Enbeddings of derived functor modules into degenerate principal series

Hisayosi Matumoto

Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Tokyo
153-8914, JAPAN

(東京大学 大学院 数理科学研究科)
e-mail: hisayosi@ms.u-tokyo.ac.jp

§ 1. Formulation of the problem

Let G be a real linear reductive Lie group and let $G_\mathbb{C}$ its complexification. We denote by \mathfrak{g}_0 (resp. \mathfrak{g}) the Lie algebra of G (resp. $G_\mathbb{C}$) and denote by σ the complex conjugation on \mathfrak{g} with respect to \mathfrak{g}_0. We fix a maximal compact subgroup K of G and denote by θ the corresponding Cartan involution. We denote by ξ the complexified Lie algebra of K.

We fix a parabolic subgroup P of G with θ-stable Levi part M. We denote by N the nilradical of P. We denote by \mathfrak{p}, \mathfrak{m}, and \mathfrak{n} the complexified Lie algebras of P, M, and N, respectively. We denote by $P_\mathbb{C}$, $M_\mathbb{C}$, and $N_\mathbb{C}$ the analytic subgroups in $G_\mathbb{C}$ with respect to \mathfrak{p}, \mathfrak{m}, and \mathfrak{n}, respectively.

For $X \in \mathfrak{m}$, we define

$$\delta(X) = \frac{1}{2} \text{tr} (\text{ad}_\mathfrak{g}(X)|_\mathfrak{n}).$$

Then, δ is a one-dimensional representation of \mathfrak{m}. We see that 2δ lifts to a holomorphic group homomorphism $\xi_{2\delta} : M_\mathbb{C} \to \mathbb{C}^\times$. Defining $\xi_{2\delta}|_{N_\mathbb{C}}$ trivial, we may extend $\xi_{2\delta}$ to $P_\mathbb{C}$. We put $X = G_\mathbb{C}/P_\mathbb{C}$. Let L be the holomorphic line bundle on X corresponding to the canonical divisor. Namely, L is the $G_\mathbb{C}$-homogeneous line bundle on X associated to the character $\xi_{2\delta}$ on $P_\mathbb{C}$. We denote the restriction of $\xi_{2\delta}$ to P by the same letter.

For a character $\eta : P \to \mathbb{C}^\times$, we consider the unnormalized parabolic induction $\text{Ind}^P_G(\eta)$. Namely, $\text{Ind}^P_G(\eta)$ is the K-finite part of the space of the C^∞-sections of the G-homogeneous line bundle on G/P associated to η. $\text{Ind}^P_G(\eta)$ is a Harish-Chandra (\mathfrak{g}, K)-module.

If G/P is orientable, then the trivial G-representation is the unique irreducible quotient of $\text{Ind}^P_G(\xi_{2\delta})$. If G/P is not orientable, there is a character ω on P such that ω is trivial on the identical component of P and the trivial G-representation is the unique irreducible quotient of $\text{Ind}^P_G(\xi_{2\delta} \otimes \omega)$.

Let \mathcal{O} be an open G-orbit on X. We put the following assumption:
Assumption 1.1 There is a θ-stable parabolic subalgebra q of g such that $q \in O$.

Under the above assumption, q has a Levi decomposition $q = l + u$ such that l is a θ and σ-stable Levi part. In fact l is unique, since we have $l = \sigma(q) \cap q$.

For each open G-orbit O on X, we put

$$A_O = H^\dim\unr(O, \mathcal{L})_{K\text{-finite}}.$$

Namely, in the terminology in [Vogan-Zuckerman 1984], we have $A_O = A_q = A_q(0)$.

We consider the following problem:

Problem 1.2 Is there an embedding: $A_O \hookrightarrow \mathcal{I}nd_P^G(\xi_{2\delta})$ or $A_O \hookrightarrow \mathcal{I}nd_P^G(\xi_{2\delta} \otimes \omega)$?

§ 2. Complex groups

Let G be a connected real split reductive linear Lie group. Here, we consider Problem 1.2 for the complexification G_C rather than G itself. Embedding G_C into $G_C \times G_C$ via $g \mapsto (g, \sigma(g))$, we may regard $G_C \times G_C$ as a complexification of G_C. Each parabolic subgroup of G_C is the complexification of a parabolic subgroup of G. Let P be a parabolic subgroup of G.

Then, the complexification of P_C can be identified with $P_C \times P_C$ via the above embedding $G_C \hookrightarrow G_C \times G_C$. Hence, the complex generalized flag variety for G_C is $X \times X$. We fix a θ and σ-stable Cartan subalgebra \mathfrak{h} of g such that $\mathfrak{h} \subseteq \mathfrak{p}$. We denote by w_0 (resp. w_p) the longest element of the Weyl group with respect to (g, \mathfrak{h}) (resp. (m, \mathfrak{h})).

We easily have:

Proposition 2.1. $X \times X$ has a unique G_C-orbit (say O_C). O_C satisfies the Assumption 1.1 if and only if $w_0 w_p = w_p w_0$.

We consider "$\xi_{2\delta}$" for G. Then the character $\xi_{2\delta} \boxtimes \xi_{2\delta}$ on $P_C \times P_C$ is the "$\xi_{2\delta}$" for G_C. For characters μ and ν of P_C, we denote the restriction of $\mu \boxtimes \nu$ to P_C realized as a real form of $P_C \times P_C$ as above by the same letter.

For the complex case, we have:

Theorem 2.2. ([Vogan-Zuckerman 1984])

$$A_O \cong \mathcal{I}nd_P^{G_C}(\xi_{2\delta} \boxtimes 1) \cong \mathcal{I}nd_P^{G_C}(1 \boxtimes \xi_{2\delta}).$$

Therefore, Problem 1.2 reduced to the problem of the existence of intertwining operators.

For $t \in \mathbb{C}$, we define the following generalized Verma module:

$$M_p(t\delta) = U(g) \otimes_{U(p)} \xi_{t\delta}.$$

The following result is well-known.

Proposition 2.3. For $t_1, t_2 \in 2\mathbb{Z}$,

$$\mathcal{I}nd_P^{G_C}(\xi_{t_1\delta} \boxtimes \xi_{t_2\delta}) \cong (M_p(-t_1\delta) \boxtimes M_p(-t_2\delta))_{K_{G_C}}^{\text{finite}}.$$

So, our Problem 1.2 is seriously related to the existence of homomorphisms between generalized Verma modules. In fact, the following result is known.
Theorem 2.4. ([Matumoto 1993])

Let \(t \) be a non-negative even integer. Then we have

\[
M_{\mathfrak{p}}(-(t + 2)\delta) \hookrightarrow M_{\mathfrak{p}}(t\delta)
\]

if and only if \(w_{0}\mathfrak{p} \) is a Duflo involution in the Weyl group for \((\mathfrak{g}, \mathfrak{h})\).

If \(w_{0}\mathfrak{p} \) is a Duflo involution, using Proposition 2.2 we have:

\[
\begin{align*}
\text{"Ind}_{\mathfrak{p}G}^{G}(1 \boxtimes 1) & \rightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(1 \boxtimes \xi_{2\delta}) \\
\text{\text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta} \boxtimes 1) & \rightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta} \boxtimes \xi_{2\delta}).}
\end{align*}
\]

In fact, we have:

Theorem 2.5. \(\mathcal{A}_{\mathfrak{O}_{0}} \leftrightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta} \boxtimes \xi_{2\delta}) \) if and only if \(w_{0}\mathfrak{p} \) is a Duflo involution in the Weyl group for \((\mathfrak{g}, \mathfrak{h})\).

§ 3. Type A case

As we seen in the case of complex groups, the statement in Problem 1.2 is not correct in general. However, for type A groups, we have affirmative answers.

3.1 \(\text{GL}(n, \mathbb{C}) \)

We retain the notation in §2. We fix a Borel subalgebra \(\mathfrak{b} \) such that \(\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{p} \). We denote by \(\Pi \) the basis of the root system with respect to \((\mathfrak{g}, \mathfrak{h})\) corresponding to \(\mathfrak{b} \). We denote by \(S \) the subset of \(\Pi \) corresponding to \(\mathfrak{p} \). Assumption 1.1 holds if and only if \(S \) is compatible with the symmetry of the Dynkin diagram. For a Weyl group of the type A, each involution is a Duflo involution. Hence, we have:

Theorem 3.6. Under Assumption 1.1, we have \(\mathcal{A}_{\mathfrak{O}_{0}} \leftrightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta} \boxtimes \xi_{2\delta}) \).

3.2 \(\text{GL}(n, \mathbb{R}) \)

Speh proved any derived functor module of \(\text{GL}(n, \mathbb{R}) \) is parabolically induced from the external tensor product of some so-called Speh representations and possibly a one-dimensional representation. Using this fact, we can reduce Problem 1.2 to embedding Speh representations into degenerate principal series. More precisely, we consider \(G = \text{GL}(2n, \mathbb{R}) \) and let \(P \) be a maximal parabolic subgroup whose Levi part is isomorphic to \(\text{GL}(n, \mathbb{R}) \times \text{GL}(n, \mathbb{R}) \). Then, \(X = G_{C}/P_{C} \) contains a unique open \(G \)-orbit (say \(\mathcal{O} \)). In this setting, Assumption 1.1 holds. The fine structure of degenerate principal series for \(P \) has already been studied precisely. ([Sahi 1995], [Zhang 1995], [Howe-Lee 1999],[Barbasch-Sahi-Speh 1988]) From their results, we have:

\[
\mathcal{A}_{\mathcal{O}} \leftrightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta}) \quad \text{if } n \text{ is odd,}
\]

\[
\mathcal{A}_{\mathcal{O}} \leftrightarrow \text{"Ind}_{\mathfrak{p}G}^{G}(\xi_{2\delta} \otimes \omega) \quad \text{if } n \text{ is even.}
\]

We can deduce an affirmative answer to Problem 1.2 from this.
3.3 \(\text{GL}(n, \mathbb{H}) \)

In this case, we also have an affirmative answer to Problem 1.2. The argument is similar to (and easier than) the case of \(\text{GL}(n, \mathbb{R}) \).

3.4 \(\text{U}(m, n) \)

Let \(G = \text{U}(m, n) \) and let \(P \) be an arbitrary parabolic subgroup of \(G \). In this case, Assumption 1.1 automatically holds. We denote by \(\mathcal{V} \) the set of open \(G \)-orbits on \(X = G/\mathcal{P} \). In fact, we have:

\[
\text{Socle} \left(\text{Ind}_P^G(\xi_{2k}) \right) = \bigoplus_{\mathcal{O} \in \mathcal{V}} \mathcal{A}_{\mathcal{O}}.
\]

References

