
On applications of Katz’ middle convolution functor

by S. Reiter (joint work with M. Dettweiler)

Aunifying treatment for irreducible rigid local systems on the punctured
affine line is given in Katz’ book ”Rigid local systems”. The main tool is a
middle convolution functor of the category of perverse sheaves into itself. This
functor is denoted $MC_{\chi}$ , for $\chi$ aone-dimensional representation of $\pi_{1}(\mathrm{G}_{m})$ . It
preserves important properties of local systems like rigidity (more general the
index of rigidity), irreducibility, etc., but in general, $MC_{\chi}$ changes the rank and
the monodromy group.

The construction of $MC_{\chi}$ depends on the $l$-adic Fourier transform in char-
acteristic $p>0$ . Using Laumon’s work on $l$ -adic Fourier transform, the effect of
$MC_{\chi}$ on the local monodromy can be explicitly determined.

As an application, Katz shows that any irreducible rigid local system on the
punctured affine line can be obtained from aone-dimensional local system by
applying iteratively asuitable sequence of middle convolutions $MC_{\chi_{i}}$ and scalar
multiplications. This leads to an existence algorithm for such local systems,
using $MC_{\chi}\circ \mathrm{M}\mathrm{C}\mathrm{x}-\mathrm{i}\approx \mathrm{I}\mathrm{d}$ :Test, whether there exists an irreducible rigid local
system on the $r$-punctured affine line, for which the local monodromy has given
Jordan canonical forms.

In apaper of Dettweiler-Reiter ([DR1]) apurely algebraic analogon of Katz’
functor is given (using linear algebra and some module theory). This is afunctor
of the category of representations of the free group $F_{r}$ on $r$ generators into
itself. It depends on ascalar $\lambda\in K^{\cross}$ and is denoted $MC_{\lambda}$ . After choosing a
set of generators of $Fr$ , $MC_{\lambda}$ is nothing else then atransformation of tuples of
invertible matrices

$(A_{1}, \ldots, A_{r})\in \mathrm{G}\mathrm{L}\mathrm{n}(\mathrm{K})\mathrm{r}$ $\mapsto \mathrm{M}\mathrm{C}\mathrm{X}$ (AU $\ldots$ , $A_{r}$ ) $=(B_{1}, \ldots, B_{r})\in \mathrm{G}\mathrm{L}_{m}(K)^{r}$ ,

where $m$ and $B_{1}$ , $\ldots$ , $B_{r}$ can be explicitly determined. It is shown that $MC_{\lambda}$

has analogous properties as $MC_{\chi}$ . This leads to anew proof of Katz’ existence
algorithm for rigid local systems for any field.

Since this approach gives an explicit matrix representation of the $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}arrow$

ing tuples of matrices (not only the the Jordan forms as in Katz’ book) one also
sees that the convolution functor commutes with the braid group action on
tuples of matrices. As an application (using braid group criteria) one can real-
ize series of classical groups regularly as Galois groups over $\mathbb{Q}$ , e.g, the groups
$SO_{2m+1}(q)$ , $PGO_{2m}^{+}(q)$ , $PGO_{4m}^{-}(q)$ , $Sp_{2m}(q)$ , $m>q$ , $q$ odd, appear regularly as
Galois groups over Q. One also reobtains most of the known results for classical
groups.

Also an additive version of Katz’ functor is defined. This is afunctor of the
category of representations of the free algebra $f_{r}$ on $r$ generators into itself. It
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depends on ascalar $\mu\in \mathbb{C}$ and is denoted $mc_{\mu}$ . Again, $mc_{\mu}$ is nothing else then
atransformation of tuples of matrices

$(a_{1}, \ldots, a_{r})\in(K^{n\cross n})^{r}\mapsto mc_{\mu}(a_{1}, \ldots, a_{r})\in(K^{m\cross m})^{r}$.

Thus we have the following relation with differential equations. Any choice
of elements $t_{1}$ , $\ldots$ , $t_{r}\in \mathbb{C}$ , together with atuple of matrices $\mathrm{a}:=$ $(a_{1}, \ldots, a_{r})\in$

$(\mathbb{C}^{n\mathrm{x}n})^{r}$ , yields aFuchsian system

$D_{\mathrm{a}}$ : $\mathrm{Y}’=\sum_{i=1}^{r}\frac{a_{i}}{x-t_{i}}$ Y.

Then, $mc_{\mu}$ translates into atransformation of Fuchsian systems, sending $D_{\mathrm{a}}$ to
$D_{m\mathrm{c}_{\mu}(\mathrm{a})}$ . This will be called the convolution of Fuchsian systems. The tuple of
monodromy generators of $D_{\mathrm{a}}$ will be denoted $\mathrm{M}\mathrm{o}\mathrm{n}(D_{\mathrm{a}})$ .

Among other things, the additive version of the Katz functor makes it (in
principle) possible, to write down explicit Fuchsian equations whose local sys-
tem of solutions (given by $\mathrm{M}\mathrm{o}\mathrm{n}(D_{\mathrm{a}})$ ) is agiven irreducible rigid local system.
These systems are exactly the irreducible Fuchsian systems which are free from
accessory parameters. Adifferent approach to this (in the case of semisimple
monodromy) can be found in apaper by Yokoyama ([Yo]).

What is lacking in [DR1], is the exact relation between $MC_{\lambda}$ and $mc_{\mu}$ , as
well as an interpretation of $MC_{\lambda}$ in cohomological terms. These questions are
answered by the following theorems $(\mathrm{s}. [\mathrm{D}\mathrm{R}2])$ .

Theorem 1Let $\mu\in \mathbb{C}\backslash \mathbb{Z}$ , A $=\mathrm{e}^{2\pi i\mu}$ and a: $=$ $(a_{1}, \ldots, \mathrm{a}\mathrm{r})$ , $a_{i}\in \mathbb{C}^{n\mathrm{x}n}$ ,
such that $\mathrm{M}\mathrm{o}\mathrm{n}(D_{\mathrm{a}})=(A_{1}, \ldots, Ar)$ and $rk(a_{i})=rk(A_{i}-1)$ , $i=1$ , $\ldots$ , $r$ and
rk (Ai $a_{i}$ ) $+ \mu)=rk(\prod_{i}A_{i})\lambda-1))$ . Assume that $(A_{1}, \ldots, A_{r})$ generate $a$ irre-
ducible subgroup of $GL_{n}(\mathbb{C})$ and at least two elements $A_{i}$ $are\neq 1$ , then

$\mathrm{M}\mathrm{o}\mathrm{n}(D_{mc_{\mu}(\mathrm{a})})=MC_{\lambda}(A_{1}, \ldots, A_{r})$ .

The main ingredient of the proof is the construction of integral expressions
for the solutions of $D_{m\mathrm{c}_{\mu}(\mathrm{a})}$ in terms of the solutions of $D_{\mathrm{a}}$ , via Euler type inte
grals, i.e. integrals of the for$\mathrm{m}$ $\int_{C}f(x)(y-x)^{\mu}dx$ , where $C$ denotes aPochham-
mer contour around two singularities, $\mu\in \mathbb{C}$ and $f(x)$ avector valued holomor-
phic function on $C$ . Note that Haraoka and Yokoyama ([HY]) have also obtained
integral solutions for all semisimple rigid local systems.

This theorem can be used to to recognize and the construct differential
equations which arise from geometry: These are differential equations which
arise from Gaufi-Manin connections on relative cohomology groups.

These differential equations have many remarkable properties. E.g., it is
known that if the coefficients of adifferential equation which arises from geom-
etry lies in $\overline{\mathbb{Q}}$ then Grothendieck’s $p$-curvature conjecture holds and that the
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solutions of such equations are so called G-functions.

Theorem 2The convolution of Fuchsian systems preserves the property “aris-
ing from geometry” if the used scalar $\mu\in \mathbb{C}$ lies in Q.

Using the convolution it is possible to construct explicitly alarge number
of differential geometric equations. E.g., one can start ffom any differential
equation with finite monodromy, which is automatically geometric. Often one
can use the convolution in order to compute the Gauss-Manin connection of
curve families explicitly. This can also be applied to nonrigid examples.

On the other hand, again using the convolution, it is sometimes possible
to reduce an explicitly given Fuchsian system $D$ to asystem with finite mon-
odromy. In this case one knows that $D$ is geometric. For systems which are
free from accessory parameters, this is carried out in Katz’ book, leading to the
result that Fuchsian systems, which are free from accessory parameters satisfy
Grothendieck’s $p$-curvature conjecture. But in general, the existence of acces-
sory parameters forces one to use Theorem 1, since there can be several tuples (of
monodromy generators) with same local monodromy but different monodromy
group.

One can also show that the convolution functor preserves global nilpotence.
If the -curvature is nilpotent for almost all primes $p$ one calls adifferential equa-
tion globally nilpotent. E.g. it is known that all differential equations coming
from geometry are globally nilpotent. It is conjectured (Andr\’e-Bombieri-Dwork
conjecture) that the converse is true.
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