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Singular solutions of Nonlinear Fuchsian
Equations and Applications to
Normal Form Theory

Masafumi Yoshino ft
Faculty of Economics, Chuo University, Tokyo Japan

Motivation and Examples

Vector fields with an isolated singular point

Let us consider the fo]lowmg vector field with an isolated singular point
at the origin

= 0
® A=Y@
j=1 J
where ¢ = (x1,... ,Z,) € R® or C", and a;(z) is smooth in . Namely
we assume :
(4) X(0) =

and X does not vanish in some 'neighborhood of z = 0 except for the
origin.

Linearization and Homology Equation

We want to linearize X'(z) by a change of variables

(5)  e=y+uly), v=O0(P).

We write X(z) in the form

0 0. 0
(6) X(z) = xAé—E + R(x)gg = X(z)%,
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(7) X(z) = zA + R(z),
where
(8) R(z) = (Ri(2),- .. , Ra(z)), R(z) = O(|z|?),
and A is an n X n constant matrix.
Noting that

X(0)5 =Xy + )35

= X(y +v(y)) (%) B 5%,

the linearization condition can be written in the following form
Xy +v)(1+8,v) =yA.

Therefore

(9) (y+v)A+ R(y +v) = yA(1 + 8,v) = yA + yAd,v.

Hence v satisfies the so-called homology equation

(%) Ly =yAOyv —vA=R(y+v(y)), v=(v1,...,0).

Summing up we obtain

The necessary and suflicient condition for that (x) has a solution v is that

X is linearized by the change of substitution x = y + v(y).
Expression of a homology equation
We assume that A is in a diagonal matrix, namely

‘ A1 0
(1) A= '

Noting that
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we obtain

Lv

> /\kyk% - A 0 (1
11) = - :
0 ' Z /\kykﬁ% - /\u Un

In the following, for the sake of simplicity we always assume that a ho-
mology equation has the above expression.

Non-resonant condition

The indicial polynomial of £ is given by

(12) D M= A, (G=1,...,m).
k=1
L is said to be non-resonant if
(13) Z)\kak - )\j 75 0
k=1
for Va € (ay,...,a,) €2, || >2,and j=1,... ,n.

If (13) does not hold we say that £ is resonant. The set of y* with o
not satisfying (13) for some j is called a resonance. We have

Under non-resonant condition there exists a formal power series solu-
tion.
Indeed, Lv = f is written in

E(Z vay®) = Z(Z Akag — A)vay® = Zfay"‘.

a k=

Because (Y ;_, Akax —A) is invertible £ exists. BecauseR(z) = O(|z|?)
we can determine a formal power series solution by a method of indeter-
minate coefficients.

Two theorems for the solvability of a homology equation

75



Poincaré introduced a famous Poincaré condition
Re X; >0, j=1,...,n
and showed the solvability of (x) in a class of analytic functions.
Solvability of (*) in a real domain
Theorem (Sternberg) Assume the hyperbolic condition
(14) Re M #0, k=1,...,n.

Moreover, suppose the non-resonant condition. Then (*) has a smooth
solution.

If resonance occurs we have

Theorem (Grobman- Hartman) Assume the hyperbolicity. Then
(*) has a continuous solution.

Remark A continuous solution of () is defined as a weak solution.
The definition of a weak solution is standard. There are extensions of
this result to the C* (k > 0) case by Blitskiy et. al for a certain class of
vector fields with resonances.

‘Object of Study

We want to solve (*) in the case of resonances in a class of functions with
a ”log” type singularity. We also want to solve (x) in a class of functions
holomorphic in the domain which is a product of sectors with vertex at
the origin.

Statement of the results

Singular solutions

Theorem 1. Assume the Poincaré condition and
Viik A+ #E A
Then Eq. (*) has a solution v of the form

o) = S vepy(logy)?,

|a|>2,a2>8



where (logy)® = [1;-,(log ;)% . v(y) converges in

{y € O™ |y| < Fe, |y;logy| <e(i=1,...,n)}.

Remark. If there is no resonance the above solution is a classical solution
constructed by Poincaré.

If we restrict the solution v to the real domain we obtain a finitely
smooth solution of (*). Hence a finite smoothness occurs because
of the log type singularity caused by the resonance.

Example Consider the case n = 2. Let m > 2 be an integer. Let us
consider

L1 =210 + mx20, — 1, Ly =20, + mx202 — m.

The only resonance is (a;, @) = (m,0). The solution v has singularity
of log z; type.
Indeed, the resonance a = (a;, o) € Z2 satisfies a; + oz > 2 and

a1 +mas—1=0, or a;+may=m.

Since a; + mas — 1 # 0 by assumption we obtain a; + mas = m and
ay + ag > 2. It follows that (o4, ag) = (m,0).

Sketch of the proof of Theorem 1. For the sake of simplicity we will
prove the above example. We will construct a formal solution of (*) in
the following form

u,(a:) = Z uf;,k:v"(log )k, j=12

aGZ:‘L,|a|22,k
The equation (*) can be writtten in the following form
(*) L:j’ll,j = RJ((El + U1, T2 + UQ), . j = 1, 2

We set g i = (ul g, u2 ;) We determine uar k=0,1,2,... inductively.
We determine u,. By comparing the coefficients we can determine u, o
for |a| < m, a # (m,0). On the other hand we note ’

Ly(z7) =0, Lo(z7 logzy) =27

7



Hence we set u? o o = 0, Ugm,0,0 = (U{m0)0:0)- We note that we can
determine u(,, o o and uf, ¢ ; by comparing the coefficients of 7" in (x)
since £, has the nonresonance property. It is clear that we can determine
Ugq,o for |a| > m from (x) because there is no resonance for |a| > m.

We next determine u,,;. We have already determined w(m,0)1 = (0,4, ¢ ,)-

By the nonresonance property we can determine u,; for |a| > m. Induc-
tively, us2 (Ja| = 2m) can be determined by comparing the coefficients
of z2™(logz;)?. The terms uq2 (Ja|] > 2m) can be determined induc-
tively by the nonresonance property. Inductively, we can determine u,
(k=0,1,2,...). Hence we can determine a formal power series solution.
The convergence can be proved by the method of majorant series. This
ends the proof.

Solvability in the sectorial domain

Let Sy be a sector in the complex plane, Sy := {z;|argz| < 6}, where
6 > 0 is a given small number and the branch of argz is taken so that
the argument is zero on the real axis. We define a sectorial domain S in
C™ as the product of n copies of Sy, S = Sp X -+ X Sp. In the following
we consider the solvability of the equation (*) in the sectorial domain S.
The typical example of the nonlinear term R(z) is the following:

a.

R(z) = AH [, c,)ﬂa

where A, c; € C\ 5,0 < a; < B (j =1,...,n) are constants. We set
A:=(A1,.--,An). Then we have
Theorem 2. Suppose that
AeERNO  (j=1,...,n).
Let I' C R™ be an open set such that 0 € I" and
I'n{n (Am) = A} =0,

forevery j =1,... ,n, where (A\,n) = >\, A7k Suppose that, for every
nerl,
R(z) =O(z™™), ( whenz — 0 or z — oo,z € S).
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Then there exists € > 0 such that if sup,.g|R(z)| < £ the equation (x)
has a solution u holomorphic in S. Moreover, for every 1 € I', u behaves
like O(z™") whenz -0 orz — oo z € S.

Example. For R(z) in the above example the conditions in the theorem
are fulfilled if T is a sufficiently small neighborhood of the origin and A
is sufficiently small.
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