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ABSTRACT. We give asummary of some recent work in which notions of dimension and
dynamical entropy for metrized C’-algebras were introduced and computed for examples
involving the UHF algebras $M_{p}\propto \mathrm{a}\mathrm{n}\mathrm{d}$ noncommutative tori. The metric framework here
is that determined by Rieffel’s concept of aLip-norm, which plays the role of aLipschitz
seminorm on functions over acompact metric space.

Motivated by the observation of Connes [1, 2, 3] that Dirac operators naturally give rise
to metrics on state spaces, RiefTel initiated aline of investigation $[11, 12]$ that led to the
notion of acompact quantum metric space [13]. Acompact quantum metric space is a
pair $(A, L)$ consisting of an order-unit space $A$ equipped with acertain type of seminorm
$L$ , called aLip-norm, which is ageneralization of aLipschitz seminorm on functions over
acompact metric space. The key requirement in the definition of aLip-norm is that the
metric

$\rho_{L}(\mu, \nu)=\sup\{|\mu(a)-\nu(a)| : L(a)\leq 1\}$

on the state space of $A$ give rise to the weak’ topology. Since the real linear subspace of
self-adjoint elements in aunital C’-algebra can be viewed as an order-unit space, Rieffel’s
theory applies in particular to the $\mathrm{C}^{*}$-algebraic setting, and indeed $\mathrm{C}$’-algebras provide
the fundamental motivating examples of the subject (see for instance Example 1.6). In
[6] we introduced notions of dimension and dynamical entropy for metrized (7’-algebras

within this framework using approximation by finite-dimensional subspaces, and carried
out computations for some examples involving the UHF algebras $M_{p}\infty$ and noncommuta-
tive tori. We also showed that for usual Lipschitz seminorms ouf noncommutative metric
dimension coincides with the Kolmogorov dimension. The aim of the present article is to
give adescription of these results and an indication of the techniques involved in their
proofs. In Section 1we define our metric C’-algebraic framework in precise terms and
present some examples, and then devote Sections 2and 3to dimension and “product
entropy,” respectively.

1. cLlP-NORMS ON UNITAL $\mathrm{C}$’-ALGEBRAS

Recall that an order-unit space is areal partially ordered vector space $A$ with distin-
guished element $e$ , called the order unit, such that, for every $a\in A$ ,

(1) there exists an $r\in \mathbb{R}$ with $a\leq re$ , and
(2) if $a\leq re$ for all $r\in \mathbb{R}_{>0}$ then $a\leq 0$ .

Under the norm
$||a||= \inf\{r\in \mathbb{R} : -re\leq a\leq re\}$

数理解析研究所講究録 1291巻 2002年 1-10

1



$A$ becomes anormed vector space, and we can recover the order from the norm using the
fact that $0\leq a\leq e$ if and only if $||a||\leq 1$ and $||e-a||\leq 1$ . Astate on $A$ is defined as
anorm-bounded linear functional on $A$ whose dual norm and value on $e$ are both 1(this
automatically implies positivity). We denote by $S(A)$ the state space of $A$ . The space of
self-adjoint elements in aunital C’-algebra is aprime example of an order-unit space, an
in fact every order-unit space can be realized as aunital subspace of self-adjoint operators
on aHilbert space (see [13, Appendix 2]). ALip-norm on an order-unit space $A$ is a
seminorm $L$ on $A$ such that

(1) for all $a\in A$ we have $L(a)=0$ if and only if $a\in \mathbb{R}e$ , and
(2) the metric $\rho_{L}$ defined on $S(A)$ by

$\rho_{L}(\mu, \nu)$ $= \sup$ { $|\mu(a)-\nu(a)|$ : $a\in A$ and $L(a)\leq 1$ }
gives rise to the weak’ topology.

Acompact quantum metric space is apair $(A, L)$ consisting of an order-unit space $A$

equipped with aLip-norm $L$ .
In particular we can consider aLip-norm on areal unital subspace of self-adjoint ele-

ments in aunital C’-algebra, but in this case we wish our generalized Lipschitz seminorm
to be meaningfully defined on the C’-algebra as avector space over the complex numbers,
and so we introduce the notion of acLip-norm.

Notation 1.1. Given aseminorm $L$ on aunital C’-algebra $A$ which is permitted to take
the value $+\infty$ , we denote the sets $\{a\in A : L(a)<\infty\}$ and $\{a\in A : L(a)\leq r\}$ (for a
given $r>0$) by $L$ and $L_{r}$ , respectively. For $r>0$ the norm ball $\{a\in A:||a||\leq r\}$ will be
denoted by $A_{r}$ .

Definition 1.2. AcLip-nom on aunital C’-algebra $A$ is aseminorm $L$ on $A$ , possibly
taking the value $+\infty$ , such that

(i) $L(a’)=L(a)$ for all $a\in A$ ,
(ii) for every $a\in A$ we have $L(a)=0$ if and only if $a\in \mathrm{C}1$ , and
(iii) $\rho_{L}(\sigma, \omega)=\sup_{a\in L_{1}}|\sigma(a)-\omega(a)|$ defines ametric on the state space $S(A)$ which gives

rise to the weak’ topology.
We say that a cLip-norm $L$ is aLeibniz cLip-norm if it satisfies the Leibniz rule

$L(ab)\leq L(a)||b||+||a||L(b)$

for all $a$ , $b\in L$ .

The Leibniz rule plays acrucial role in our theory of dynamical entropy (Section 3).
On the other hand, our definition of metric dimension (Definition 2.3) applies to any cLip-
norm on aunital C’-algebra, and in fact is easily adapted to the general order-unit context
of compact quantum metric spaces.

It is readily seen that if $L$ is acLip-norm on aunital C’-algebra then the restriction $L’$

of $L$ to the order-unit space $L$ $\cap A_{\mathrm{s}\mathrm{a}}$ is aLip-norm, and the restriction map from $S(A)$ to
$S(L \cap A_{\mathrm{s}\mathrm{a}})$ is aweak’ homeomorphism which is isometric relative to the metrics $\rho L$ and
$\rho L’$ defined via $L$ and $L’$ , respectively.

Theorem 1.8 of [11] implies the following proposition. Our definitions of dimension and
dynamical entropy will be based on the precompactness condition (4)
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Proposition 1.3. Let $L$ be aseminorm on aunital C’-algebra $A$ , possibly taking the
$\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}+\infty$ . Then $L$ acLip-norm if and only if it separates $S(A)$ (equivalently, $\rho_{L}(\sigma, \omega)=$

$\sup_{a\in L_{1}}|\sigma(a)-\omega(a)|$ defines ametric on $S(A))$ and satisfies
(1) $L(a^{*})=L(a)$ for all $a\in A$ ,
(2) for every $a\in A$ we have $L(a)=0$ if and only if $a\in \mathrm{C}1$ ,
(3) $\sup$ { $|\sigma(a)-\omega(a)|$ : $\sigma$ , $\omega$ $\in S(A)$ and $a\in L_{1}$ } $<\infty$ , and
(4) the set $L_{1}\cap A_{1}$ is totally bounded in $A$ for $||\cdot$ $||$ .

The essential maps between cLip-normed unital C’-algebras are those which satisfy a
Lipschitz condition:

Definition 1.4. Let $A$ and $B$ be unital C’-algebras with cLip-norms $L_{A}$ and $L_{B}$ , repec-
tively. Apositive unital linear map $\phi$ : $Aarrow B$ is said to be Lipschitz if there exists a
$\lambda\geq 0$ such that

$L_{B}(\phi(a))\leq\lambda L_{A}(a)$

for all $a\in L$ , in which case the least such Ais defined to be the Lipschitz number of $\phi$ .
If $\phi$ is invertible and both $\phi$ and $\phi^{-1}$ are Lipschitz and positive, then we say that $\phi$ is
$bi$-Lipschitz, and if furthermore

$L_{B}(\phi(a))=L_{A}(a)$

for all $a\in A$ then we say that $\phi$ is Lipschitz isometric. We denote by AutL(A) the
collection of $\mathrm{b}\mathrm{i}$ Lipschitz ’-automorphisms of $A$ .

It can be shown that if $L$ is alower semicontinuous Leibniz cLip-norm on aunital C’-
algebra $A$ and $u$ is aunitary in $L$ , then the inner ’-automorphism Ad $u$ is Lipschitz, with
the Lipschitz numbers of Ad $u$ and its inverse Ad $u$

’ bounded by $2(1+2L(u)\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(S(A)))$ ,
where diam(S(A)) is the diameter of $S(A)$ under the metric $\rho_{L}$ defined by $L$ .

Next we turn to asome examples.

Example 1.5. Let $(X, d)$ be acompact metric space. The Lipschitz seminorm
$L(f)= \sup${ $|f(x)-f(y)|/d(x,$ $y)$ : $x$ , $y\in X$ and $x\neq y$ }.

on $\mathrm{C}(X)$ yields an example of aLeibniz cLip-norm.

Example 1.6 (ergodic compact group actions). The most important examples for us will
be those arising from ergodic actions of compact groups. Let $\gamma$ be an ergodic action of
acompact group $G$ on aunital C’-algebra $A$ , with $e$ denoting the identity element of $G$ .
Let $\ell$ be alength function on $G$ , that is, acontinuous function $\ell$ : $Garrow \mathbb{R}\geq\circ$ such that, for
all $g$ , $h\in G$ ,

(1) $\ell(gh)\leq\ell(g)+\ell(h)$ ,
(2) $\ell(g^{-1})=\ell(g)$ , and
(3) $\ell(g)=0$ if and only if $g=e$ .

Prom the length function $\ell$ and the group action $\gamma$ we obtain the seminorm
$L(a)= \sup\{||\gamma_{g}(a)-a||/\ell(g) : g\neq e\}$ ,

on $A$ . Evidently $L$ is adjoint invariant and satisfies the Leibniz rule, while $L(a)=0$ if and
only if $a\in \mathrm{C}1$ . It follows from [11, Thm. 2.3] that the metric $\rho_{L}$ gives rise to the weak’
topology on $S(A)$ , and so $L$ is Leibniz cLip-norm

3



In [6] we also showed how acLip-norm can be defined on acrossed product by abi-
Lipschitz ’-automorphism by means of the dual action, following the approach suggested
by Example 1.6.

2. METRIC DIMENSION

We begin with some notation to describe our approximation framework.

Notation 2.1. Let $(X, ||\cdot||)$ be anormed linear space (which will be either a $\mathrm{C}^{*}$ -algebra
or aHilbert space in our case). The collection of finite-dimensional subspaces of $X$ will
be denoted by $\mathcal{F}(X)$ . Given subsets $Y$, $Z\subset X$ and $\delta>0$ we will write $Y\subset\delta Z$ if for every
$y\in \mathrm{Y}$ there exists an $x\in Z$ with $||y-x||<\delta$ . With $\dim$ denoting vector space dimension,
we set, for any subset $Z\subset A$ and $\delta>0$ ,

$D(Z, \delta)=\inf${$\dim X$ : $X\in \mathcal{F}(A)$ and $Z\subset\delta X$ }
(or $D$ ( $Z$ , $\delta)=\infty$ if the set on the right is empty) and if $\sigma\in S(A)$ then we set

$D_{\sigma}(Z, \delta)=\inf${$\dim X$ : $X\in \mathcal{F}(\Re_{\sigma})$ and $\pi_{\sigma}(Z)\xi_{\sigma}\subset\delta X$ }
(or $D_{\sigma}$ ( $Z$ , $\delta)=\mathrm{o}\mathrm{o}$ if the set on the right is empty). Here $\pi_{\sigma}$ : $Aarrow \mathfrak{B}(\mathcal{H}_{\sigma})$ is the GNS
representation associated to $\sigma$ , with canonical cyclic vector 4,.

The following proposition provides atool for obtaining lower bounds for $D(Z, \delta)$ (and
hence also for $D_{\sigma}(Z, \delta))$ which will be crucial in our computations of both dimension and
dynamical entropy.

Proposition 2.2 ([15, Lemma 7.8]). Let $B$ be an orthonormal set of vectors in aHilbert
space $\Re$ and $\delta>0$ . Then

$\inf${$\dim X$ : $X\in \mathcal{F}(\mathrm{H})$ and $X\mathrm{c}_{\delta}B$} $\geq(1-\delta^{2})\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(B)$ .
Let $A$ be aunital C’-algebra with cLip-norm $L$ . The key to our definition of metric

dimension is the fact that $D(L_{1}, \delta)$ is finite for every $\delta>0$ . This finiteness follows from
the observation that $D(L_{1}, \delta)$ , while not totally bounded, is the set of translations of a
totally bounded set by scalar multiples of the identity (see [6, Prop. 3.2]).

Definition 2.3. The metric dimension of $A$ with respect to $L$ is defined by

$\mathrm{M}\dim_{L}(A)=\lim_{\deltaarrow}\sup_{0+}\frac{\log D(L_{1},\delta)}{1\mathrm{o}\mathrm{g}\delta^{-1}}$ .

Note the formal similarity with Kolmogorov dimension, whose definition we recall in the
next paragraph. The metric dimension is invariant under $\mathrm{b}\mathrm{i}$-Lipschitz positive unital maps,
and decreases with respect to quotient cLip-norms under surjective positive unital linear
maps. Also, the metric dimension of adirect sum of two cLip-normed unital C’-algebras
is the maximum of the metric dimensions of the summands.

Let $(X, d)$ be acompact metric space. We denote by $N(\delta, d)$ the minimal cardinality of
acover of $X$ by $\delta$-balls. The Kolmogorov dimension of $(X, d)$ is defined by

$\mathrm{K}\dim_{d}(X)=\lim_{\deltaarrow}\sup_{0+}\frac{\log N(\delta,d)}{1\mathrm{o}\mathrm{g}\delta^{-1}}$.
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This also goes by various other names in the literature, such as box dimension and limit
capacity. It can also be expressed as $\lim\sup_{\deltaarrow 0^{+}}\log \mathrm{s}\mathrm{e}\mathrm{p}(\delta, d)/\log\delta^{-1}$ where $\mathrm{s}\mathrm{e}\mathrm{p}(\delta,$d) de-
notes the largest cardinality of a $\delta$-separated set, or as $\lim\sup\deltaarrow 0+\log \mathrm{s}\mathrm{p}\mathrm{n}(\delta, d)/\log\delta^{-1}$

where $\mathrm{s}\mathrm{p}\mathrm{n}(\delta,$d) denotes the smallest cardinality of a&-spanning set (see [7, 8]).

Proposition 2.4. Let $(X, d)$ be acompact metric space with associated Lipschitz semi-
norm

$L(f)= \sup$ { $\mathrm{C}(\mathrm{X})-f(y)|/d(x,$ $y)$ : $x$ , $y\in X$ and $x\neq y$ }

on $\mathrm{C}(X)$ . Then
$\mathrm{M}\dim_{L}(\mathrm{C}(X))=\mathrm{K}\dim_{d}(X)$ .

To prove Proposition 2.4, we first obtain the inequality $\mathrm{M}\dim_{L}(\mathrm{C}(X))\leq \mathrm{K}\dim_{d}(X)$

by astraightforward partition of unity argument. The reverse inequality is established
by means of the following idea. Given a $\delta$-separated set $E$ of maximum cardinality, we
consider the probability measure $\mu$ uniformly supported on $E$ . We then construct unitaries
in $\mathrm{C}(X)$ with suitably small Lipschitz seminorm which, when viewed inside $L^{2}(X, \mu)$ , form
an orthonormal basis dual to the standard basis. We can then use Proposition 2.2 to get a
lower bound for $\log D(L_{1}, \delta)/\log\delta^{-1}$ which is asymptotically sharp under taking the limit
supremum.

Example 2.5 (the UHF algebra $M_{p}^{\otimes \mathbb{Z}}$ ). Consider the infinite tensor product $M_{p}^{\otimes \mathbb{Z}}$ (also
denoted by $M_{p}\infty$ ) of $p\cross p$ matrix algebras $M_{p}$ over $\mathbb{C}$ with the infinite tensor product of
Weyl actions. We recall that the Weyl action is the unique ergodic action of $G=\mathbb{Z}_{p}\cross \mathbb{Z}_{p}$

on asimple $\mathrm{C}$’-algebra up to conjugacy [9], and it is defined on the clock and shift unitaxy
generators $u$ and $v$ of $M_{p}$ by the specifications

$\gamma_{(r,s)}(u)=\rho^{r}u$ ,
$\gamma_{(r,s)}(v)=\rho^{s}v$ .

where $\rho$ is the $p\mathrm{t}\mathrm{h}$ root of unity $e^{2\pi i/p}$ . We can then define the infinite product action $\gamma^{\otimes \mathbb{Z}}$

of the product group $G^{\mathbb{Z}}$ on $M_{p}^{\otimes \mathbb{Z}}$ .
Let $\ell$ be the length function on $G$ induced by the Euclidean metric $\mathbb{R}^{2}$ , viewing $G$ as

asubgroup of $\mathbb{R}^{2}/\mathbb{Z}^{2}$ . While this length function may be regarded as standard, there is
no canonical length function on $G^{\mathbb{Z}}$ . Perhaps the simplest ones are those obtained by
geometrically weighting $\ell$ on the factors with respect to aparameter $\lambda\in(0,1)$ :

$\ell_{\lambda}((g_{j}, h_{j})_{j\in \mathbb{Z}})=\sum_{j\in \mathbb{Z}}\lambda^{|j|}\ell((g_{j}, h_{j}))$
.

We denote by $L$ the cLip-norm on $M_{p}^{\otimes \mathbb{Z}}$ which arises from the action $\gamma^{\otimes \mathbb{Z}}$ and the length
function $\ell_{\lambda}$ following Example 1.6.

Proposition 2.6. We have

$\mathrm{M}\dim_{L}(M_{p}^{\otimes \mathbb{Z}})=\frac{41\mathrm{o}\mathrm{g}p}{1\mathrm{o}\mathrm{g}\lambda^{-1}}$ .
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To establish the inequality MdimL $(M_{p}^{\otimes \mathbb{Z}})\leq 4\log p/\log\lambda^{-1}$ we consider for each $n$ the

conditional expectation $E_{n}$ of $M_{p^{\Delta}}^{\otimes 7}$ onto the subalgebra $M_{p}^{\otimes[-n,n]}$ given by

$E_{n}(a)= \int_{G^{\mathrm{Z}\backslash [-n,n]}}\gamma_{g}^{\otimes \mathbb{Z}}(a)dg$,

with $dg$ denoting Haar measure on $G^{\mathbb{Z}}$ and $G^{\mathbb{Z}\backslash [-n,n]}$ the subgroup of $G^{\mathbb{Z}}$ of elements
which are the identity at the coordinates in the interval $[-n, n]$ . For $a\in L_{1}$ we estimate
$||E_{n}(a)-a||$ in terms of $L(a)$ and $\lambda$ , so that we can approximate $a$ inside asubalgebra
$M_{p}^{\otimes[-n,n]}$ in asufficiently controlled way with respect to $n$ that we obtain an asymptotically
sharp upper bound for the metric dimension using the linear dimensions $\dim M_{p}^{\otimes[-n,n]}=$

$p^{2(2n+1)}$ .
For the reverse inequality we consider for each $n$ the subset

$U_{n}=$ { $u^{i_{-n}}v^{j_{-n}}\otimes u^{i_{-n+1}}v^{j_{-n+1}}\otimes\cdots\otimes u^{i_{n}}v^{g_{n}}$ : $0\leq i_{k}$ , $jk\leq p-1$ for $k=-n$ , $\ldots$ , $n$ }

of $M_{p}^{\otimes[-n,n]}$ where the factors in the elementary tensors are products of powers of the
clock and shift unitaries. We can view each $U_{n}$ as an orthonormal set of vectors in the
Hilbert space associated with the unique $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ on $M_{p}\infty$ via the GNS construction, so that
we can appeal to Proposition 2.2, which, along with the observation that the cLip-norms
of elements in $U_{n}$ are at most $(4n+2)\lambda^{n}$ , yields the desired lower bound for the metric
dimension.

Example 2.7 (noncommutative tori). Given an antisymmetric bicharacter $\rho:\mathbb{Z}^{p}\cross \mathbb{Z}^{p}arrow$

$\mathbb{T}$ , for $1\leq i$ , $j\leq k$ we set
$\rho_{ij}=\rho(e_{i}, e_{j})$ ,

where $\{e_{1}, \ldots, e_{p}\}$ is the standard basis for $\mathbb{Z}^{\rho}$ , and we define $A_{\rho}$ to be the universal
C’-algebra generated by unitaries $u_{1}$ , $\ldots$ , $u_{p}$ satisfying

$u_{j}u_{i}=\rho_{ij}u_{i}u_{j}$ .

We refer to $A_{\rho}$ as anoncommutative $p$ -torus. Let 7: $\mathrm{T}^{p}\cong \mathbb{R}^{p}/(2\pi \mathbb{Z})^{p}arrow \mathrm{A}\mathrm{u}\mathrm{t}(A_{\rho})$ be the
ergodic action determined by

$\gamma_{(t_{1},\ldots,t_{\rho})}(u_{j})=e^{it_{j}}u_{j}$

(see [9]), and consider the length function arising from the Euclidean metric, viewing $\mathrm{T}^{p}$

as the quotient $\mathbb{R}^{p}/(2\pi \mathbb{Z})^{p}$ . Following Example 1.6 we thereby obtain acLip-norm $L$ on
$A_{\rho}$ .

Proposition 2.8. We have
$\mathrm{M}\dim_{L}(A_{\rho})=p$ .

This computation is formally similar to that of Proposition 2.6, and indeed the inequality
$\mathrm{M}\dim_{L}(A_{\rho})\leq p$ is established in the same way, only now with respect to sets of products
of the generating unitaries, which form orthonormal sets in the Hilbert space associated
to the canonical $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

$\tau(a)=\int_{-\pi}^{\pi}\cdots\int_{-\pi}^{\pi}\gamma(t_{1}, ,t_{p})(a)dt_{1}\cdots$ $dt_{p}$

6



via the GNS construction. For the reverse inequality the conditional expectations $E_{n}$ in
the $M_{p}\infty$ case must now be replaced by the operation $\sigma_{n}$ of taking aCes\‘aro mean, and
some Fourier analysis is required to obtain the desired bounds for $||a-\sigma_{n}(a)||$ for $a\in L_{1}$

as afunction of $n$ .

We also showed in [6] that, with respect to anatural cLip-norm, the metric dimension
of acrossed product of anoncommutative $p$-tori by a $\mathrm{b}\mathrm{i}$ Lipschitz ’-automorphism is $p+1$ .

3. PRODUCT ENTROPY

The “product entropy” to which this section is devoted has two versions, one topological
and the other measure-theoretic. The appropriate framework for our definitions is that
of unital C’-algebras with Leibniz cLip-norms, with the dynamics given by bi-Lipschitz
’-automorphisms. Our approximation approach is formally similar to that of Voiculescu
[15], but the algebraic structure enters the picture here in avery different way. Product
entropy can be viewed as an analytic version of entropy for discrete Abelian groups [10].
We may thus think of it as being “dual” to Voiculescu entropy in some rough sense.

We begin with some notation (see also Notation 1.1 and 2.1).

Notation 3.1. Given aset $X$ , we denote by $Pf(X)$ the collection of finite subsets of $X$ .
If $A$ is aC’-algebra with subsets $X_{1}$ , $X_{2}$ , $\ldots$ , $X_{n}$ , we write $X_{1}\cdot$ $X_{2}\cdot\cdots\cdot$ $X_{n}$ to refer to
the set

{ $a_{1}a_{2}\cdots a_{n}$ : $a_{i}\in X_{i}$ for each $i=1$ , $\ldots$ , $n$ }.
Definition 3.2. Let $A$ be aunital C’-algebra with Leibniz cLip-norm $L$ . Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}_{L}(A)$

(see Definition 1.4). For $\Omega\in Pf(L \cap A_{1})$ and $\delta>0$ we set

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha, \Omega, \delta)=\lim\sup\log D(\Omega\cdot\alpha(\Omega)\cdot\alpha^{2}(\Omega)\cdots\cdot\cdot\alpha^{n-1}(\Omega), \delta)\underline{1}$,
$narrow\infty$ $n$

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha, \Omega)=\sup_{\delta>0}\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha, \Omega, \delta)$
,

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha)=\sup\Omega\in Pf(L\cap A_{1})$

$\mathrm{E}\mathrm{n}\mathrm{t}_{\mathrm{P}L}(\alpha, \Omega)$ .

We will refer to $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha)$ as the product entropy of $\alpha$ .

It is readily seen that product entropy is invariant under conjugacies by bi-Lipschitz
’-isomorphisms.

The following proposition establishes aconnection between product entropy and metric
dimension.
Proposition 3.3. Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}_{L}(A)$ and suppose that $\mathrm{M}\dim_{L}(A)$ is finite. Then

$\mathrm{E}\mathrm{n}\mathrm{t}_{\mathrm{P}L}(\alpha)\leq \mathrm{M}\dim_{L}(A)\cdot\log\max(\lambda, 1)$

where Ais the Lipschitz number of $\alpha$ .

As acorollary we obtain $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha)=0$ whenever $\alpha$ is Lipschitz isometric. In particular,
$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}\mathrm{L}(\mathrm{a})=0$ , which suggests that the appropriate context for our notion of product
entropy as ameasure of dynamical growth is that of unital C’-algebraic with cLip-norms
under which the metric dimension is finite.

Astandard argument yields the next proposition, using the fact that $\mathrm{L}$ is closed under
multiplication by the Leibniz rule
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Proposition 3.4. If $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}L(A)$ and $k\in \mathbb{Z}$ then $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha^{k})=|k|$ EntpL(a).

Product entropy decreases under taking quotients in the presence of aLipschitz cross
section, and decreases when passing to an invariant cLip-normed C’-subalgebra obtained
via restriction if there is anorm-contractive idempotent linear map onto the subalgebra.

Before coming to examples we introduce aversion of product entropy relative to a
dynamically invariant state. For notation see Notation 1.1, 2.1, 2.1, and 3.1.
Definition 3.5. Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}L(A)$ and let abe an $\alpha$-invariant state on $A$ . For $\Omega\in$

$Pf(L \cap A_{1})$ and $\delta>0$ we set

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\sigma}(\alpha, \Omega, \delta)=\lim\sup\log D_{\sigma}(\Omega\cdot\alpha(\Omega)\cdot\alpha^{2}(\Omega)\cdots\cdot\cdot\alpha^{n-1}(\Omega), \delta)\underline{1}$ ,
$narrow\infty n$

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\sigma}(\alpha, \Omega)=\sup_{\delta>0}\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\sigma}(\alpha, \Omega, \delta)$
,

$\Omega\in Pf(L\cap A_{1})\sup$

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\sigma}(\alpha)=$ $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\sigma}(\alpha, \Omega)$.

We refer to $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}L,\sigma(\alpha)$ as the product entropy of $\alpha$ with respect to $\sigma$ .
Product entropy with respect to an invariant state is invariant under conjugacies by

$\mathrm{b}\mathrm{i}$ Lipschitz ’-automorphisms which respect the given invariant states, and it decreases
under taking quotients if there exists aLipschitz cross section. It is easy to see that

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}L,\sigma(\alpha)\leq \mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}L(\alpha)$

for any invariant state $\sigma$ , and we also have the following analogue of Proposition 3.4.
Proposition 3.6. Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}L(A)$ , and let $\sigma$ be an $\alpha$-invariant state on $A$ . For $k\in \mathbb{Z}$

we have EntpL $(\alpha^{k})=|k|$ EntpL $(\alpha)$ .
We illustrate these two product entropies with two fundamental classes of examples,

infinite tensor product shifts and noncommutative toral automorphisms.

Example 3.7 (tensor product shifts). Let $\alpha$ be the shift on the infinite tensor product
$M_{p}^{\otimes \mathbb{Z}}$ with the cLip-norm $L$ as defined in Example 2.5 with respect to agiven $\lambda\in(0,1)$ .
Then $\alpha$ is $\mathrm{b}\mathrm{i}$-Lipschitz, and it is straightforward to verify that the Lipschitz numbers of
at and its inverse are bounded by A. Let $\tau=\mathrm{t}\mathrm{r}_{p}^{\otimes \mathbb{Z}}$ be the unique (and hence a-invariant)
tracial state on $M_{p}^{\otimes \mathbb{Z}}$ .
Proposition 3.8. We have

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha)=\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\tau}(\alpha)=2\log p$.
This computation is made by elaborating the proof of Proposition 2.6, with the addi-

tional feature now of having to estimate the growth of products of norm-0ne elements in
$L$ with respect to subalgebras of the form $M_{p}^{\otimes[m,n]}$ .

Example 3.9 (noncommutative toral automorphisms). Let $A_{\rho}$ be anoncommutative p-
torus with generators $u_{1}$ , $\ldots$ , $u_{p}$ and canonical $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\tau$ (see Example 2.7). We consider
a $p\cross p$ integral matrix $T=(s_{ij})$ with $\det T=\pm 1$ , and we suppose that $T$ defines an
automorphism $\alpha\tau$ of $A$ by specifying

$\alpha(u_{j})=u_{1}^{s_{1j}}\cdots u_{p^{pj}}^{s}$
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on the generators. Note that $\tau$ is $\alpha\tau$-invariant. For an ordinary torus this yields afunda-
mental example of an Anosov diffeomorphism. We will also consider the ’-automorphism
$\gamma_{t}$ for agiven $t=$ $(t_{1}, \ldots, t_{p})\in \mathbb{T}^{p}\cong \mathbb{R}^{p}/(2\pi \mathbb{Z})^{p}$ determined by $\gamma_{\mathrm{f}}(u_{j})=e^{it_{j}}uj$ on the
generators, and the inner ’-automorphism Ad $u$ for agiven unitary $u\in L$ . We point out
that in [5] it was shown that, for an irrational rotation algebra $A_{\theta}$ (i.e., the case $p=2$
here), if the angle 0satisfies ageneric Diophantine property then all ’-automorphisms
preserving the dense ’-subalgebra of $\mathrm{C}^{\infty}$ elements (i.e., all “diffeomorphisms”) have the
form $\mathrm{A}\mathrm{d}u\circ\alpha\tau\circ\gamma t$ for a $\mathrm{C}^{\infty}$ unitary $u$ .

Using the remark after Definition 1.4 it can be verified that Adu $\circ\alpha_{T}\circ\gamma_{t}$ and its inverse
are $\mathrm{b}\mathrm{i}$-Lipschitz, with Lipschitz numbers bounded by

$2r(T)(1+2L(u)\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(S(A)))$

and
$2r(T^{-1})(1+2L(u)\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(S(A)))$ ,

respectively, where $r(\cdot)$ denotes the spectral radius.

Proposition 3.10. We have

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\mathrm{A}\mathrm{d}u\circ\alpha_{T}\circ\gamma_{t})\leq\sum_{|\lambda_{i}|\geq 1}\log|\lambda_{i}|$

and

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha_{T}\circ\gamma_{t})=\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\tau}(\alpha_{T}\circ\gamma_{t})=\sum_{|\lambda_{i}|\geq 1}\log|\lambda_{i}|$

where $\lambda_{1}$ , $\cdots$ , $\lambda_{p}$ are the eigenvalues of $T$ counted with spectral multiplicity. In particular

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\alpha_{T})=\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\tau}(\alpha\tau)=\sum_{|\lambda_{i}|\geq 1}\log|\lambda_{i}|$

,

$\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\gamma_{t})=\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\tau}(\gamma_{t})=0$ , and $\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L}(\mathrm{A}\mathrm{d}u)=\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{p}_{L,\tau}(\mathrm{A}\mathrm{d}u)=0$.

To establish upper bounds for the product entropies in the proposition we can adapt
some classical Fourier analysis to our noncommutative setting (as in the proof of PropO-
sition 2.8) to approximate elements in $L$ by their Ces\‘aro means, the growth of whose
products we can then estimate with respect to the linear span of sets of products of the
unitary generators. For the lower bounds it suffices to consider sets of products of the
unitary generators, which form orthonormal bases in the Hilbert space associated to $\tau$ .
Estimating the growth of products of these sets essentially reduces to the computation of
the Abelian group-theoretic entropy of the action of $T$ on $\mathbb{Z}P[10]$ .
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