一般化されたエアリ―関数の
コホモロジカルな交点数について

熊本大学
Irina Basalaeva, 木村弘信, 中務隆史

2002年10月

1 序

本稿では Airy 関数に附随したねじれド・ラム コホモロジ―群の交点数の計算を与えることを目的している。

$X = \mathbb{C}^n$ は, 座標 $x = (x_1, \cdots, x_n)$ をもつアファイン空間とし,

$$Z_{n+1} = \left\{ (z_0, \cdots, z_{N+1}) \in M(n + 1, N + 2, \mathbb{C}) \mid \det(z_0, \cdots, z_n) \neq 0,
\begin{bmatrix} z_0 \end{bmatrix} = \begin{bmatrix} 1, 0, \cdots, 0 \end{bmatrix} \right\}$$

とする. ただし, $n \leq N$ とする. Airy 関数は次の形の積分で与えられる.

$$\int_{\Delta(z)} e^{f(x, z, \alpha)} dx_1 \wedge \cdots \wedge dx_n.$$

但し, f は, 第二節の定義で与えられる多項式で, $\Delta(z)$ は f によって決まる n 次コホモロジー群のサイクルで, $\Delta(z)$ 上で $|x| \to \infty$ とするとき $Re(f)$ が適当な正の数 $q > 0$ に対して $-|x|^q$ よりも速く $-\infty$ に行くサイクルである. ここでは詳細は述べない. 古典的な Airy 関数

$$Ai(\zeta) = \int_{\Delta} e^{x\zeta-x^3/3} dx$$

は, $(n, N) = (1, 2), z$ が

$$z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \zeta \end{bmatrix}$$
で与えられる場合である。

zを決めると多項式fが定まり、そのときねじれド・ラム複体(Ω,df)が定義できる(第三節参照)。ただし、ΩはX上の多項式微分形の集合で、$df = d + df$はねじれ外微分とする。このときねじれコホモロジー群$H^n(\Omega,df)$が定義され、その次元が次で与えられることがわかっている。

$$\dim_{\mathbb{C}}H^n(\Omega,df) = \binom{N}{n}.$$

K.Iwasakiの論文[3]では、多項式ねじれコホモロジーの間の双対性

$$H^n(\Omega(X),df) \times H^n(\Omega(X),d_{-f}) \to \mathbb{C}$$

が確立されている。この写像は$\phi^+ \in H^n(\Omega(X),df), \phi^- \in H^n(\Omega(X),d_{-f})$としたとき、複素数$(\phi^+ , \phi^-)$を与える。これをコホモロジカルな交点数とよぶ。K.IwasakiとK.Matsumotoは、[4]においてAiry関数に附随するねじれコホモロジー群の基底に関する交点数を、$z = (I_{n+1},0)$という一点の場合に具体的に与えた。そのとき用いた基底がシュア多項式を係数とする微分形式であった。そこでn次元コホモロジー群が$n = 2$の場合、すなわち一重積分で与えられるAiry関数に附随するコホモロジー群の外積となっているという事実が重要な役割を果たしている。本稿では$(I_{n+1},0) \in Z_{n+1}$だけでなく、一般化されたVeronese写像の像となるZ_{n+1}の点においてもコホモロジー群に対する同様の外積構造を示し、それを利用してコホモロジカルな交点数の計算を与える。

\section*{2 エアリー関数}

Definition 2.1 $\text{GL}(N+2,\mathbb{C})$の極大可換部分群

$$H = \left\{ h = \begin{pmatrix} h_0 & h_1 & \cdots & h_{N+1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & h_1 \\ 0 & \cdots & 0 & h_0 \end{pmatrix} \right\} \subset \text{GL}(N+2,\mathbb{C})$$

なる群をジョルダン群と呼ぶ。

H上の関数$\theta_k(h)$を次で定義する。

$$\log(h_0 + h_1X + h_2X^2 + \cdots + h_{N+1}X^{N+1}) = \sum_{k=0}^{\infty} \theta_k(h)X^k.$$
最初のいくつかを書き出すと、

\[
\begin{align*}
\theta_1(h) &= \frac{h_1}{h_0} \\
\theta_2(h) &= \frac{h_2}{h_0} - \frac{1}{2} \left(\frac{h_1}{h_0}\right)^2 \\
\theta_3(h) &= \frac{h_3}{h_0} - \frac{h_2}{h_0} \cdot \frac{h_1}{h_0} + \frac{1}{3} \left(\frac{h_1}{h_0}\right)^3 \\
\theta_4(h) &= \frac{h_4}{h_0} - \frac{h_3}{h_0} \cdot \frac{h_1}{h_0} - \frac{1}{2} \left(\frac{h_2}{h_0}\right)^2 + \frac{1}{4} \left(\frac{h_1}{h_0}\right)^4 \\
\theta_5(h) &= \frac{h_5}{h_0} - \frac{h_4}{h_0} \cdot \frac{h_1}{h_0} - \frac{h_3}{h_0} \cdot \frac{h_2}{h_0} + \frac{h_3}{h_0} \cdot \left(\frac{h_1}{h_0}\right)^2 + \frac{1}{5} \left(\frac{h_1}{h_0}\right)^5 \\
\theta_6(h) &= \frac{h_6}{h_0} - \frac{h_5}{h_0} \cdot \frac{h_1}{h_0} - \frac{h_4}{h_0} \cdot \frac{h_2}{h_0} + \frac{h_4}{h_0} \cdot \left(\frac{h_1}{h_0}\right)^2 - \frac{3}{2} \left(\frac{h_2}{h_0}\right)^2 \left(\frac{h_1}{h_0}\right)^2 + \frac{1}{6} \left(\frac{h_1}{h_0}\right)^6
\end{align*}
\]

Remark 2.2 重さを \(i\) とすると、\(\theta_k(h) (k \geq 1)\) は、重さ \(k\) の重みつき同次関数である。

Lemma 2.3 次の群同型が成り立つ。

\[
H \cong C^\times \times C^{N+1}
\]

\[
h \mapsto (h_0, \theta_1(h), \cdots, \theta_{N+1}(h))
\]

但し、\(C^\times = C - \{0\}\) とする。

Lemma 2.4 \(H\) の指標 \(\chi : H \to C^\times\) は

\[
\chi(h, \alpha) = \exp \left(\sum_{k=0}^{N+1} \alpha_k \theta_{N-k+1}(h)\right) = h_0^{\alpha_{N+1}} \exp \left(\sum_{k=0}^{N} \alpha_k \theta_{N-k+1}(h)\right)
\]

であらわされる。
以下では、\(\chi \)として、

\[\alpha_{N+1} = -(N+1), \alpha_k = (-1)^k e_k(a) \]

の形をしているもののみ扱う。但し \(a = (a_1, \cdots, a_N) \) で、\(e_k(a) \)は \(a \)に関する \(k \)次基本対称式とする。

Definition 2.5 ジョルダン群 \(H \)から \(C^\infty \times C^{N+1} \)への写像を

\[\iota : h \mapsto (h_0, h_1, \cdots, h_{N+1}) \]

で定義する。

次にエリア関数を指標 \(\chi \)のラドン変換として定義する。\(T = C^n \)を

\[t = (t_1, t_2, \cdots, t_n) \]

を座標にもつ空間とする。

\[\tilde{t} = (1, t_1, t_2, \cdots, t_n) \]

\(z \in Z_{n+1} \)とする。このとき、\(\tilde{t}z \)を \(\tilde{t}z_{0}, \tilde{t}z_{1}, \cdots, \tilde{t}z_{n} \)とする。

Definition 2.6

\[f(t, z, a) = \sum_{k=0}^{N} (-1)^k e_k(a) \theta_{N-k+1}(\iota^{-1}(\tilde{t}z)) \]

但し \(a = (a_1, \cdots, a_N) \)で、\(e_k(a) \)は \(a \)に関する \(k \)次基本対称式とする。

\(Z_{n+1} \)の元 \(z \)の最初の列ベクトル \(z_0 \)の形より \(\tilde{t}z_0 = 1 \)であり、したがって \(f(t, z, a) \)は \(t \)に関する \(N \)次多項式である。

Definition 2.7 (エリア関数)

\[A(z, a) \overset{\text{def}}{=} \int_c \exp(f(t, z, a))dt_1 \wedge \cdots \wedge dt_n \]

をエリア関数とよぶ。但し、\(c \)は序に述べた \(C^n \)内の \(n \)次元サイクルである。

3 コホモロジー群

3.1 コホモロジー群の定義

\(\Omega^p_T \)は、\(t \)に関する多項式係数 \(p \)次微分形式のなすベクトル空間とする。

外微分 \(d_f : \Omega^p_T \to \Omega^{p+1}_T \)を

\[d_f = e^{-f} \cdot d \cdot e^f = d + df \wedge \]
で定義する。このとき、(Ω, d_f)は複体であり、これをねじれ複体とよぶ。
このとき、コホモロジーを次のように定義する。

Definition 3.1 (ねじれド・ラム コホモロジー群)

\[H^p(\Omega_T, d_f) = \{ \omega \in \Omega_T^p \mid d_f \omega = 0 \}/\{ d_f \eta \in \Omega_T^p \mid \eta \in \Omega_T^{p-1} \} \]

をp次ねじれド・ラム コホモロジー群とよぶ。また、Hを

\[H(\Omega_T, d_f) = \bigoplus_{p=0}^{n} H^p(\Omega_T, d_f) \]

とする。

3.2 一般化されたベロネーゼ写像

ベロネーゼ写像をより一般化したものを考える。

\[V = \mathbb{C}^2, R = \mathbb{C}[X]/(X^{N+2}) = \{ a_0 + a_1 X + \cdots + a_{N+1} X^{N+1} \mid X^{N+2} = 0 \} \]

とすると、そのとき $\tilde{V} = V \otimes_{\mathbb{C}} R$ とする。\mathbb{C}上のベクトル空間としての基底として $e_0 \otimes X^i, e_1 \otimes X^i (0 \leq i \leq N+1)$ をとることができる。よって、\tilde{V}の元を

\[\tilde{v} = \sum_j z_{0j} \cdot e_0 \otimes X^j + \sum_j z_{1j} \cdot e_1 \otimes X^j \]

と書ける。\tilde{V}は\mathbb{C}-ベクトル空間として、$M(2, N+2; \mathbb{C})$と

\[\tilde{V} \ni \tilde{v} \mapsto \begin{pmatrix} z_{00} & \cdots & z_{0,N+1} \\ z_{10} & \cdots & z_{1,N+1} \end{pmatrix} \in M(2, N+2; \mathbb{C}) \]

により、同一視できる。$S^n(\tilde{V}) = \{ \tilde{v} \in \bigotimes^n \tilde{V} \mid \sigma(\tilde{v}) = \tilde{v} \sigma \in S_n \}$を$R$-加群としての対称テンソルとする。$S^n(\tilde{V})$は$R$-自由加群で、その基底として、

\[e_i = \sum_{i_1 + \cdots + i_n = i} e_{i_1} \otimes \cdots \otimes e_{i_n} (0 \leq i \leq n) \quad (1) \]

がとれる。\mathbb{C}-ベクトル空間として $e_i \otimes X^j (0 \leq i \leq n, 0 \leq j \leq N+1)$を基底としてとれる。写像

\[\Phi : \tilde{V} \rightarrow S^n(\tilde{V}) \subset \bigotimes^n \tilde{V} \]
を \(\bar{v} \mapsto \bar{v} \otimes \cdots \otimes \bar{v} \) で与える。これを \(S^n(\bar{V}) \) の基底で表現すると

\[
\Phi(\bar{v}) = \sum_{i,j} z'_{ij} e_i \otimes X^j, \quad z'_{ij} = \sum_{(i_1, \ldots, i_n), (j_1, \ldots, j_n)} z_{i_1, j_1} \cdots z_{i_n, j_n}
\]

ただし、第 2 項の和は (1) をみたす \(i_1, \ldots, i_n \) と \(j_1 + \cdots + j_n = j \) をみたす \(j_1, \ldots, j_n \) についてとる。写像 \(\Phi \) は

\[
\begin{pmatrix}
 z_{00} & \cdots & z_{0,N+1} \\
 z_{10} & \cdots & z_{1,N+1}
\end{pmatrix} \mapsto \begin{pmatrix}
 z'_{00} & \cdots & z'_{0,N+1} \\
 \vdots & \cdots & \vdots \\
 z'_{n,0} & \cdots & z'_{n,N+1}
\end{pmatrix}
\]

で与えられる。実はこの写像は \(Z_2 \to Z_{n+1} \) を誘導する。この写像をあらためて \(\Phi \) と書くことにする。これを一般化されたベロネーゼ写像とよぶ。

4 外積構造

\(X \) を、\(Y = C \) の \(n \) 個の外積を \(n \) 次対称群で割った空間とし、\(X = Y^n/S_n \cong C^n \) とする。但し、\(S_n \) は \(n \) 次対称群である。\(\pi : Y^n \to X \) を射影とする。\(\pi \) は、次のように実現される。

\[
(y_1, \ldots, y_n) \mapsto (x_1, \ldots, x_n) = (e_1(y), \ldots, e_n(y)).
\]

このとき \(\pi^* : \Omega(X) \to \Omega(Y^n) \) が得られる。

\(z \in Z_2 \) とし、多項式 \(g(y) \) を次のように定義する。

\[
g(y) = \sum_{k=0}^{N} (-1)^k e_k(a) \theta_{N-k+1}(\bar{y}z).
\]

但し、\(\bar{y} = (1, y) \)。外微分 \(d_g : \Omega(Y) \to \Omega(Y) \) を

\[
d_g = d + dg \wedge.
\]

で与える。

\(\pi_i : Y^n \to Y \) を \(i \) 番目への射影とする。また、\(\otimes^n d_g = \pi_1^* d_g \otimes \cdots \otimes \pi_n^* d_g : \Omega(Y^n) \to \Omega(Y^n) \) を外積とすると。すなわち、\(\phi_i \in \Omega^p(Y) \) (\(i = 1, \ldots, n \)) について次のようにはたらく外微分である。

\[
(\otimes^n d_g)(\pi_1^* \phi_1 \wedge \cdots \wedge \pi_n^* \phi_n) = \sum_{i=1}^{n} (-1)^{p_1 + \cdots + p_i - 1} \pi_1^* \phi_1 \wedge \cdots \wedge (\pi_i^* d_g \phi_i) \wedge \cdots \wedge \pi_n^* \phi_n.
\]

このとき次のことことが言える。
Lemma 4.1 \(\tilde{z} = \Phi(z) \) とし、多項式 \(f \) を

\[
f(x) = \sum_{k=0}^{N} (-1)^{k}e_{k}(a)\theta_{N-k+1}(\tilde{x} \tilde{z}).
\]

で定義する。このとき、

\[
\pi^{*}f = \sum_{i=1}^{n} g(y_{i}).
\]

が成り立つ。

Lemma 4.2 \(\pi^{*} : (\Omega^{*}(X), df) \rightarrow (\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \) は、鎖写像である。

\(S_{n} \) の \(Y^{n} \) への作用を次のように定義する。

\[
\sigma(y_{1}, \cdots, y_{n}) = (y_{\sigma^{-1}(1)}, \cdots, y_{\sigma^{-1}(n)}), \quad (\sigma \in S_{n}).
\]

このとき、\(\pi^{*} df = \sum_{i=1}^{n} \pi_{i}^{*} dg \) が \(\sigma^{*} \) で不変なので、鎖同型 \(\sigma^{*} : (\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \rightarrow (\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \) が得られる。このようにして \(S_{n} \) は、\(H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \) に作用する。\(H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg)^{S_{n}} \) で、\(S_{n} \) の作用により不変となる部分群をあらわす。このとき次のことが言える。

Proposition 4.3 \(H(\Omega^{*}(X), df) \rightarrow H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg)^{S_{n}} \) は同型写像である。

\[
\phi \in \Omega^{*}(Y^{n}) \quad \text{とするとき、}
\]

\[
\mu(\phi) = \sum_{\sigma \in S_{n}} \sigma^{*} \phi
\]

とする。このときつきのことが言える。

Lemma 4.4 \(\Omega^{*}(Y^{n})^{S_{n}} \) を \(\Omega^{*}(Y^{n}) \) の作用 \(S_{n} \) による不変部分とする。そのとき次のことが言える。

1. \(\mu : \Omega^{*}(Y^{n}) \rightarrow \Omega^{*}(Y^{n}) \) は、\(\Omega^{*}(Y^{n})^{S_{n}} \) への射影の \(n! \) 倍。

2. \(\mu \) は、\((\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \rightarrow (\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \) なる鎖写像を定義し、

\[
\mu : H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg) \rightarrow H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg)
\]

の像是、\(H(\Omega^{*}(Y^{n}), \boxtimes^{n} dg)^{S_{n}} \) に含まれる。
3. $\pi^* : \Omega^\cdot(X) \to \Omega^\cdot(Y^n)^{S_n}$ は同型写像.
次の写像 $\kappa : \bigotimes^n H^1(\Omega(Y), d_g) \to H^n(\Omega(Y^n), \bigotimes^n d_g)$ を次で定義する.
$$\phi_1 \otimes \cdots \otimes \phi_n \mapsto \pi_1^* \phi_1 \wedge \cdots \wedge \pi_n^* \phi_n.$$ このとき次のことが言える。

Proposition 4.5 κ は次の同型写像を引き起こす。
$$\kappa : \bigwedge^n H^1(\Omega(Y), d_g) \to H^n(\Omega(Y^n), \bigotimes^n d_g)^{S_n}$$
上にのべたことより、次の同型が得られた。
$$H^n(\Omega(X), d_f) \cong H^n(\Omega(Y^n), \bigotimes^n d_g)^{S_n} \cong \bigwedge^n H^1(\Omega(Y), d_g).$$
これより、次の定理が得られる。

Theorem 4.6 $z \in \mathbb{Z}_2$, $\zeta' = \Phi(z)$ とする. そのとき同型写像
$$(\pi^*)^{-1} \circ \kappa : \bigwedge^n H^1(\Omega(Y), d_g) \to H^n(\Omega(X), d_f)$$
が得られる.
このような外積構造を考えるとき、次のことが言える.

Proposition 4.7 分割 $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathcal{Y}(n, N-n)$ に対し、
$$\phi_\lambda \overset{\text{def}}{=} d\theta_{\lambda_1+n-1}(\bar{\phi}(z)) \wedge d\theta_{\lambda_2+n-2}(\bar{\phi}(z)) \wedge \cdots \wedge d\theta_{\lambda_n}(\bar{\phi}(z))$$
とする. このとき、$\{\phi_\lambda \mid \lambda \in \mathcal{Y}(n, N-n)\}$ は $H^n(\Omega, d_f)$ の基底をなす.特に, $n = 1$ のとき $d\theta_1(\bar{u}z), d\theta_2(\bar{u}z), \cdots, d\theta_N(\bar{u}z)$ は $H^1(\Omega, d_f)$ の基底である.

5 交点数

5.1 交点数の定義

S_n を対称群とする. $T = V/S_n$ となるような $V = \mathbb{C}^n$ をとる. $H^n(\Omega_V, d_{\pm f})^{S_n}$ は $H^n(\Omega_V, d_{\pm f})$ の S_n -不変な部分を表す. このとき射影 $V \to T$ は次の同型を引き起こす:
$$H^n(\Omega_T, d_{\pm f}) \cong H^n(\Omega_V, d_{\pm f})^{S_n}.$$
S_{V}をV上のシュワルツクラス係数p次微分形式とし、T_{V}をV上の線増加カレントの空間とする。このとき

$$(\Omega_{V}, d_{\pm f}) \leftrightarrow (T_{V}, d_{\pm f}) \leftrightarrow (S_{V}, d_{\pm f})$$

という複体に関する包含関係が得られる。この包含関係はS_{n}-同変な同型写像

$$H^{n}(\Omega_{V}, d_{\pm f}) \cong H^{n}(T_{V}, d_{\pm f}) \cong H^{n}(S_{V}, d_{\pm f})$$

(2)

を引き起こす。シュワルツクラスと線増加カレントの間の双対性より

$$H^{n}(S_{V}, d_{+f}) \times H^{n}(T_{V}, d_{-f}) \rightarrow \mathbb{C}$$

が引き起こされる。このことと(2)を組み合わせると非退化な双一次形式

$$H^{n}(\Omega_{V}, d_{+f}) \times H^{n}(\Omega_{V}, d_{-f}) \rightarrow \mathbb{C}$$

を得る。

Definition 5.1 $\phi^{\pm} \in H^{n}(\Omega_{V}, d_{\pm f})$ とする。

$$\langle \phi^{+}, \phi^{-} \rangle = \frac{1}{(2\pi i)^{n}} \int_{V} \psi^{+} \wedge \phi^{-}$$

を交点数とする。但し、ψ^{+}は(2)によってϕ^{+}に対応する$H^{n}(S_{V}, d_{+f})$の元とする。

5.2 交点数に関する定理

$\mu = (\mu_{1}, \mu_{2}, \cdots, \mu_{p}) \in \mathcal{Y}(p, q)$をヤング図形であるとする。このとき

$$\check{\mu}^{\text{d}} = (q - \mu_{p}, q - \mu_{p-1}, \cdots, q - \mu_{1}) \in \mathcal{Y}(p, q)$$

とし、これをμの補図形$\check{\mu}$とよぶ。

Theorem 5.2 fが$z \in \text{Im} \Phi$によって定まる多項式とするとき Proposition 4.7で与えた$H^{n}(\Omega_{V}, d_{f})$と$H^{n}(\Omega_{V}, d_{-f})$の基底に関する交点数は

$$\langle \phi_{\lambda}^{+}, \phi_{\check{\mu}}^{-} \rangle = (-1)^{(n-1)/2} n! s_{\lambda/\check{\mu}}$$

で与えられる。
参考文献

