is called to be
of dimension V if each of its fiber representations V; is isomorphic to V as a G-
representation. A naive orientation class is defined to be a compatible collection of
homotopy classes ¢(z) of G,-linear isometries between V, and V, for each z € B.

Example 0.2. Let G = S! and let it act on B = S? by the axis rotation. There are
two fixed points, which we denote by n and s. The tangent bundle of B should obvi-
ously be equivariantly orientable, but it is difficult to define a satisfactory orientation
class for it. In fact, there cannot exist any naive orientation class, because for = in
the G-free part of B there is only one homotopy class of S*-isometries V. — V but if
we connect the two fixed points n and s with a path and compare the corresponding
fiber representations the induced pullback isometry between V,, and V; is necessarily
orientation reversing. Therefore there cannot be any compatible way to construct a
naive orientation class. '

In order to overcome this difficulty, S. Costenoble, J. P. May and S. Waner
[CMW] have constructed a new, categorical definition of orientation for any G-vector
bundle. We will briefly outline their definition in Section 1 below.
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We would like to algebraically define orientation classes in cohomology theo-
ries, and compare those definitions with Costenoble-May-Waner’s categorical defini-
tion. We will define equivariantly orientable equivariant cohomology theories, and
get some uniqueness theorem of equivariant orientation classes in such theories, thus
proving that those algebraically defined equivariant orientation classes are equivalent
to Costenoble-May-Waner’s categorically defined classes, under some circumstances.
The basic reference for equivariant cohomology theories and equivariant homotopy
theory is J. Peter May’s book [M].

The main tool here is the notlon of G-CW (V ¥)- complex studied in the author’s
earlier paper [N].

The notion of a G-CW ()-complex was defined in [CMVV] in order to construct
a natural notion of a “G-orientation”, and in order to construct a Poincaré Duality
on spaces that are not “G-connected” (See [CW 2}). It was impossible to determine
a natural notion of a “dual G-cell” under the traditional notion of G-CW-complexes,
but if we use a new notion of a “G-cell”, as explained below, it is now possible to
obtain a natural “dual cell” and “dual decomposition”. The new building-block of a
“G-cell” is:

v(z) = [G/H x Rt — G/H]

that is, some object that “assembles” an R¢-trivial bundle for each orbit z : G/H — X
in X, functorially. (£2>0,H < G.)

The notion of a G-CW(V)-complex was defined by L. G. Lewis in [L] in order to
construct a generalized “equivariant suspension theorem”. In there, a building-block
“G-cell” is: |

Ev+k G/K*,
which is the compactification of the (V @ R¥)-trivial bundle over an orbit G/K (k>
~-1,K < G)_ for a fized G-representation space V. (Here he assumes that |VC| > 1.)
By assigning a common representation component V to all of the cells, he tries to
grasp the contribution of a V-suspension onto the total space.

In [L], Lewis has constructed a natural “G-Eilenberg-MacLane space”, con-
structed a natural obstruction theory from there, based on the above G-C’W(V)
complexes, still assuming that |V¢| > 1. He then proved the following theorem:

Suspension Theorem ([L], Theorem 2.5). Assuming that [VC| > 1, if Y is a
(IV*| — 1)-connected, based G-CW -complex, then the morphism

5 < S.W‘;Y —_— Wv_’_wz Y

is a natural isomorphism for any representation W. |

Here, s, is constructed as a left adjoint of the natural functor derived from a
forgetful functor
' s:Bg(V) — Bg(V + W)

between the Burnside categories, and wg(Y) is a Mackey functor assigning:

T3(Y)(G/K) = [EVe/Kt, Y], =[2",Y],
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to each orbit G/K in Y. The details will be explained below.
In [N], we extended Lewis’ construction under the more general situation where
the condition |[V€| > 1 is removed:

Suspension Theorem ([N], Theorem B). With the s, as defined in the above,
for any ([VC| — 1)-connected G-CW -complex Y, the morphism:

7:5.75Y — 78 (YY),
is a natural isomorphism of G-(V + W)-Mackey functors.

Using this result, we re-construct orientation classes for “equivariantly ori-
entable cohomology theories”, by patching together classes over orbit bundles, thus
we get some characterization result on equivariant orientation classes on such coho-
mology theories.

SECTION 1. COSTENOBLE-MAY-WANER’S ORIENTATION

- Let G be a finite group, and let V be a finite dimensional G-representation
over R. Let O¢g be the category of G-orbits as objects and G-maps between them
as morphisms. Let Vg(n) be the homotopy category of n-dimensional orthogonal
G-bundles over G-orbits. A morphism in Vg(n) is a G-homotopy class of bundle
maps. .

Fora G'~space B, let 7g B be the category consmtlng of G-mapsz: G / H — B,
where H < G, as objects, and any pair (o,w):

o”G/H—-—-—»G/Ix G-map
G/H xI-— B G-homotopy between z and yoo
We will call thls ncB “the equivariant fundamental groupoid of B.”

Definition 1.1 ([CMW], Definition 7.1). The two categories 7B and Vg(n) both
have a natural projection functor ¢ onto the category Og. We will call any functor

v:7¢B — Vg
which is compatible with the projections (that is, ¢ o ¥ = ¢) with the name “an n-
dimensional representation of the groupoid 7 X.” If p: E — B is a G-vector bundle,
then a representaion

p*:7gB — Vg
is naturally defined via bundle pullback. More generally, any functor
R:£—R

over ngB is called a representawn where R is a skeletal groupoxd (e.g. V(_;-) over ngB
and £ is any groupoid (e.g. ngB) over rgB.
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Definition 1.2 ([CMW)], Definition 2.8). A G-vector bundlep: E — B is called
orientable if the functor p* : 1B — Vg satisfies p*(w, a) = p*(w', a) for every pair
of morphisms (w, a) and (w', @) with the same source and target and the same image
in Og. That is, p*(w, @) is independent of the choice of the path classw. For example,
for a representation V of G, the projection B x V — B is orientable.

Now the point is that there is not any straightforward way to define an orien-
tation class for an orientable G-bundle. As ‘Example 0.2 shows, a naive orientation
class is undefinable. In order to overcome this situation, S. Costenoble, J. P. May and
S. Waner made the following construction in [CMW]:

Definition 1.3 ([CMW], Definition 7.6). One can construct a natural “universally
saturated” representation (SR,S): .

5:SR—R
such that every faithful representation (€, R):
R:£€—R

maps into it. In the case where R = Vg, £ = ngB and R = p* for a G-vector
bundle p : E — B, its orientation is defined to be a map from the bundle-pullback
representation p* : 1B — Vg to the “universal saturation” of p*, S : SVg — Vg:

(F,9) : (ra,p") — (SVG, S).

Consult Section 7 of [CMW] for the details. As the main feature of the defini-
tion, they have the followmg result:

Corollary 7.7 of [C’\’IW] A representation is orientable if and only if it has an
orientation.

A G-bundle map (f, f) : (E — B) — (E' — B') is orientation preserving if
the natural map
| (7¢B,p*) — (WG’B',q )
is compatible with the orientations (F,¢) : (rgB,p*) — (SVG, S) and (F',¢') :
(reB',q%) — (SVq, S).

That is, the orientation class is not based on a single representation space, but
rather based on the “universally saturated” system: (SVg, S).

SECTION 2. G-CW(V,~)-COMPLEXES
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Now we define a G-CW(V,~v)-complex. Let X be a G-space, V be a G-
representation and v : 1¢X — Vg(n) be as above.

Definition 1.1. A G-CW(V,~)-structure on X is a filtration
X =colim X"

which satisfies the following two conditions:
(1) X°=]] (G/H = X) ~: adisjoint union of G-orbits such that

YG/H = X) = [G/H x V x R! — G/H]

(a trivial bundle over G/H );
(2) X»=Xx""1| Ueg), where a “core orbit” z : G/H — e}, is specified to

each e, and a G-homeomorphism
en = D ((z) 8R™)

and a sub-representation as a split summand

{‘ Vv 3» ¥(z) ifn>¢
VoR-" S 4(z) ifn<t
are also specified. |

In other words, this definition adds an extra requirement that all of the y(z)’s
include V as a direct sum component, into the original deﬁmtlon of G-CW(v)-
complexes by Costenoble-May-Waner in [CMW].

Next, we construct our basic notion of equivariant homotopy set objects; and
define the Burnside category, on which all of the algebraic constructions will be based.

For a G-representation V and G-spaces X and Y, [X,Y]g will denote the set
of G-homotopy classes of G-maps f : X — Y (where the base points are not taken
into account). Let §¥ = DV/SV, the usual one-point compactification of V, and let
LY Xt = SV A X+, the smash product of SV and the space Xt that is X attached
with a disjoint ba.se poxnt

Definition. Bg(V) denotes the Burnside category af V Where the objects are of the
form
[16/K;,
J

a finite disjoint union of G-orbits, and for any two objects A and B, the morphism
set 1s:

Bo(V)(4,B) = [5V4*,2VB*],;
Note that Bg(V)(A, B) is a group when |[VC] > 1.
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Definition. A “G-V-Mackey functor” is a contravariant functor of the form
M : Bg(V) — Sets.

from the Burnside category to the category of based sets, which satisfies the condi-
tion that “converts finite coproducts into finite products,” that is, there is a natural
isomorphism between sets: '

M(AUB) = M(A) x M(B).
Definition. A G-V-Mackey functor M is called “groupoid-valued”, if the image of

M lies in the subcategory of groupoids (i.e., all morphisms are invertible).

Definition. Let Mg(V) denote the category of all “groupozd-valued” G-V- Mackey
functors from Bg(V') to Sets,.

The basic example of a G-V-Mackey functor is the following.
Definition. Define a G-V -Mackey functor WgY : BG(V) — Sets. to be:

¥ (4) = [ZVAY Y],
on objects, and
V() = £ [2VBH, Y], — [EVA%Y],
on morphisms, for an f : YAt — TV B* in Bg(V).
It is obvious that 7I'VY is always a groupoid-valued Mackey functor.:.

Definition of an Eilenberg-MacLane space For a G-V -Mackey functor M, a
space K§M is called a “G-V-Eilenberg-Maclane space, if it is a G-space which is
(v - 1) connected, is G-homotopic to a G-CW-complex, and if it satisfies:

TTV (I{‘C/;A[) M3 £V+k (I{VA/I) =0 fOI' any k > 0.

We have proved the following theorem in our previous paper [N]:

Theorem A ([N]). For any V and any groupoid-valued G-V - JVIackey functor M, a
G-V -Eilenberg-MacLane space K SM exists. Moreover, the assignment from M to
KEM is the categorical right a.djomt of the “homotopy groupoid” construction 7 'rv,

that is, there is a natural isomorphism of sets:

X, KGM) — M(V) [1§(X), 7§ (KFM)| = Mo(V) [x5(X), M] .
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SECTION 3. THE SUSPENSION THEOREM AND REPRESENTATION OF
COHOMOLOGY THEORIES

The traditional suspension theorem on (non-equivariant) homotopy sets obvi-
ously fails in the equivariant situation. For the suspension map:

[(X,Y) — [E"X,sY
G G

to be an isomorphism, we need a very strong (and non-natural) restriction about the
dimensions of fixed-point sets X#, YH for all subgroups H of G. For example, the
suspension map [S™, §7]g — [SWF", SWHn] . can never be surjective, if W contains
a regular representation. ‘ |

Therefore, we need a different formulation of an “equivariant suspension the-
orem.” Recall that Mg(V) was the category of all groupoid-valued G-V-Mackey
functors. We have proved the following results: '

Lemma ([N], Lemma 2.1). FVCcUisa sub—G#epresentation, the natural “for-
getful functor” s* : Mg(U) — M¢(V) (that is induced by the canonical functor
s:Bg(V) — Bg(U)) has a left adjoint, that is, there is a natural isomorphism:

MG(U) (M, 3.N) = Mg(U) (s,5*M,5,N) = Mg(V)(s* M, 5.N).

Definition. For a representation space W, define a “suspension morphism”:
o z‘c}‘Y — s*zg_,_w (z%Y)
by assigning the suspension map: . . .
| ga: [ZVAT Y], — [EWHV AT, 2VY)
to each object A in Bg(V). Since this o is naturally a transformation of Mackey
functors, it is a functor from Mg(V) to Mg(V + W). Therefore, by Lemma 2.1, we

have its left adjoint: o .
75,75 — 78y (B7Y).
Lemma ([N], Lefnma 2.2). Consider the suspension functor s : Bg(V) — Bg(V +
W). For any (V + W)-Mackey functor N, we have a G-homotopy equivalence

| 6:QVKG, wN — KG(s"N)
which makes the following diagram of natural isomorphisms to commute:

aG (VK N) — =G (KF(s*N))

‘| !

(3'Z€’+W) (K¢ whN) —— s*N.
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Theorem B (Suspension Theorem, [N]). With the s, as defined in the above,
for any (|V¢| — 1)-connected G-CW -complex Y, the morphism:

o: s‘zgY — Z§+W (=%Y).

is a natural isomorphism of G-(V + W)-Mackey functors.

Remark that the morphism is based on the category of groups if [VC| > 1 (and
of abelian groups if [V¢| > 2), but it is merely on the category of sets, if [VC¢| = 0.

In Theorem A above, we have constructed a G-V-Eilenberg-MacLane space
using the explicit cell structure of G-CW(V,+v)-complexes. Therefore, the G-V-
Eilenberg-MacLane space KM satisfies the standard obstruction theory properties.
(cf. [N], Section 3)

With the presence of the Suspension Theorem, the existence of the equivari-
ant Eilenberg-MacLane spaces and the standard obstruction theory techinques, the
representation theorem of Brown type ([Bro]) for generalized equivariant cohomology
theories can be proved by the standard argument:

Theorem C. (cf. Waner’s Definition 4.2 in Chapter X of [M}) For a G-V-Mackey
functor M, an RO(G)-graded ordinary cohomology theory H%(X; M) can be defined
by '

HEt(X; M) = HY*" Homo(CY (X), M)

for G-CW-complexes X, using the G-CW(V,~)-cell structures.

Theorem D (Brown Representability Theorem, [Bro}). (Theorem 3.1 in Chap-
ter XIII of [M]) A contravariant set-valued functor k on the homotopy category of G-
connected based G-CW(V, v)-complexes is representable in the form k(X) = [X, K]¢
for a based G-CW(V, v)-complex K if and only if k satisfies the wedge and Mayer-
Vietoris axioms: k takes wedges to products and takes homotopy pushouts to weak
puIIbacks

Using these theorems, together with the above-mentioned Suspension Theorem
and the existence of Eilenberg-MacLane spaces for general G-V-Mackey functors, we
see that there is a compatible method for the construction of classifying space for
G-V -Mackey functors, that is, such G-V-Mackey functors are classified as an RO( G)
graded system, as a system mdexed by the representation V.

Now that we have the basic tools readily available, we can proceed to investigate
the comparison of generalized equivariant cohomology theories.

SECTION 4. EQUIVARIANTLY ORIENTED COHOMOLOGY THEORIES



78

We define a generalized equivariant cohomology theory orientable when it ad-
mits an orientation class for any orientable G-vector bundle in the sense of Definition
1.2. Let BU(V,~,S) be the classifying space for oriented (V,v)-bundles constructed
in Theorem 22.4 of [CMW].

Definition 4.1. Let E} be a generalized RO(G)-graded cohomology theory in the
sense of Chapter XIII of Peter May’s book [M]. E, is called orientable if there is a
class o(V,v,S) € EL(BU(V,~, S)) that maps to an orientation class when restricted
to any H-fixed point sets of all subgroups H of G. This class a(V,~, S) is called the
EZ,-orientation class.

For any orientable G-vector bundle p: E — B and its classifying map B —
BU(V,~,S), we call p*(a(V,v,5)) € E%(B) be the orientation class of p.

Proposition 4.2. The equivariant K-theory, K, is orientable.

Proof. For the definition and basic properties of the equivariant K-theory, consult
Chapter XIV of [M]. To the universal oriented bundle over the classifying space
BU(V,~, S), we assign the K-cohomology classes that consist of the building-blocks
for the class o(V, 7, S) inductively, by the categorical definition and construction per-
formed in the original method of Costenoble-May-Waner in [M]. The construction is
purely straightforward, following the non-equivariant method in each step, using the
functorial properties of bundle lifting. Since the construction of the orientation is
purely categorical, this can be done by using only formal arguments. Now the proof
is just the standard routine work.

In the case when B is a smooth G-manifold, the definition reduces to the
classical definition of the orientation class via the Thom complex. (cf. Chapter XVI
of [M])

Definition 4.3. Ifp: E — B is an n-plane G-bundle, then an E} -orientation class of
p is defined to be an element u € E&(Tp) for some a € RO(G) of virtual dimension n
such that, for each inclusion it : G/H — B, the restriction of u to the Thom complex
of the pullback i* is a generator of the free E*(5°)-module E&(Ti*p).

In this situation, Costenoble and Waner have proved a variant of Thom Iso-
morphism Theorem and the Poincaré Duality:

Thom Isomorphism (Theorem 9.2, Chapter XVI of [M]). Let u € EZ(Tp) be
an orientation of the G-vector bundle p over B. Then

Up: EG(B4) — EGT(Tp)

is an isomorphism for all 3.

Poincaré Duality (Definition 9.3, Chapter XVI of [M]). If M is a closed
smooth manifold such that its tangent bundle T is oriented via p € EY(T7), then one
can define the composite of the Thom and Spanier-Whitehead duality isomorphisms

D: EZ(My) — E5*%(Tv) — ES_4(M)
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where v is the normal bundle, and [M] = D(1) € ES(M) is called the fundamental
class associated with the orientation.

Now we specialize to the case where the base space B is a single orbit G/H.
[EYG/H*,Y

Since
P]G = [SV*Y] H?

We have EL(G/H) = E}j(pt), and this is where the orientation class lives in this
case. Next, for any morphism ¢ : G/H — G/K in the category ngB, we get a
map o* : E}(pt) — E}(pt), so we get a straight covariant representation from the
category 7¢ B into the system {E};(pt)} with all subgroups H of G.

Proposition 4.4. For any orientable generalized RO(G)-graded cohomology theory
EY and any oriented G-vector bundle p : E — B, the restriction i*p*(o(V,7,S)) €
E&(G/H) of the orientation class p*(o(V,7,S)) € Eg&(B) is uniquely defined, and
must coincide with the one defined in Definition 4.1, in order that it gives a (non-
equivariant) orientation class in the sense of Thom.

Proof. Definition 4.3 and the Thom Isomorphism Theorem determines those classes
at the E}j(pt) level. Since the orientation of Costenoble-May-Waner is naturally
constructed by the purely categorical construction, the result follows in the same
way as in the proof of Proposition 4.2, making use of the naturality provided by our
Suspension Theorem (Theorem B) for generalized equivariant cohomology theories.

We now discuss the effect of the change of groups regarding the orientation
classes for the more general base space B (cf. Section 17 of [CMVV] )Let H C G. We
have the functor

ty : Oy — Og

given by i,(H/K) = G xg (H/K) 2 G/K on objects and i.(a) = G Xy a on
morphisms. Then, any representation v : #gB — Vg naturally pulls back to

i*y :rgB =2 i*xngX — Vg & Vy

where i* simply restricts everything to those orbits G/K in 7B such that K is a
subgroup of H.

For a G-bundle p : E — B, we can take its H-fixed point bundle pH : EH
BH and it becomes a WH = NH/H-equivariant bundle. In the situation with the
pro;ectzon map ¢: G —+ J = G/N, for N a normal subgroup of a group G, we have
the functor

¢*: 05— Og |

given by ¢*(J/K) = G/H on objects, where H = ¢~ K. Then, G/H and J/K are
isomorphic as G-spaces via ¢, and so we also have the functor -

OG‘——-)OJ

that sends a G orbit G/H to the J-orbit J x¢g G/H G/HN = J/K, where K =
H:’\”/;V

A routine check shows that q.r(;X and 7wy XN are 1somorphxc over Oy, and
that ¢*¢.7¢X and 7gX® are isomorphic over Og, for any G-space X.
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Proposition 4.5 (Proposition 17.6 of [CMW]). Let p: E — B be a G-bundle
and let px be the complementary G-bundle to the N-fixed point J-bundle p% over
BY¥, so that pN @pn = p|p~ as G-bundles. The representation (p)* : = ;BN — V;
is isomorphic to the composite

71BN = q7gB 5 ¢,V — Vs,

The representat:on {(pn)": wGB —_— VG is isomorphic to the compos.tte

. - . - . P . T
neBY % ¢*qumeB 25 g aVe T g ¢Ve — Vg,

where
' On: qavc; — ¢ Vg

sends G xgV to G xyg VN, and

sends an object (G/H,G xuynV — G/HN) to the pullback G xy V — G/H along
the quotient G-map v: G/H — G/HN.

Now that we have the necessary change-of-groups information available, we can
proceed to investigate the comparison of orientation classes.

SECTION 5. UNIQUENESS OF EQUIVARIANT ORIENTATION CLASSES

Let us recall that the author’s earlier work [N 1}, [N 2] characterized certain
classifying spaces via some equivariant surgery exact sequences, and the key step there
was a construction of an explicit characteristic class (called “the structure invariant”
there) which lived in a certain equivariant cohomology group. Even earlier result of
Ib Madsen and M. Rothenberg [MR 2| characterized the equivariant homotopy type
of a related classifying space, and their key step was the construction of a certain
class in the equivariant K-theory. Here we will extend their methods to fit into the
current situation, that is, we will try to relate the construction of the orientation
class for an orientable G-vector bundle in equivariant generalized cohomology with
the categorical chara.ctenzatxon of the orientation.

When we say “uniqueness” of orientation, we do not mean that the choice of
the cohomology orientation class is unique. In fact, there are multiple choices of ori-
entation (two, in the non-equivariant case, and more, in general, in the equivariant



81

case) for a single G-bundle. By “uniqueness”, we mean the following: For the coeffi-
cient module E&(pt) of the generalized RO(G)-graded cohomology, the cohomology
orientation class is naturally determined directly from the categorical definition of the
orientation, in the methods of Costenoble-May-Waner [CMW], because they live in
the system of bundles over one-point, that is, over the equivariant vector spaces (rep-
resentations) themselves. We say that the cohomology orientation class is “unique”
when a choice of the orientation classes in this system of E&(pt) can be uniquely
extended to a class in E%(B) for any orientable G-bundle p: £ — B.

Hereafter we assume that G is a finite group, and we proceed by the induction
on the orbit types, in the same way as in [N 1] and [N 2]. First, we apply the slice
theorem to the bundle p: E — B, to single out a maximal orbit

G xg.V — G/G,.
Then let J = G/G, and push thmgs down via
OG — 0_;

Using Proposition 4.5, all cohomological information in the J-level can be recovered:
back onto the G-level, and so we can construct a cohomology class in the maximal
orbit piece p: E| = Bpg:.

On the other hand, the complementary pieces p : E| = (B — Byn,.) can be.
uniquely patched together, due to the induction hypotheses, a.nd Proposmon 4 4
provides the uniquely extended orientation class there,

As the last step, we re-construct a class on p : E — B from the above two
pieces, using the Mayer-Vietoris exact sequence in the Eg-cohomology (Theorem D).
The technical background tools are described in Chapter XVIII of Peter May’s book
[M]. The double-coset formula in the G-V-Mackey functor provides the relationship
between the global class in the cohomology of B and the local classes coming from the
fiber-direction and transferred back from the J-equivariant cohomology classes via the
map ¢. above. The EG-cohomology Mayer-Vietoris exact sequence now provides a
uniquely determined global class, in the formal way which is similar to the arguments
in [N 1] and [N 2], and therefore ensures both the existence and the uniqueness of the
global orientation class in the cohomology group EG(B) Thus we have obtmned the
following theorem:

Theorem 5.1. Let G is a finite group, B is a compact G-manifold and p: E — B is
an oriented G-vector bundle in the sense of Costenoble-May-Waner (Definition 1.2).
If EZ is an orientable equivariant generalized cohomology in the sense of Definition
4.1, then for any choice of a compatible system of local pointwise orientation classes
(as discussed in the above), there exists a unique global orientation class in the coho-
mology group Ej(B) which extends the given local data. |
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