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ABSTRACT. In this article we shall provide asurvey on the Hamil-
tonian stability problem and our recent results for certain compact
minimal or Hamiltonian minimal Lagrangian submanifolds in com-
plex projective spaces, compact Hermitian symmetric spaces and
complex Euclidean spaces.

INTRODUCTION

Let $M$ be a $2n$-dimensional symplectic manifold with asymplectic
form $\omega$ . An $n$-dimensional submanifold $L$ in $M$ is called aLagrangian
submanifold if the restriction of $\omega$ to $L$ vanishes identically.

We say that acompact Lagrangian submanifold in aKahler manifold
$M$ is aHamiltonian minimal or $H$-minimal Lagrangian submanifold if
it has extremal volume under all Hamilitonian deformations of the La-
grangian immersion. If aLagrangian submanifold is minimal in the
usual sense that it has extremal volume under every smooth variation
of the submanifold, then it is called aminimal Lagrangian submanifold
in $M$ . Acompact $\mathrm{H}$-minimal Lagrangian submanifold in aKahler man-
ifold $M$ is called Hamiltonian stable if the second variation for the vol-
ume is nonnegative for all Hamiltonian deformations of the Lagrangian
immersion.

Oh [13], [14], [15], [16] developed the fundamental theory for Hamil-
tonian stability minimal Lagrangian submaniifolds and Hamiltonian
minimal Lagrangian subamnifolds in K\"ahler manifolds. After his works,
several interesting results were given also by other differential geometers

1991 Mathematics Subject Classification. $53\mathrm{D}12,53\mathrm{C}55,53\mathrm{C}40,53\mathrm{C}42$

数理解析研究所講究録 1292巻 2002年 72-93

72



and many problems to be studied are still open. It is one of most funda-
mental and interesting problems to find or determine compact Hamil-
tonian stable $\mathrm{H}$-minimal Lagrangian submanifolds in specific Kahler
manifolds such as complex Euclidean spaces, complex projective spaces,
complex hyperbolic spaces, Hermitian symmetric spaces, homogeneous
Einstein-K\"ahler manifolds and so on.

Recently in [1], [2], [3], we studied the Hamiltonian stability problem
for anice class of compact minimal or Hamiltonian minimal Lagrangian
submanifolds in complex projective spaces, compact Hermitian sym-
metric spaces and complex Euclidean spaces constructed by the Lie
theoretic method. In this article we shall provide an exposition on our
recent results and their environs.

1. HAMILTONIAN MINIMALITY AND HAMILTONIAN STABILITY OF
LAGRANGIAN SUBMANIFOLDS IN $\mathrm{K}\dot{\mathrm{A}}$ HLER MANIFOLDS

Let $M$ be a $2n$-dimensional symplectic manifold with asymplec-
tic form $\omega$ and $\varphi$ : $Larrow M$ be aLagrangian immersion of an n-
dimensional smooth manifold $L$ . We set $NL:=\varphi^{-1}(TM)/\varphi_{*}TL$ , the
quotient vector bundle of $\varphi^{-1}(TM)$ by the subbundle $\varphi_{*}TL$ . Let $x\in L$

be apoint of $L$ and for each vector $v\in(\varphi^{-1}TM)_{x}$ along $L$ we define a
1-form $\alpha_{v}\in T_{x}^{*}L$ by $\alpha_{v}(X):=\omega_{\varphi(x)}(V, X)$ for each $X\in T_{x}L$ . Then it
induces linear isomorphisms

$\varpi$ : NL $arrow T^{*}L$ and $\varpi$ : $C^{\infty}(NL)arrow\Omega^{1}(L)$ .
In this way infinitesimal deformations $V\in C^{\infty}(NL)$ of aLagrangian
submanifold can be described as 1-forms on $L$ .

Asmooth family $\{\varphi_{t}||t|<\epsilon\}$ of Lagrangian immersions of $L$ into
$M$ with $\varphi_{0}=\varphi$ is called aLagrangian defo rmation of $\varphi$ or $L$ . We set

(1.1) $V_{t}= \frac{\partial\varphi_{t}}{\partial t}\in C^{\infty}(\varphi_{t}^{-1}TM)$ .

We call $V\in C^{\infty}(\varphi^{-1}TM)$ an infinitesimal Lagrangian deformation
if $\alpha_{V}\in\Omega^{1}(L)$ is closed. The following fact is elementary but funda-
mental.

Proposition 1.1, If $\varphi_{t}$ : $Larrow M$ is a Lagrangian deformation, then
$V_{t}$ is an infinitesimal Lagrangian deformation for each $t$ . Conversly,
assume that $\varphi_{t}$ is $a$ a smooth family of immersions of $L$ into $M$ such
that $V_{t}$ is an infinitesimal Lagrangian deformation for each $t$ . If $\varphi_{t_{0}}$ is $a$
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Lagrangian immersion for some $t_{0}$ , then $\varphi_{t}$ is a Lagrangian immersion
for each t.

Next we define anotion of Hamiltonian deformations of aLagrangian
submanifold, which is asmaller class of Lagrangian deformations. Let
$\varphi:Larrow M$ be $\dot{\mathrm{a}}$ Lagrangian immersion. An infinitesimal deformation
$V\in C^{\infty}(\varphi^{-1}TM)$ is called an infinitesimal Hamiltonian deformation
if $\alpha_{V}\in\Omega^{1}(L)$ is exact. Asmooth family $\{\varphi_{t}\}_{|t|<\epsilon}$ of Lagrangian im-
mersions of $L$ into $M$ with $\varphi=\varphi_{0}$ is called aHamiltonian deformation
of $\varphi$ if its derivative $V_{t}=\partial\varphi_{t}/\partial \mathrm{t}$ for each $t$ is an infinitesimal Hamil-
tonian deformation. Note that if $H^{1}(L, \mathrm{R})=\{0\}$ , then Lagrangian
deformations coincide with Hamiltonian deformations.

Assume that $M$ is acomplex $n$-dimensional K\"ahler manifold with
complex structure tensor field $J$ and Kahler metric $g$ . The Kahler form
$\omega$ of $M$ is defined by $\omega(X, \mathrm{Y}):=g(JX, \mathrm{Y})$ . It defines in particular a
symplectic structure of $M$ . An immersion $\varphi$ : $L-M$ is aLagrangian
immersion if and only if it satisfies $J_{x}(\varphi_{*}T_{x}L)\subset T_{x}^{[perp]}L$ for each $x$ $\in L$ ,
and in this case it is also called an $n$-dimensional totally real submanifold
of $M$ in the theory of Riemannian submanifolds (cf.[6]). $T_{\varphi(x)}M=$

$\varphi_{*}T_{x}L\oplus T_{x}^{[perp]}L$ for each $x\in L$ along the immersion $\varphi$ : $Larrow M$ with
respect to the metric $g$ . We can identify the normal bundle $NL$ with
the bundle $T^{[perp]}L$ . Then the complex structure tensor field $J$ induces a
bundle isomorphism $NLarrow\varphi_{*}TL$ preserving metrics and connections.
Since we have $\alpha_{V}(X)=\omega_{\varphi(x)}(V, \varphi_{*}X)=g_{\varphi(x)}(JV, \varphi_{*}X)$ for each $X\in$

$T_{x}L$ , the 1-form $\alpha_{V}$ corresponds to the vector field $JV$ on $L$ through the
linear isomorphism $T_{x}^{*}L\cong T_{x}L\cong\varphi_{*}T_{x}L$ with respect to the metric $g$ .
Thus we have linear isomorphisms preserving metrics and connections

(1.2) $\varpi$ : $T^{[perp]}Larrow T^{*}L$ and $\varpi$ : $C^{\infty}(T^{[perp]}L)\ni V-\alpha_{V}\in\Omega^{1}(L)$ .
Definition 1.1. ALagrangian immersion $\varphi$ of an $n$-dimensional com-
pact smooth manifold $L$ into aKahler manifold $M$ is called Hamiltonian
minimal, or simply $H$ minimal, if

$\frac{d}{dt}\mathrm{V}\mathrm{o}\mathrm{l}(L, \varphi_{t}^{*}g)|_{t=0}=0$

for all Hamiltonian deformations $\{\varphi_{t}\}$ of $\varphi=\varphi_{0}$ . In this case we say
that $(M, L)$ is an $H$-minimal Lagrangian submanifold immersed in $M$ .
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We give a curvature characterization of Hamiltonian minimal for La-
grangian submanifolds. The mean curvature vector field $H$ of aLa-
grangian immersion $\varphi$ : $Larrow M$ into aKahler manifold is defined
by

$H= \sum_{i=1}^{n}B(e:, e_{i})$ ,

where $B$ denotes the second fundamental form of the submanifold $L$ in
$M$ .

Then $\varphi$ satisfies the identity
$d\alpha_{H}=\varphi^{*}\rho$ ,

where $\rho$ denotes the Ricci form of $M$ . Thus in the case when $M$ is
an Einstein-Kahler manifold, we have $d\alpha_{H}=0$ , that is, $\alpha_{H}$ is aclosed
1-form on $L$ . See [7] and [15].

In [15] it was shown that $\varphi$ is $\mathrm{H}$-minimal if and only if
$\delta\alpha_{H}=0$ ,

where $\delta$ denotes the codifferential operator of $d$ with respect to the
induced metric on $L$ . Hence aLagrangian immersion $\varphi$ into an Einstein-
Kahler manifold is $\mathrm{H}$-minimal if and only if $\alpha_{H}$ is aharmonic l-form
on $L$ .

It is auseful result that if aLagrangian immersion $\varphi:Larrow M$ has
the parallel mean curvature vector field $H$ with respect to the normal
connection, then it is H-minimal.

Definition 1.2. Acompact $\mathrm{H}$-minimal Lagrangian submanifold $L$ im-
mersed in aKahler manifold $M$ is called Hamiltonian stable or H-stable
if

$\frac{d^{2}}{dt^{2}}\mathrm{V}\mathrm{o}\mathrm{l}(L, \varphi_{t}^{*}g)|_{t=0}\geq 0$

for all Hamiltonian deformations $\{\varphi_{t}\}$ of $\varphi=\varphi_{0}$ .
If acompact Lagrangian submanifold $L$ immersed in aKahler man-

ifold $M$ is aminimal submanifold in the usual sense, then we call $L$ a
minimal Lagrangian submanifold of $M$ .

By Hodge’s theorem we immediately see the following.

Proposition 1.2. Let $L$ is a compact $H$-minimal Lagrangian subman-
ifold in an Einstein-Kahler manifold M. If $H^{1}(L, \mathrm{R})=\{0\}$ or more
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generally L has positive Ricci curvature, then L must be a minimal
Lagrangian submanifold of M.

Next we recall the second variational formula for the volume of H-
minimal Lagrangian immersion of $L$ into $M$ under Hamiltonian defor-
mations.

Let $\overline{K}$ be the curvature tensor field of $M$ . We denote by $\overline{R}$ the
corresponding Ricci operator of $\overline{K}$ , that is,

$\overline{R}(X)=\sum_{\dot{l}=1}^{2n}\overline{K}(X, e:)e$:

for each vector $X\in TL$ . Here $\{e_{1}, \ldots, e_{2n}\}$ is an orthonormal frame on
$M$ .

Define asymmetric covariant tensor field $S$ of degree 3on $L$ by
(1.3) $S(X,$Y,$Z):=\langle B(X,$Y), JZ\rangle
for X, Y, Z $\in TL$ , where B denotes the second fumdamental form of $L$

in M. Oh showed Hamiltonian stability of the Clifford torus.

Theorem 1.1 ([15]). Let $M$ be a Kdhler manifold and $\varphi$ : $Larrow M$
be an $H$-minimal Lagrangian immersion of a compact smooth manifold
L. If $\{\phi_{t}\}_{0\leq t\leq 1}$ is a Hamiltonian deformation of $\varphi=\varphi_{0}$ such that

$\frac{\partial}{\partial t}\varphi_{t}|_{t=0}=V$

is normal to L, then we have

(1.4)
$\frac{d^{2}}{dt^{2}}\mathrm{V}\mathrm{o}\mathrm{l}(L, \varphi_{t}^{*}g)|_{t=0}=\int_{L}(\langle\Delta\alpha_{V}, \alpha_{V}\rangle-\langle\overline{R}_{\alpha_{V}}, \alpha_{V}\rangle$

$-2\langle\alpha_{V}\otimes\alpha_{V}\otimes\alpha_{H}, S\rangle+\langle\alpha_{V}, \alpha_{H}\rangle^{2})dv$ .
Here $\Delta^{1}=d\delta+\delta d$ is the Laplacian of $L$ acting on $\Omega^{1}(L)$ and $\overline{R}_{\alpha_{V}}$

denotes a tensor field on $L$ defined through $\varpi$ from the restriction $\overline{R}|_{NL}$

of the Ricci operator $\overline{R}$ to $NL$ .
If we denote by $Z^{1}(L)$ and $B^{1}(L)$ the vector space of smooth closed

1-forms on $L$ and the vector space of smooth exact 1-form on $L$ re-
spectively, then we have

$B^{1}(L)=d(\Omega^{0}(L))\subset Z^{1}(L)\subset\Omega^{1}(L)$ .
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The above second variational formula can be considered as asym-
metric bilinear form $\Pi$ on $B^{1}(L)=d(\Omega^{0}(L))$ as follows :

(1.5)
$\square (\alpha, \beta):=\int_{L}(\langle\Delta^{1}\alpha, \beta\rangle-\langle\overline{R}_{\alpha}, \beta\rangle$

$-2\langle\alpha\otimes\beta\otimes\alpha_{H}, S\rangle+\langle\alpha, \alpha_{H}\rangle\langle\beta, \alpha_{H}\rangle)dv$ .
for each $\alpha$ , $\beta\in B^{1}(L)=d(\Omega^{0}(L))$ . The null space for an H-minimal
Lagrangian submanifold L is defined as

Null(L) $:=$ { $\alpha\in B^{1}(L)=d(\Omega^{0}(L))|\Pi(\alpha,$ $\beta)=0$ for each $\beta\in B^{1}(L)$ }.
Set $n(L):=\dim$ Null(L) and we call it the nullity of L.

2. HAMILITONIAN STABILITY OF MINIMAL LAGRANGIAN
SUBMANIFOLDS IN EINSTEIN-K\"AHLER MANIFOLDS

Suppose that $L$ is acompact minimal Lagrangian submanifold im-
mersed in an Einstein-Kahler manifold $M$ with Einstein constant $\kappa$ .
Under the correspondence between $\mathrm{C}^{\infty}(NL)$ and $\Omega^{1}(L)=d(\Omega^{0}(L))\oplus$

$\mathrm{K}\mathrm{e}\mathrm{r}(d^{*}|\Omega^{1}(L))$ , the Jacobi operator $J$ as aminimal submanifold corre-
sponds to the linear operator $\tilde{J}=\Delta^{1}-\kappa \mathrm{I}\mathrm{d}$ , where $\mathrm{I}\mathrm{d}$ is the identity
operator. The second variation of the volume for acompact minimal
Lagrangian submanifold under Hamiltonian deformations is described
by the restriction of $\tilde{J}$ to $d(\Omega^{0}(L))$ . The null space of $J$ on Hamilton-
ian deformations corresponds to the null space of $\tilde{J}$ on $d(\Omega^{0}(L))$ , and
it is linearly isomorphic to the eigenspace of the Laplacian on $\mathrm{C}^{\infty}(L)$

with eigenvalue $\kappa$ .
Hence the Hamiltonian stability problem of compact minimal La-

grangian submanifolds in an Einstein-Kahler manifold is reduced to the
first positive eigenvalue problem of the Laplacian acting on functions.

Theorem 2.1 ([13]). Let $M$ be an Einstein-Kahler manifold with Ein-
stein constant $\kappa$ . A compact minimal Lagrangian submanifold $L$ in $M$

is Hamiltonian stable if and only if $\lambda_{1}\geq\kappa$ , above $\lambda_{1}$ is the first positive
eigenvalue of the Laplacian acting on $\mathrm{C}^{\infty}(L)$ .

Let $\mathcal{K}$ denote the vector space of all Killing vector fields on acom-
pact Einstein-Kahler manifold $M$ with positive Einstein constant $\kappa$ .
Assume that the first eigenvalue of the Laplacian acting on $\mathrm{C}^{\infty}(M)$ is

77



equal to 2k. We denote by $\mathrm{V}_{1}(M)$ its eigenspace. By the theorem of
Y.Matsushima, we have

$\mathcal{K}=$ {Jgradf $\in \mathrm{C}^{\infty}(TM)|f\in \mathrm{V}\mathrm{i}(\mathrm{M})$ }.
For each $W\in \mathcal{K}$ , we have an orthogonal decomposition $W=W^{T}+$

$W^{[perp]}$ , where $W^{T}$ and $W^{[perp]}$ denote the tangential and the normal comp0-
nents of the restriction of $W$ to the submanifold $L$ in $M$ . Set

$\mathcal{K}^{1}=\{W^{[perp]}\in \mathrm{C}^{\infty}(NL)|W\in \mathcal{K}\}$ .
Then we have alinear isomorphism

$\mathcal{K}^{[perp]}\cong \mathcal{K}/\{W\in \mathcal{K}|W^{[perp]}=0\}$ .
If $W=-\mathrm{J}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}/\in \mathcal{K}$ for the first eigenfunction $f$ of the Laplacian

acting on $\mathrm{C}^{\infty}(M)$ , then it is easy to check the formula
$d(f|_{L})=\alpha_{W^{[perp]}}$

on $L$ , which means that each $W^{[perp]}\in \mathcal{K}^{[perp]}$ is an infinitesimal Hamil-
tonian deformation. Hence, for asuitable constant $\alpha$ , $f|_{L}+\alpha$ is an
eigenfunction of the Laplacian acting on $\mathrm{C}^{\infty}(L)$ with eigenvalue $\kappa$ . Set
$n_{\mathcal{K}}(L)=\dim \mathcal{K}^{[perp]}$ . Since each $W\in \mathcal{K}$ with $W^{[perp]}=0$ induces aKilling
vector field on $L$ , we obtain inequalities

$n(L)\geq \mathrm{n}\mathrm{K}(\mathrm{L})\geq\dim \mathcal{K}-\dim I_{0}(L)$ ,

where $I_{0}(L)$ denotes the identity component of the isometry group of
$L$ . Especially when $M=\mathrm{C}P^{n}$ , we have

(2.1) $n(L) \geq \mathrm{n}\mathrm{K}(\mathrm{L})\geq\dim \mathcal{K}-\dim I_{0}(L)\geq\frac{n(n+3)}{2}$ ,

It is important to study the case when $M$ is aHermitian symmet-
ric space, especially acomplex projective space, and more generally a
generalized flag manifolds with homogeneous Kahler metrics.

It is an important property for compact minimal Lagrangian sub-
manifolds in acomplex projective space $\mathrm{C}P^{n}$ that if $f$ is the first eigen-
function of the Laplacian on $CPn$ , then the restriction $f|_{L}$ of $f$ to $L$

is the eigenfunction of the Laplacian on $L$ with eigenvalue $c(n+1)/2$
(UrbanO[29], Ono [18], [19] for generalized flag manifolds including Her-
mitian symmetric spaces).

Proposition 2.1. Assume that $M$ is a compact homogenenous Einstein-
Kahler manifold with positive Einstein constant $\kappa$ . Then a compact
minimal Lagrangian submanifold $L$ of $M$ is Hamiltonian stable if and
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only if $\lambda_{1}=\kappa$ . Here $\lambda_{1}$ is the first eigenvalue of the Laplacian acting
on $\mathrm{C}^{\infty}(L)$ . In particular in the case when $M$ is a complex projec-
tive space $\mathrm{C}P^{n}(c)$ with constant holomorphic sectional curvature $c$ , $a$

compact minimal Lagrangian submanifold $L$ of $\mathrm{C}P^{n}(c)$ is Hamiltonian
stable if and only if $\lambda_{1}=c(n+1)/2$ .

Let $\mathrm{C}P^{n}(c)$ denote the $n$-dimenisonal complex projective space with
constant holomoprphic sectional curvature $c$ and $\pi$ : $S^{2n+1}(c/4)arrow$
$\mathrm{C}P^{n}$ be the Hopf fibration.
Example 2.1. The real projective space $\mathrm{R}P^{n}$ is atotally real totally
geodesic submanifold of the complex projective space $CPn$ . Thus $\mathrm{R}P^{n}$

is the simplest example of acompact minimal Lagrangian submanifold
embedded in $CPn$ . Then the inverse image of $\mathrm{R}P^{n}$ by $\pi$ is real quadric
$\pi^{-1}(\mathrm{R}P^{n})=S^{1}\cdot S^{n}=Q_{2,n+1}(\mathrm{R})$ , which is an $\mathrm{H}$ minimal Lagrangian
submanifold embedded in $\mathrm{C}^{n+1}$ .
Example 2.2. For each $\mathrm{r}\mathrm{i}$ , $\cdots$ , $r_{n+1}>0$ with $r_{1}^{2}+r_{2}^{2}+\cdots+r_{n+1}^{2}=4/c$ ,
let

$T_{r_{1},\ldots,r_{n+1}}^{n+1}=S^{1}(r_{1})\cross\cdots\cross S^{1}(r_{n+1})\subset \mathrm{C}^{n+1}$

be the $(n+1)$-dimensional standard torus. Then they are H-minimal
Lagrangian submanifolds in $\mathrm{C}^{n+1}$ . Atorus $T^{n+1}=S^{1}( \frac{1}{\sqrt{c(n+1)}})\cross\cdots\cross$

$S^{1}( \frac{1}{\sqrt{c(n+1)}})$ is aminimal submanifold in $S^{2n+1}(c/4)\subset \mathrm{C}^{n}$ . We set
$L:=\pi(T^{n+1})$ . Then $L$ is aminimal Lagrangian submanifold embedded
in $CPn$ . We call $L$ the Clifford torus.

Oh showed Hamiltonian stability of the real projective spaces and
the Clifford tori.

Theorem 2.2 ([13]). The real projective subspace $\mathrm{R}P^{n}$ and the Clif-
ford torus $T^{n}=\pi(T^{n+1})$ are Hamiltonian stable as minimal Lagrangian
submanifolds in $\mathrm{C}P^{n}$ .
Problem 2.1. Classify compact Hamiltonian stable minimal Lagrangian
submanifolds in complex projective spaces CPn.

Urbano and independently Chang have determined Hamitonian sta-
ble minimal Lagrangian immersions of compact orientble surfaces of
genus 1into $\mathrm{C}P^{2}$ .
Theorem 2.3 ([29],[4]). Compact Hamiltonian stable minimal Lagrangia
tori in $\mathrm{C}P^{2}$ are only the Clifford tori $T^{2}$ .
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There is atopological restriction on compact Hamiltonian stable min-
imal Lagrangian submanifolds in CPn.

Theorem 2.4 ([1]). Let $L$ be a compact minimal Lagrangian subman-
ifold immersed in $CPn$ . If $L$ is Hamiltonian stable, then we have
Hi(L; $\mathrm{Z}$ ) $\neq\{0\}$ and thus $L$ cannot be simply connected.

Remark 1. This result does not hold in the case of compact Hermitian
symmeric spaces of rank greater than 1(See Section 5).

Some minimal Lagrangian submanifolds in Hermitian symmetric spaces
are related with other interesting submanifolds in differential geometry.

Example 2.3. Palmer showed that the Gauss maps of compact ori-
ented minimal surfaces $L$ in the sphere $S^{3}(1)$ and isoparemetric hyper-
surfaces $L$ in the sphere $S^{n+1}(1)$ provide compact minimal Lagrangian
submanifolds immersed in the hyperquadrics $Q_{n}(\mathrm{C})=\tilde{G}_{2}(\mathrm{R}^{n+2})=$

SO(n $/\mathrm{S}\mathrm{O}(2)\cross SO(n)$ and they are not Hamiltonian stable if $L$ is
not asphere ([22], [23])

3. LAGRANGIAN SUBMANIFOLDS IN $\mathrm{C}^{n+1}$ AND $\mathrm{C}P^{n}$ WITH
PARALLEL SECOND FUNDAMENTAL FORM

In this section we provide the nice models of compact $\mathrm{H}$ minimal La-
grangian submanifolds in complex Euclidean spaces and complex pr0-
jective spaces.

The complete classification of totally real submanifolds with parallel
fundamental form in complex Euclidean spaces and complex projective
spaces was accomplished by H. Naitoh and M. Takeuchi $([8],[9],[10]$ ,
[11] $)$ . The property that the second fundamental form is parallel implies
that the mean curvature vector field is parallel. Thus such submanifolds
are $\mathrm{H}$-minimal Lagrangian submanifolds in complex Euclidean spaces
and complex projective spaces.

Let $(U, G)$ be an Hermitian symmetric pair of compact type with the
canonical decomposition $\mathrm{u}=\mathfrak{g}+\mathfrak{p}$ . Set $\dim(U/G)=2(n+1)$ . Let $\langle$ , $\rangle$

denote the Ad(U)-invariant inner product of $u$ defined by (-1)-times
the Killing-Cartan form of the Lie algebra $\mathrm{u}$ . Relative to the complex
structure the subspace $\mathfrak{p}$ can be identified with acomplex Euclidean
space $\mathrm{C}^{n+1}$ . We take the decomposition of $(U, G)$ into irreducible Her-
mitian symmetric pairs of compact type :
(3.1) $(U, G)=$ {U9, $G_{1}$ ) $\oplus\cdots\oplus\{\mathrm{U}9,$ $G_{s})$ .
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Set $\dim(U_{i}/G_{i})=2(n_{i}+1)$ for $i=1$ , $\cdots$ , $s$ . Let $1h$. $=\mathfrak{g}_{i}+\mathfrak{p}_{i}$ be
the canonical decomposition of $(U_{i}, G_{i})$ for each $i=1,2$ , $\cdots$ , $s$ . As-
sume that there is an element $\eta_{i}\in \mathfrak{p}_{i}$ satisfying the condition $(\mathrm{a}\mathrm{d}\eta_{i})^{3}+$

$4(\mathrm{a}\mathrm{d}\eta_{i})=0$ . Choose positive numbers $c_{1}>0$ , $\cdots$ , $c_{s}>0$ with $\sum_{i=1}^{s}1/c_{i}=$

$1/c$ . Note that $\langle\eta_{i}, \eta_{i}\rangle_{\mathrm{u}}=8(n_{i}+1)$ . Put $a_{i}=1/\sqrt{2c_{i}(n_{i}+1)}$ for each
$i=1$ , $\cdots$ , $s$ . Set $\hat{L}_{i}=Ad(Gi)(ai77i)\subset S^{2n_{j}+1}(c_{i}/4)\subset \mathfrak{p}_{i}$, which is
an irreducible symmetric $R$-space embedded in the complex Euclidean
space $\mathfrak{p}_{i}$ .

Set $\eta=a_{1}\eta_{1}+\cdots+a_{s}\eta_{s}\in \mathfrak{p}$. Set $\hat{L}=\mathrm{A}\mathrm{d}(G)(\mathrm{t}7)$ $\subset S^{2n+1}(c/4)\subset \mathfrak{p}$ ,
which is asymmetric $R$-space standardly embedded in the complex
Euclidean space $\mathfrak{p}$ . Then we have the inclusions
(3.2)

$\hat{L}=\hat{L}_{1}\cross\cdots\cross\hat{L}_{s}\subset S^{2n_{1}+1}(c_{1}/4)\cross\cdots\cross S^{2n_{*}+1}(c_{s}/4)\subset S^{2n+1}(c/4)$.
and $\hat{L}$ is an $(n+1)$-dimensional totally real submanifold with parallel
second fundamental form in the complex Euclidean space $\mathfrak{p}$

$\cong \mathrm{C}^{n+1}$ .
Thus we see

Proposition 3.1. The submanifold $\hat{L}$ is a compact $H$-minimal Lagrangian
submanifold embedded in the complex Euclidean space $\mathfrak{p}$

$\cong \mathrm{C}^{n+1}$ , which
is never minimal.

In the case of $s=1$ , the space $\hat{L}$ is an irreducible symmetric $R$-space$s$

of $U(r)$ type (see [26]). The following is acomplete list of all irreducible
symmetric $R$-spaces of type $U(r)$ :

$Q_{2,n+1}(\mathrm{R})$ , $U(p)$ , $U(p)/O(p)$ , $U(2p)/Sp(p)$ , $T\cdot E_{6}/F_{4}$ .
Here $Q_{2,n+1}(\mathrm{R})$ denotes the real quadric defined by

$Q_{2,n+1}(\mathrm{R})=\{[x]\in \mathrm{R}P^{n+2}|x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-\cdots-x_{n+3}^{2}=0\}$ .
The space $Q_{2,n+1}(\mathrm{R})$ is isomorphic to $(SO(2)\cross SO(n+1))/S’(O(1)\cross$

$O(n))$ , where $S’(O(1)\cross O(n))$ is acompact subgroup consisting of
matrices of the form

( $(\epsilon A)0$

$(B \epsilon)0$
$)\in SO(n+3)$ ,

with $\epsilon=\pm 1$ , A $\in O(1)$ and B $\in O(n)$ .
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Let $\pi$ : $S^{2n+1}(c/4)arrow \mathrm{C}P^{n}(c)$ be the Hopf fibration and put L $=$

$\pi(\hat{L})$ . Note that $\pi^{-1}(L)=\hat{L}$ . Then the following properties of L are
known :

Proposition 3.2 ([11]). (1) $L$ is an $n$ -dimensional compact totally
real submanifold embedded in $\mathrm{C}P^{n}(c)$ with parallel second funda-
mental form, and thus $L$ is a symmetric space.

(2) $L$ is a minimal submanifold in $\mathrm{C}P^{n}(c)$ if and only if $c_{\dot{l}}(n_{i}+1)=$

$c(n+1)$ for each $i=1$ , $\cdots$ , $s$ .
(3) The dimension of the Euclidean factor of $L$ is equal to $s-1$ .
(4) $L$ is flat if and only if $s=n+1$ . In this case, $L$ is the Clifford

torus in $CPn$ .
(5) L has no Euclidean factor if and only if s $=1$ . In this case L is an

irreducible symmetric space and a minimal submanifold in CPn.

In particular, we see
Proposition 3.3. Such an $L$ is a compact $H$-minimal Lagrangian sub-
manifold embedded in $CPn(c)$

The following conditions are equivalent:
(a) $L$ has no Euclidean factor.
(b) $(U, G)$ is irreducible, i.e. $s=1$ .
(c) $L$ has positive Ricci curvature.
(d) $L$ is an Einstein manifold with positive Einstein constant.

In the case when $L$ has no Euclidean factor, $L$ is isometric to one of
the following symmetric spaces:

$\mathrm{R}P^{n}(c/4)$ , $SU(p)/\mathrm{Z}_{p}$ , $SU(p)/SO(p)\mathrm{Z}_{p}$ , $SU(2p)/Sp(p)\mathrm{Z}_{2p}$ , $\mathrm{E}\mathrm{e}/\mathrm{F}4\mathrm{Z}3$ .

4. HAMILTONIAN STABILITY OF MINIMAL LAGRANGIAN
SUBMANIFOLDS WITH PARALLEL SECOND FUNDAMENTAL FORM

IN COMPLEX PROJECTIVE SPACES

Now we saw the construction of compact $\mathrm{H}$-minimal Lagrangian sub-
manifolds embedded in $\mathrm{C}P^{n}(c)$ with parallel second fundamental form.
We can determine Hamiltonian stability in the case $s=1$ .
Theorem 4.1 ([1]). Let $L$ be an $n$ -dimensionat compact totally real
minimal submanifold with parallel second fundamental form embedded
in $\mathrm{C}P^{n}$ in the following list:
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(1) $SU(p)/\mathrm{Z}_{p}$ , $n=p^{2}-1$ .
(2) $SU(p)/SO(p)\mathrm{Z}_{p}$ , $n= \frac{(p-1)(p+2)}{2}$ .
(3) $SU(2p)/Sp(p)\mathrm{Z}_{2p}$ , $n=(p-1)(2p+1)$ .
(4) $E_{6}/F_{4}\mathrm{Z}_{3}$ , $n=26$ .

Here $p\geq 2$ is an integer. Then $L$ is Hamiltonian stable as a compact
minimal Lagrangian submanifold in $\mathrm{C}P^{n}$ and moreover the nulll space
of $L$ is eactly the span of no rmal projections of Killing vector fields on
$\mathrm{C}P^{n}$ .

Combining the results of Theorems 3.2, 2.2 and 4.1, we conclude the
following.

Theorem 4.2 ([1]). All compact $n$ -dimensional totally real minimal
submanifolds embedded in $\mathrm{C}P^{n}$ with parallel second fundamental form
and positive Ricci curvature are Hamiltonian stable as compact minimal
Lagrangian submanifolds.

In order ro prove Theorem 4.1, we need to determine the eigenvalues
of the Laplacian on functions for such compact symmetric spaces. Here
we describe the method to culculate the eigenvalues of the Laplacians
on functions by virtue of the theory of spherical functions on compact
symmmetric spaces ([27]).

Let $G/K$ be acompact symmetric space with the symmetric pair
$(G, K)$ . Here $G$ is acompact connected Lie group. Let $\mathfrak{g}$

$=\mathrm{f}$ $+\mathrm{m}$ be
its canonical decomposition and $a$ be amaximal abelian subspace of $\mathrm{m}$ .
We fix an $\mathrm{A}\mathrm{d}G$-invariant inner product $(, )$ of $\mathfrak{g}$ . Let $\mathrm{t}$ be amaximal
abelian subalgebra of $\mathrm{g}$ containing $a$ and then we have $\mathrm{t}=\mathrm{b}$ $+a$, where

$\mathrm{b}$ $=\mathrm{t}\cap \mathrm{f}$ . We fix a $\sigma$-linear order $<\mathrm{o}\mathrm{n}\mathrm{t}$ . The maximal torus $T$ of $G$ is
generated by $\mathrm{t}$. For each $\alpha\in \mathrm{t}$, we put

(4.1) $\mathfrak{g}\sim\alpha=$ {X $\in \mathfrak{g}^{\mathrm{C}}|$ (&dH)X $=2\pi\sqrt{-1}(\alpha,$ $H)X$ for each H $\in \mathrm{t}$}.

An element $\alpha\in \mathrm{t}$ is called aroot of 9with respect to $\mathrm{t}$ if $\tilde{\mathfrak{g}}_{\alpha}$ is non zero.
We denote by $\Sigma(G)$ and $\Sigma^{+}(G)$ the set of all roots and all positive roots
of 9with respect to $\mathrm{t}$, respectively. We have the root decomposition

$\mathfrak{g}^{\mathrm{C}}=\mathrm{t}^{\mathrm{C}}+\sum_{\alpha\in\Sigma(G)}\tilde{\mathfrak{g}}_{\alpha}$

.
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$\mathrm{T}(\mathrm{G}):=\{H\in \mathrm{t}|\exp H=e\}$ ,

(4.2) $\mathrm{Z}\{\mathrm{G}$ ) $:=$ {A $\in \mathrm{t}|(\lambda,$ $H)\in \mathrm{Z}$ for each $H\in\Gamma(G)$ },
$D(G):=$ {A $\in \mathrm{Z}$ { $\mathrm{G})|(\lambda$ , $\alpha)\geq 0$ for each $Q($ $\in\Sigma^{+}(G)$ }.

Let $D(G)$ be the complete set of inequivalent irreducible unitary rep-
resentation of $G$ . Then for each $(V, \rho)\in D(G)$ the highest weight $\lambda_{\rho}$ of
$(V, \rho)$ belongs to $D(G)$ and the mapping $D(G)arrow D(G)$ is bijective.

Let $A$ be the torus of $G$ generated by $a$ and \^A=Ao be amaximal
torus of $G/K$ , where $\mathit{0}$ denotes the origin $eK$ of $G/K$ . For each 76 $a$,
we put

$\mathfrak{g}_{\gamma}=$ {X $\in \mathfrak{g}^{\mathrm{C}}|(\mathrm{a}\mathrm{d}H)X=2\pi\sqrt{-1}(\alpha,$ $H)X$ for each H $\in a$}.
An element $\gamma\in a$ is called aroot of 9with respect to aif $\mathfrak{g}_{\gamma}^{\mathrm{C}}$ is nonzero.
We denote by $\mathrm{E}(\mathrm{G}, K)$ and $\Sigma^{+}(G, K)$ the set of all roots and all positive
roots of $\mathfrak{g}$ with respect to $a$, respectively. We have the decomposition

$\mathfrak{g}_{\gamma}^{\mathrm{C}}=\mathfrak{g}_{0}^{\mathrm{C}}+\sum_{\gamma\in\Sigma(G,K)}\mathfrak{g}_{\gamma}^{\mathrm{C}}$

.

Put
$\mathrm{r}(\mathrm{G}, K):=\{H\in a|(\exp H)\mathit{0}=\mathit{0}\}$ ,
$Z(G, K):=$ {A $\in a|(\lambda,$ $H)\in \mathrm{Z}$ for each $H\in \mathrm{r}(\mathrm{G},$ $K)$ },
$\mathrm{D}(\mathrm{G})K):=$ {A $\in Z(G,$ $K)|(\lambda$ , $\gamma)\geq 0$ for each $\gamma\in\Sigma^{+}(G,$ $K)$ }.

Then we have $Z(G, K)\subset Z(G)$ and $D(G, K)\subset D(G)$ . Let $D(G, K)$

be the complete set of inequivalent unitary class one representation of
pair $(G, K)$ . Then for each $(V_{\rho}, \rho)\in D(G, K)$ the subspace $(V_{\rho})_{K}=$

{ $v\in V_{\rho}|\rho(k)v=v$ for each $k$ $\in K$ } is of complex dimension 1and the
bijection induces the bijection $D(G, K)arrow D(G, K)$ .

Let $g$ be the $G$-invariant Riemannian metric on $G/K$ induced by
$(, )$ and $\Delta$ be the Laplace-Beltrami operator of $(G/K, g)$ acting on
functions. Then the complete set of eigenvlues of $\Delta$ is given by

(4.3) $\{-a_{\rho}=4\pi^{2}(\lambda_{\rho}+2\delta(G), \lambda_{\rho})$ | $\rho\in D(G, K)\}$ .
Here we set

$\delta(G)=\frac{1}{2}\sum_{\alpha\in\Sigma^{+}(G)}\alpha$ .
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The multiplicity of the $k$-th eigenvalue $\lambda_{k}$ of $\Delta$ is given by $\sum_{\rho}d_{\rho}$ , where
the summation runs over all $\rho\in D(G,$K) such that $\lambda_{k}=-a_{k}$ , and

$d_{\rho}= \dim(V_{\rho}, \rho)=\prod_{\alpha\in\Sigma^{+}(G)}\frac{(\alpha,\lambda_{\rho}+\delta(G))}{(\alpha,\delta(G))}$ .

Here we give table on the scalar curvature $s\mathrm{o}\mathrm{f}L$ , the first eigenvalue
$\lambda_{1}$ of $L$ and the first eigenvalue $\tilde{\lambda}_{1}$ of the universal covering space $\tilde{L}$ .

Now we shall remark on some related open problems.

Problem 4.1. Is it true that all compact $n$-dimensional totally real
submanifolds embedded in $CPn$ with parallel second fundamental form
are Hamiltonian stable as $\mathrm{H}$-minimal Lagrangian submanifolds ?

Problem 4.2. Is it true that compact $\mathrm{H}$-minimal Lagrangian subman-
ifolds in $\mathrm{C}P^{n}$ which are Hamiltonian stable have parallel second fun-
damental form ?

Problem 4.3. Is such acompact Hamiltonian stabe $\mathrm{H}$-minimal La-
grangian submanifold $L$ in $\mathrm{C}P^{n}$ globally Hamiltonian stable or not, that
is, volume minimizing with respect to every Hamiltonian deformation
of $L$ ?

Remark 2. It is known that the real projective subspace $\mathrm{R}P^{n}$ of $\mathrm{C}P^{n}$

is globally Hamiltonian stable ([13],[2])
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5. HAMILTONIAN STABILITY OF SYMMETRIC R SPACES
CANONICALLY EMBEDDED IN COMPACT HERMITIAN SYMMETRIC

SPACES

We should remark that there exist compact minimal Lagrangian sub-
manifolds embedded in compact Hermitian symmetric spaces of rank
greater than 1which is NOT Hamiltonian stable.

Let $M$ is aKahler manifold and let $\tau$ be an involutive anti-holomorphic
isometry of $M$ . Let $L=\mathrm{F}\mathrm{i}\mathrm{x}(\mathrm{r})$ be the subset of all fixed points of $\tau$ .
This subset is called areal form of $M$ . Then it is known that it is
atotally real and totally geodesic submanifold in $M$ with dimension
equal to ahalf of $\dim(M)$ , and hence atotally geodesic Lagrangian
submanifold in $M$ .

Assume that $M$ is acompact Hermitian symmetric space. Let $\tau$ be
an involutive anti-holomorphic isometry. It is also asymmetric ff-space
canonically embedded in acompact Hermitian symmetric space ([26]).
Moreover in [26] he showed that asymmetric $R$ space $L$ canonically em-
bedded in acompact Hermitian symmetric space is stable as aminimal
submanifold if and only if $L$ is simply connected.

The theory of symmetric $R$-spaces is well investigated and we refer to
[26] for acomplete list of irreducible symmetric $R$-spaces. By using the
results of M. Takeuchi in [26], Y. G. Oh [13] showed that an Einstein,
symmetric $R$-space canonically embedded in acompact Hermitian sym-
metric space is always Hamiltonian stable. Moreover M. Takeuchi clas-
sified all irreducible symmetric $R$-spaces into five classes :Hermitian
and four types corresponding to each of the groups $5\mathrm{p}(\mathrm{r})$ , $U(r)$ , SO(2r)
and SO(2r+1). He also showed that symmetric $R$ spaces of Hermit-
ian type are always Einstein and hence Hamiltonian stable. Here we
give acomplete list of Hamiltonian stability of all irreducible symmet-
ric $R$-spaces of non-Hermitian type which are canonically embedded in
Hermitian symmetric spaces
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Here $G_{p,q}(\mathrm{F})$ : Grassmanian manifold of all $p$-dimensional subspaces of
$\mathrm{F}^{p+q}$ , for each $\mathrm{F}=\mathrm{R}$ , $\mathrm{C}$ , $\mathrm{H}$ ,
$\mathrm{P}_{2}(K)$ : Cayley projective plane,
$Q_{n}(\mathrm{C})$ : complex quadric of dimension $n$ .
Note that the heading of the third column indicates whether $L$ is Ein-
stein or not.

Problem 5.1. In the above list,
$(M, L)=(SO(4m)/U(2m), U(2m)/Sp(m))(m\geq 3)$ ,

$(Q_{p+q-2}(\mathrm{C}), Q_{p,q}(\mathrm{R}))(3\leq q-p,p\geq 2)$ ,
$(E_{7}/T\cdot E_{6}, T\cdot E_{6}/F_{4})$

are compact minimal Lagrangian submanifolds embedded in compact
Hermitian symmetric spaces which are NOT Hamiltonian stable. Can
we find their geometric reasons ?

Problem 5.2. Which Hamitonian stable symmetric R spaces in the
above classification are globally Hamiltonian stable ?

Problem 5.3. More generally let $M$ be aKahler $C$-space, that is, a
generalized flag manifold equipped with ahomogeneous K\"ahler metric.
It is well-known that $M$ is obtained as an adjoint orbit of acompact
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Lie group and Kahler $C$-spaces exhaust simply connected compact h0-
mogeneous Kahler manifold. The $R$-spaces canonically embedded in
Kahler $C$-spaces are real forms of $M([25])$ , and thus totally geodesic La-
grangian submanifolds of $M$ . Study Hamiltonian stability of ff-spaces
canonically embedded in K\"ahler $C$-spaces $M$ .

6. HAMILTONIAN MINIMALITY AND HAMILITONIAN STABILITY OF
LAGRANGIAN SUBMANIFOLDS IN complex EUCLIDEAN spaces

Finally we shall discuss Hamiltonian stability of $\mathrm{H}$-minimal Lagrangian
submanifolds in complex Euclidean spaces.

Let $L$ be aLagrangian submanifold immersed in $\mathrm{C}^{n+1}$ and $\varphi:Larrow$

$\mathrm{C}^{n+1}$ denote its Lagrangian immersion. In this section, we discuss La-
grangian submanifolds $L$ in the complex Euclidean space $\mathrm{C}^{n+1}$ which
are minimally immersed in the hypersphere $S^{2n+1}(c/4)$ of constant pos-
itive sectional curvature $c/4$ . Then $L$ is an $\mathrm{H}$-minimal Lagrangian sub-
manifold in $\mathrm{C}^{n+1}$ . In fact, since the mean curvature vector field of $L$

in $\mathrm{C}^{n+1}$ is given by

$H_{x}=- \frac{c(n+1)}{4}\varphi(x)$

for each point $x\in L$ , by the Weingarten formula we see that $L$ has
parallel mean curvature vector field in $\mathrm{C}^{n+1}$ with respect to the normal
connection.

Lemma 6.1. Let $B$ denote the second fundamental form of the sub-
manifold $L$ in $\mathrm{C}^{n+1}$ . Then $L$ satisfies
(6.1) $\langle B(X,$Y),$H \rangle=\frac{c(n+1)}{4}\langle X,$Y\rangle ,

for all tangent vectors X, Y of L.

Proposition 6.1. Let $L$ be a Lagrangian submanifold in $\mathrm{C}^{n+1}$ which
is minimally immersed in $S^{2n+1}(c/4)$ . Then

(6.2) $\langle\alpha_{V}\otimes\alpha_{V}\otimes\alpha_{H}, S\rangle=\frac{c(n+1)}{4}\langle\alpha_{V}, \alpha_{V}\rangle$

for each normal vector field V on L.

Proposition 6.2. Let $L$ be a Lagrangian submanifold in $\mathrm{C}^{n+1}$ which
is minimally immersed in $S^{2n+1}( \frac{c}{4})$ . Then

$\langle\alpha_{V}, \alpha_{H}\rangle^{2}=\frac{c}{4}(n+1)^{2}\alpha_{V}^{2}(E_{1})$
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for every normal vector field V on L, where $E_{1}$ denotes a parallel vector
field on L with unit length defined by $E_{1}=J(H/|H|)$ .

Since $\mathrm{C}^{n+1}$ is flat, we have $\overline{R}_{\alpha_{V}}\equiv 0$ . Using this fact and Propositions
6.1 and 6.2, we rewrite the second variation formula as follows:

Proposition 6.3. Let $L$ be a Lagrangian submanifold in $\mathrm{C}^{n+1}$ which is
minimally immersed in $S^{2n+1}( \frac{c}{4})$ . Then the second variational for mula
for volume becomes

(6.3)

$\Pi(\alpha_{V}, \alpha_{V})=\int_{L}(\langle\Delta\alpha_{V}-\frac{c}{2}(n+1)\alpha_{V},,\alpha_{V}\rangle+\frac{c}{4}(n+1)^{2}\alpha_{V}^{2}(e_{1}))dv$.

Let L be one of the following irreducible symmetric $R$-spaces of type
$U(r)$ standardly embedded in $\mathrm{C}^{n+1}$ :

(6.4) $Q_{2,n+1}(\mathrm{R})$ , $U(p)$ , $U(p)/O(p)$ , $U(2p)/Sp(p)$ and $(T^{1}\cdot E_{6})/F_{4}$ .

Then L is aminimal submanifold in $S^{2n+1}( \frac{c}{4})([28])$ . Note that their
images under the Hopf maps $\pi$ : $S^{2n+1}(c/4)arrow \mathrm{C}P^{n}(c)$ are

$\mathrm{R}P^{n}$ , $SU(p)/\mathrm{Z}_{p}$ , $SU(p)/SO(p)\mathrm{Z}_{p}$ , $SU(2p)/Sp(p)\mathrm{Z}_{2p}$ and $\mathrm{E}\mathrm{e}/\mathrm{F}\mathrm{A}\mathrm{Z}3$ ,

respectively. The irreducible symmetric $R$-space $L$ of type $U(r)$ is a
compact $\mathrm{H}$-minimal Lagrangian submanifold in $\mathrm{C}^{n+1}$ with parallel sec-
ond fundamental form, which is aminimal submanifold in the hyper-
sphere $S^{2n+1}([28])$ .

The $(n+1)$-dimensional standard torus

$T_{r_{1},\ldots,r_{n+1}}^{n+1}=S^{1}(r_{1})\cross$ $\cdots\cross$ $S^{1}(r_{n+1})\subset \mathrm{C}^{n+1}$

is the simplest example of compact $\mathrm{H}$-minimal Lagrangian submani-
fold embedded in $\mathrm{C}^{n+1}$ . Oh showed the Hamiltonian stability of the
standard torus.

Theorem 6.1 ([15]). For each $\mathrm{r}\mathrm{i}$ , $\cdots$ , $r_{n+1}>0$ , the $(n+1)$ -dimensional
standard torus

$T_{r_{1},\ldots,r_{n+1}}^{n+1}=S^{1}(r_{1})\cross\cdots\cross S^{1}(r_{n+1})\subset \mathrm{C}^{n+1}$

is Hamiltonian stable as an $H$-minimal Lagrangian submanifold ernbed-
ded in $\mathrm{C}^{n+1}$ .
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The $(n+1)$-dimensional standard torus $T_{r_{1},\ldots,r_{n+1}}^{n+1}$ in $\mathrm{C}^{n+1}$ is also the
simplest model of totally real submanifolds in complex Euclidean spaces
with parallel second fundamental form. In this section we shall duscuss
Hamiltonian stability of irreducible symmetric $R$-space of type $U(r)$

canonically embedded in the complex Euclidean spaces as H-minimal
Lagrangian submanifolds.

Let $L=G/K$ be an irreducible symmetric $R$-space of type $U(r)$ and
assume that $L$ is embedded in the complex Euclidean space as aH-
minimal Lagrangian submanifold by the standard embedding $\varphi$ as in
Section 3.

By the spherical function theory on compact symmetric spaces, we
have

$B^{1}(L)^{\mathrm{C}}=d(C^{\infty}(L)^{\mathrm{C}})\cong C^{\infty}(L)^{\mathrm{C}}/\mathrm{C}=\oplus V_{\Lambda}\Lambda\in D(G,K)\backslash \{0\}$’

where $(V_{\Lambda}, \rho_{\Lambda})$ denotes an irreducible unitary represention space with
highest weight $\Lambda$ . The vector space $V_{\Lambda}$ can be regarded as asubspace
of $C^{\infty}(L)$ as follows. Set

$(V_{\Lambda})_{K}:=$ {v $\in V_{\Lambda}|\rho_{\Lambda}(k)v=v$ for all k $\in K$}.
It is known that $(V_{\Lambda})_{K}\neq\{0\}$ if and only if $\Lambda\in D(G, K)$ , and $\dim(V_{\Lambda})_{K}=$

$1([27])$ . Choose anonzero element $v_{\Lambda}\in(V_{\Lambda})_{K}$ . For each $v\in V_{\Lambda}$ , we
define afunction $f_{v}$ on $G/K$ as

$f_{v}(aK):=\langle\rho_{\Lambda}(a)v_{\Lambda}, v\rangle_{V_{\Lambda}}$

for each $aK\in G/K$ . Here $\langle$ , $\rangle_{V_{\Lambda}}$ denotes an $\rho_{\Lambda}$-invariant Hermitian
inner product of $V_{\Lambda}$ .

We extend the symmetric bilinear form $\Pi$ on $B^{1}(L)=d(\Omega^{0}(L))$ to
an Hermitian form on $B^{1}(L)^{\mathrm{C}}=d(\Omega^{0}(L))^{\mathrm{C}}$ in anatural way :

(6.5)
$\Pi(\alpha, \overline{\beta}):=\int_{L}(\langle\Delta\alpha,\overline{\beta}\rangle-\langle\overline{R}_{\alpha},\overline{\beta}\rangle$

$-2\langle\alpha\otimes\overline{\beta}\otimes\alpha_{H}, S\rangle+\langle\alpha, \alpha_{H}\rangle\langle\overline{\beta}, \alpha_{H}\rangle)dv$.
for each $\alpha$ , $\beta\in B^{1}(L)^{\mathrm{C}}=d(\Omega^{0}(L))^{\mathrm{C}}$ . Note that if $\Lambda$ , $\Lambda’\in \mathrm{D}(\mathrm{G}, K)$

with $\Lambda\neq\Lambda’$ , then we have $\Pi(df_{v},\overline{df_{v’}})=0$ for each $v\in V_{\Lambda}$ and each
$v’\in V_{\Lambda’}$ .

Let $\mathrm{c}(\mathfrak{g})$ be the center of $G$ and choose $E_{1}\in \mathrm{c}(\mathfrak{g})$ with $|E_{1}|=1$ . We
denote also by $E_{1}$ the vector field on $G/K$ generated by the element
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Theorem 6.2 ([3]). Let $L=G/K$ be an irreducible symmetric R-
space of type $U(r)$ with $\dim L=n+1$ . Then the Hemitian form $\Pi$

on $B^{1}(L)^{\mathrm{C}}=d(\Omega^{0}(L))^{\mathrm{C}}$ is given as follows: For each $\Lambda\in D(G, K)$

and each $v\in V_{\Lambda}$ ,
$\Pi(df_{v},\overline{df_{v}})$

(6.6)
$=(a_{\Lambda}^{2}+ \frac{c}{2}(n+1)a_{\Lambda}+\frac{c}{4}(n+1)^{2}|\langle E_{1}, \Lambda\rangle|^{2})\frac{|v_{\Lambda}|_{V_{\Lambda}}^{2}\mathrm{V}\mathrm{o}1(L)}{\dim_{\mathrm{C}}V_{\Lambda}}|v|_{V_{\Lambda}}^{2}$ ,

where $a_{\Lambda}$ is an eigenvalue of the Casimir operator of $\rho_{\Lambda}$ with respect to
the metric induced from $\mathrm{C}^{n+1}$ .
Corollary 6.1. The Lagrangian submanifold $L=G/K$ is Hamiltonian
stable if and only if

$II( \Lambda):=a_{\Lambda}^{2}+\frac{c}{2}(n+1)a_{\Lambda}+\frac{c}{4}(n+1)^{2}|\langle E_{1}, \Lambda\rangle|^{2}\geq 0$

for all $\Lambda\in D(G,$K).

By using the above formula we can show case by case that $II(\Lambda)\geq 0$

for each $\Lambda\in D(G, K)$ and each irreducible symmetric $R$-space $G/K$ of
$U(r)$ type ([3]). Thus we obtain

Theorem 6.3 ([3]). Every irreducible symmetric $R$-space of $U(r)$ type :
$Q_{2,n+1}(\mathrm{R})$ , $U(p)$ , $U(p)/O(p)$ , $U(2p)/Sp(p)$ , $T\cdot E_{6}/F_{4}$

is Hamiltonian stable as an $H$-minimal Lagrangian submanifold in the
complex Euclidean space.

Problem 6.1. Are these compact Hamiltonian stabe $\mathrm{H}$-minimal La-
grangian submanifolds $L$ in complex Euclidean spaces globally Hamil-
tonian stable or not ?
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