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1 Introduction

In this study we consider fuzzy numbers with

bounded supports due to [3] and we treat some

type of fiizzy optimization problems, which

arise from linear optimization problems and

are analyzed under assumptions of the fuzzy

goal and fuzzy constraints of decision mak-

ers. [5] gives an existence criterion for op-

timal solutions of the fuzzy optimization prob

lems. In Section 2the existence of optimal

solutions means that there exists at least one

solution for systems of inequalities concerning

concave functions by applying Ky Fan’s the-

orem. In Section 3we show an extension of

Ky Fan’s theorem, in which functions are not

convex but quasiconvex. In proving the ex-

tension we apply fixed point theorems for set-

valued mappings. In Section 4we deal with

definitions of convexlike or concavelike func-

tions in the similar way to Chapter 6in [7] as

well as we get minimax theorems under condi-

tions that functions of two variables are lower

semi-continuous and quasiconvex in one vari-

able and concavelike in the other.

2Existence Criterion

Let us denote by $\mathrm{R}$ the set of real numbers

and $I=[0,1]$ . In [3] the set of fuzzy numbers

is characterized by membership functions as

follows:

Definition 1Let $F(\mathrm{R})$ be the set of fuzzy

numbers $u$ : $\mathrm{R}arrow I$ satisfying the following

conditions (i) -(\"ui) (see [3]):.

(i) $u(\cdot)$ is upper semi-continuous on $\mathrm{R}$;

(ii) the $\alpha$-cut set $L_{\alpha}(u)=\{y\in \mathrm{R}$ : $u(y)\geq$

$\alpha\}$ is bounded for $\alpha>0$ and
$L_{0}(u)=\overline{\cup 0<\alpha\leq 1L\alpha(u)}$ is bounded ;

(iii) $u(\cdot)$ is fuzzy convex, $i.e.$ ,

$u( \lambda y_{1}+(1-\lambda)y_{2})\geq\min[u(y_{1}), u(y_{2})]$

for $y:\in \mathrm{R}$ , $i=1,2$ and A $\in \mathrm{R}$ with $0\leq$

$\lambda\leq 1_{j}$

(iv) there exists one and only one $m\in \mathrm{R}$ such

that $u(m)=1$ .

the $\alpha$-cut set $L_{\alpha}(u)$ is compact in $\mathrm{R}$ for

each $\alpha\in I$ from the above Conditions (i) and

(ii), since (i) means that $L_{\alpha}(u)$ is closed for
$\alpha\in I$ .
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Remark 1Under the above Conditions (ii) Next we consider the following linear opti-

and (iv) the following statements $(\mathrm{a})-(\mathrm{d})$ con- mization problem $(\mathrm{e}\mathrm{g}. [4])$

cerning the the function $u$ $\mathrm{R}arrow I$ are equiva- $-T_{\wedge}\lrcorner L_{-}$
-n $\cdot$

$\mathrm{L}_{\backslash \mathrm{B}\wedge\wedge\star}^{\cdot}*\wedge$

lent each other:

(a) $u$ ( $\cdot$ ) is fuzzy convex;

(b) $L_{\alpha}(u)$ is convex for any $\alpha\in Ij$

(c) $u(\cdot)$ is non-decreasing on $(-\infty, m]$ and

that $u(\cdot)$ is non-increasing on $[m, \infty)j$

(d) $L_{\alpha}(u)\subset L_{\beta}(u)$ for $\alpha>\beta$ .

$Fmm$ $(\mathrm{a})$ it is clear that (b) holds. If we $\sup-$

pose that (a) doesn’t hold but (b) hold, this

leads to a contradiction. It can be seen that

(c) leads to (d) and the converse holds. Sup-

pose that for any $m_{1}\in \mathrm{R}$ with $m_{1}>m$ there

exut $y_{1}<y_{2}\leq m_{1}$ such that $u(y_{1})>u(y_{2})$

under Condition $(\dot{\mathrm{u}})$ and (a). Then it leads to

a contradiction. From (c), it follows that (a)

holds.

In the following definition we give the qua-

siconvexity of functions.

$a_{0}^{T}x\preceq b_{0}$ subject to $a_{i}^{T}x\preceq b_{i}$ , (21)

$i=1,2$ , $\cdots$ , $m$ , $x\geq 0$ , (2.2)

where the symbol “
$\preceq$ ”denotes arelaxed

or fuzzy version of the ordinary inequality “

$\leq"$ . The first fuzzy inequality (fuzzy goal)

means that “the objective function $a_{0}^{T}x$ should

be essentially smaller than or equal to an as-

piration level $b_{0}\in \mathrm{R}$ of the decision maker

(DM)” and the second (fuzzy constraints of
$\mathrm{D}\mathrm{M})$ means that “the constraints $a^{T}\dot{.}x$ should

be essentially smaller than or equal to $b_{:}\in$

$\mathrm{R},i=1$ , $\cdots$ , $m”$ . Membership functions $u:\in$

$F(\mathrm{R})$ , $i=0,1$ , $\cdots$ , $m$ , and it follows that $u:(y)$

is non-decreasing in $y\in[C_{i}, b_{i}]$ , non-increasing

in $y\in[b\dot{.}, D:]$ and $u:(y)\equiv 0$ elsewhere. Here
$c_{:}\leq b_{i}\leq D_{:}$ are constants. Let $u$:be concave

on the set $[C:, D_{i}]$ . Put $s_{i}=\{x\in \mathrm{R}^{n}$ : $c_{\dot{l}}\leq$

$a_{\dot{l}}^{T}x\leq D_{:}\}$ and $S$ $=\mathrm{n}_{=0^{S}:}^{n}.\cdot$ .

Then, in order to solve the above problem,

we have the following optimization problem:

Definition 2Let $C$ be a convex set in a linear

space and $f$ a mapping from $C$ to R. It l8 said

that $f$ is quasiconcave if $f(\lambda y_{1}+(1-\lambda)y_{2})\geq$

$\min[f(y_{1}), f(y_{2})]$ for $y_{i}\in C,i=1,2$ and $0\leq$

A $\leq 1$ . It is said that $f$ is quasiconvex if

$f( \lambda y_{1}+(1-\lambda)y_{2})\leq\max[f(y_{1}), f(y_{2})]$

for $y:\in C$ , $i=1,2$ and $0\leq\lambda\leq 1$ .

Remark 2In the some utay as in Remark 2. 1

it is easily seen that $f$ : $Carrow \mathrm{R}$ is quasiconvex

if and only if the lower level set $L(fj\gamma)=\{x\in$

$C:f(x)\leq\gamma\}$ is convex for any $\gamma\in \mathrm{R}$ .

maximize $u(x)$ , (2.3)

where $u(x)= \min_{0\leq\dot{\iota}\leq m}[u:(a_{i}^{T}x)]$ . (2.4)

In [5] we showed the existence criterion for op-

timal solutions of fuzzy optimization problems

as follows:

Theorem 1Let $u:(\cdot)\in F$ for $i=0,1$ , $\cdots$ , $m$ .
The follouring statements (i) and (\"u) hold;

(i) Let $\mu 0=\max_{x}$ rrqn $u_{\dot{l}}(a_{\dot{1}}^{T}x)$ . Then we

have

$\mu_{0}$ $=$ $\max\{0<\alpha\leq 1 : \bigcap_{=0}^{m}\dot{.}L_{\alpha}(u_{i})\neq\emptyset\}$

$=$ $\sup\{0<\alpha\leq 1 : \bigcap_{i=0}^{m}L_{\alpha}(u:)\neq\emptyset\}$ .
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(ii) We have at least one optimal solution $x^{*}$ 0, 1, \cdots , m. Then Problem $((23),(2.4))$ has an

for $((23),(24))$ , if and only if there exists

an $\alpha\circ>0$ such that

$\bigcap_{\dot{l}=0}^{m}L_{\alpha 0}(u_{i})\neq\emptyset$.

The above condition (ii) can be reduced to an-

other tyPe of condition by aPPlying Ky Fan’s

theorem in [2] as follows:

Theorem $\mathrm{K}$ Let $C$ be a compact and con-

vex set in a topological linear space. Suppose

that functions $f_{\dot{\iota}}$ : $Carrow \mathrm{R},i=1,2$ , $\cdots$ , $n$ , are

lower semi-continous and convex. Let $d\in \mathrm{R}$ .
Then the following (i) and (ii) are equivalent

each other:

(i) There exists an $x_{0}\in C$ such that

$f_{\dot{\iota}}(x_{0})\leq d$

for $i=1,2$ , $\cdots$ , $n$ ;

(ii) for $c=(c_{1}, \cdots, c_{n})$ such that $\mathrm{C}:\geq 0$ , $i=$

$1,2$ , $\cdots$ , $n$ , and $\sum_{\dot{|}=1}^{n}c:=1$ , there eists a $y_{c}\in$

$C$ satisfying

$. \cdot\sum_{=1}^{n}c:f\dot{.}(y_{c})\leq d$ .

From the above theorem, Problem

$((2.3),(2.4))$ has an optimal solution $x^{\mathrm{r}}$ if

and only if there exist $0<\alpha\circ\leq 1$ and $x\circ$ such

that

$u:(a_{\dot{l}}^{T}x_{0})\geq\alpha_{0}$

for $i=0,1$ , $\cdots$ , $m$ .

Theorem 2Let $S=\cap^{n}\dot{.}S=0$:be non-empty

and $u:(\cdot)$ concave on [C.$\cdot$ , $D_{\dot{l}}$ ] for $i$ $=$

optimal solution $x^{*}$ , if and only if for some $\alpha 0$

with $0<\alpha_{0}\leq 1$ and $c=$ $(c_{0}, \cdots, c_{m})\in \mathrm{R}^{m+1}$

with $c_{l}\geq 0$ , $i=0,1$ , $\cdots$ , $m$ , there exists $a$

$y_{c}\in s$ such that

$\sum_{\dot{\iota}=0}^{m}c:u:(a_{\dot{1}}^{T}y_{c})\geq\alpha_{0}$ .

3Quasiconvex Functions

In this section we suppose the quasiconvexity

of membership functions and we show an ex-
tension of Ky Fan’s theorem by applying the

following lemma.

Lemma 1Let $C$ be a compact and convex set

in $a$ to ological linear space E. Suppose that $a$

set $A\subset C\mathrm{x}C$ satisfies the following conditions

(a) $-(\mathrm{c})$ :

(a) The set $\{x\in C : (x, y)\in A\}$ is closed

for any $y\in C_{j}$

(b) the set $\{y\in C:(x,y)\not\in A\}$ is convex

for any $x\in C$ ;

(c) for $x\in C$ , the point $(x, x)\in A$ .
Then there exists some $x\mathit{0}\in C$ such that
$\{x_{0}\}\mathrm{x}C\subset A$ .

The above Lemma can be proved by apply-

ing the following tyPe of fixed points theorem

for aclass of set-valued mappings (e.g., Theo

rem 10.3.6 in [1] $)$ .

Theorem 3Let $E$ be a topological linear

space and $C$ a non-empty, compact and con-

vex set in E. Let $T$ be a mapping from $C$

to the set of all subsets of C. Assume that

the wnage $T(x)$ is non-empty and convex for
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each x $\in C$. If for each y $\in$ C, the inverse exists a $y_{c}\in C$ such that

$T^{-1}(y)=\{x\in C. T(x)\ni y\}$ is open, then
$T$ has a fixed point in $C$, $i.e$ , there exists an
$x0\in C$ such that $x0\in T(xo)$ .

Proof of Lemma 1

Suppose that for any $x\in C$ there exists

a $y\in C$ such that $(x, y)\not\in A$ . Denote aset-

valued mapping $T$ from $C$ to the set of all sub-

sets of $C$ by $T(x)=\{y\in C:(x,y)\not\in A\}$ . The

image $T(x)\subset C$ is non-empty and convex from

Condition (b) for any $x\in C$. from Condition

(a) the set $T^{-1}(y)=\{x\in C : (x, y)\not\in A\}$ is

open set in $E$ . Then, by applying Theorem 3,
$T$ has afixed point $x_{0}\in C$, i.e., $x_{0}\in T(x_{0})$ .
It follows that $(x_{0}, x\mathrm{o})\not\in A$, which contradicts

Condition (c). Thus the conclusion holds.

Q.E.D.

By utilizing the above lemma we think that

the following results of an extension of Theo

rem $\mathrm{K}$ can ce shown as the below outline of

proof.

Extension of Theorem $\mathrm{K}(\mathrm{E}\mathrm{T}\mathrm{K})$

. Let $f_{\dot{l}}$ : $Carrow \mathrm{R}$ for $i=1$ , $\cdots$ , $n$ , be lower

semi-continuous and quasiconvex, where
$C$ is a compact and convex set in a topo

$log:call\dot{\iota}near$ space $E$ and let $d\in \mathrm{R}$ . Then

the follouring (i) and (ii) are equivalent

each other:

(i) There exists an $x_{0}\in C$ such that

$f_{\dot{l}}(x_{0})\leq d$

for $i=1,2$, $\cdots,n$ ;

(ii) for $c=(c_{1}, \cdots, c_{n})$ such that $c:\geq$

$0,i=1,2$, $\cdots$ , $n$ , and $\sum_{=1}^{n}.\cdot \mathrm{q}$ $=1$ , there

$\sum_{i=1}^{n}c$. $f_{i}(y_{c})\leq d$ .

In the similar way to the discussion of Chapter

6in [7], we expect that we can prove the above

extension.

4Extensions of Minimax

Theorems

[7] gives definitions of convexlike or concave-

like functions, which Play an important role

in proving an extension of minimax theorems

under that ETK holds.

Definition 3Let $C$, $D$ be two sets and $Fa$

mapping from $C\mathrm{x}D$ to R. It is said that $F$ is

concavelike on $D$ for $x\in C\dot{\mathrm{t}}f$ for each $y_{1}$ , $y_{2}\in$

$D$ and $0<\lambda<1$ , there exists an $y0\in D$ such

that $F(x, y_{0})\geq\lambda F(x,y_{1})+(1-\lambda)F(x, y_{2})$ . It

is said that $F$ is convexlike on $C$ for $y\in D$ if
for each $x_{1}$ , $x_{2}\in C$ and $0<\lambda<1$ , there exists

an $x_{0}\in C$ such that $F(x0, y)\leq\lambda F(x_{1},y)+$

$(1-\lambda)F(x_{2},y)$ .

In what follows we show an extension

of minimax theorems concerning concavelike

functions.

Extension of Minimax Theorems

(EMT)

. Let $C$ be a convex and compact set in $a$

topological linear space and $D$ an arbitrary

non-empty set. A function $F$ : $C\mathrm{x}Darrow \mathrm{R}$

satisfies the following conditions (i) and

(ii)
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(i) F(., y) is lower semi-continuous and D under the condition that D is compact, in

quasiconvex on $C$ for $y\in Dj$

(ii) $F(x$ , $\cdot$ $)$ is concavelike on $D$ $forx\in C$ .

Then it follows that

$\sup_{y\in D}\min_{x\in C}F(x, y)=\mathrm{m}\dot{\mathrm{m}}\sup_{y\in D}F(x, y)x\in C^{\cdot}$

Proof. Prom (i) and the compactness

of $C$ there exists $\min_{x\in C}F(x, y)$ . Let $c=$

$\sup_{y\in D}\min_{x\in}cF(x, y)<+\infty$. For any $x\in C$ ,

$\{y_{1}, y_{2\prime}\cdots, y_{n}\}\subset D$ and { $\lambda_{i}\geq 0$ : $\sum_{\dot{l}=1}^{n}\lambda:=$

$1\}$ , Condition (ii) means that there exists a

$y0\in D$ such that $\sum_{i=1}^{n}\lambda:F(x, y:)\leq F(x, yo)$ .
From (i) there exists an $x0\in C$ such that

$F(x0, y \mathrm{o})=\min_{x}F(x,y\mathrm{o})\leq c$ and also we

have $\sum_{\dot{\iota}=1}^{n}\lambda:F(x, y:)\leq c$ for any $x\in C$.
By Condition (i) and ETK, there exists an

$x_{1}$ $\in C$ such that $F(x_{1}, y:)$ $\leq c$ for any
$i$ . Then we get $\bigcap_{i=1}^{n}\{x\in C$ : $F(x,y:)\leq$

$c\}$ $\neq$ $\emptyset$ . Rom the compactness of $C$ , we

have $\bigcap_{y\in D}\{x\in C : F(x, y) \leq c\}$ $\neq\emptyset$ ,

which means that there exists an $x_{2}\in C$

and any $y\in D$ such that $F(x_{2}, y)\leq c$, or

$\min_{x}\sup_{y}F(x, y)\leq\sup_{y}\min_{x}F(x,y)$ . Since

$F(x,y) \geq\min_{x}F(x, y)$ for $y\in D$ , we have

$\sup_{y}F(x, y)$ $\geq$ $\sup_{y}\min_{x}F(x, y)$ and also

$\min_{x}\sup_{y}F(x, y)\geq\sup_{y}\min_{x}F(x, y)$ . there

fore $\sup_{y}\min_{x}F(x, y)=\min_{x}\sup_{y}F(x, y)$ .
If $\sup_{y\in D}\min_{x\in}cF(x,y)=\infty$ , it can be seen
that the conclusion holds.

Q.E.D.

The above theorem is an extension of Sion’s

minimax theorem and Tuy’s one. In the fol-

lowing remark an example illustrates EMT.

Remark 3(a) In [6] Sion assumes that $F$

is upper semi-continuous and quasiconcave on

addition to the conditions of $EMT$. He gets the

conclusion that

$\min_{x\in C}\max F(x, y)=\max_{yy\in D\in D}\min_{x\in C}F(x, y)$ .

Thus $EMT$ is an extension of Sion’s theorem.

(b) $Tuy[8]$ assumes that $C$ and $D$ are con-

vex. He shms that the $con$clusion

$\inf_{x\in C}\sup_{y\in D}F(x, y)=\sup_{y\in D}\inf_{x\in C}F(x,y)$

under the condition that $F$ is upper semi-

continuous in $y$ in addition to conditions of
$EMT$.

(c) Let $F(x,y)=f(x)g(y)$ for
$(x,y)\in[-n, n]\mathrm{x}(-1,1)$ , uthere $n$ $\geq$ 1 is

integer, $f$ denotes the largest integer which is

less than $|x|$ . Here

$g(y)=y^{2}+|y \sin\frac{\pi}{2y}|$ ,

where $y\in$ $(-1,1)$ . Then function $F$ satis-

fies Conditions (i) and (ii) of $EMT$. Since

$\min_{x}F(x, y)=0$ and $\sup_{y}F(x,y)=2f(x)$ , It

follows that the conclusion of $EMT$ holds.
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