Minimax Theorems of Convexlike Functions

大阪大学大学院情報科学研究科情報数理学専攻 齋藤誠慈 (Seiji SAITO)

大阪大学大学院情報科学研究科情報数理学専攻 石井博昭 (Hiroaki ISHII)

Graduate School of Information Science and Technology, Osaka University E-mail: saito@ist.osaka-u.ac.jp

Keywords : Fuzzy sets, Set-valued mapping, Fixed-point theorem, Quasiconvex programming,

Fuzzy programming

1 Introduction

In this study we consider fuzzy numbers with bounded supports due to [3] and we treat some type of fuzzy optimization problems, which arise from linear optimization problems and are analyzed under assumptions of the fuzzy goal and fuzzy constraints of decision mak-[5] gives an existence criterion for opers. timal solutions of the fuzzy optimization problems. In Section 2 the existence of optimal solutions means that there exists at least one solution for systems of inequalities concerning concave functions by applying Ky Fan's theorem. In Section 3 we show an extension of Ky Fan's theorem, in which functions are not convex but quasiconvex. In proving the extension we apply fixed point theorems for setvalued mappings. In Section 4 we deal with definitions of convexlike or concavelike functions in the similar way to Chapter 6 in [7] as well as we get minimax theorems under conditions that functions of two variables are lower semi-continuous and quasiconvex in one variable and concavelike in the other.

2 Existence Criterion

Let us denote by **R** the set of real numbers and I = [0, 1]. In [3] the set of fuzzy numbers is characterized by membership functions as follows:

Definition 1 Let $\mathcal{F}(\mathbf{R})$ be the set of fuzzy numbers $u : \mathbf{R} \to I$ satisfying the following conditions (i) - (iii) (see [3]):

- (i) $u(\cdot)$ is upper semi-continuous on \mathbf{R} ;
- (ii) the α -cut set $L_{\alpha}(u) = \{y \in \mathbf{R} : u(y) \geq \alpha\}$ is bounded for $\alpha > 0$ and $L_0(u) = \overline{\bigcup_{0 < \alpha \leq 1} L_{\alpha}(u)}$ is bounded ;
- (iii) $u(\cdot)$ is fuzzy convex, i.e.,

 $u(\lambda y_1 + (1-\lambda)y_2) \geq \min[u(y_1), u(y_2)]$

for $y_i \in \mathbf{R}, i = 1, 2$ and $\lambda \in \mathbf{R}$ with $0 \leq \lambda \leq 1$;

(iv) there exists one and only one $m \in \mathbb{R}$ such that u(m) = 1.

The α -cut set $L_{\alpha}(u)$ is compact in **R** for each $\alpha \in I$ from the above Conditions (i) and (ii), since (i) means that $L_{\alpha}(u)$ is closed for $\alpha \in I$. **Remark 1** Under the above Conditions (ii) and (iv) the following statements (a)-(d) concerning the the function $u : \mathbf{R} \to I$ are equivalent each other:

- (a) $u(\cdot)$ is fuzzy convex;
- (b) $L_{\alpha}(u)$ is convex for any $\alpha \in I$;
- (c) $u(\cdot)$ is non-decreasing on $(-\infty, m]$ and that $u(\cdot)$ is non-increasing on $[m, \infty)$;
- (d) $L_{\alpha}(u) \subset L_{\beta}(u)$ for $\alpha > \beta$.

From (a) it is clear that (b) holds. If we suppose that (a) doesn't hold but (b) hold, this leads to a contradiction. It can be seen that (c) leads to (d) and the converse holds. Suppose that for any $m_1 \in \mathbf{R}$ with $m_1 > m$ there exist $y_1 < y_2 \leq m_1$ such that $u(y_1) > u(y_2)$ under Condition (ii) and (a). Then it leads to a contradiction. From (c), it follows that (a) holds.

In the following definition we give the quasiconvexity of functions.

Definition 2 Let C be a convex set in a linear space and f a mapping from C to **R**. It is said that f is quasiconcave if $f(\lambda y_1 + (1 - \lambda)y_2) \ge$ $\min[f(y_1), f(y_2)]$ for $y_i \in C, i = 1, 2$ and $0 \le$ $\lambda \le 1$. It is said that f is quasiconvex if

$$f(\lambda y_1 + (1-\lambda)y_2) \le \max[f(y_1), f(y_2)]$$

for $y_i \in C, i = 1, 2$ and $0 \le \lambda \le 1$.

Remark 2 In the same way as in Remark 2.1 it is easily seen that $f: C \to \mathbf{R}$ is quasiconvex if and only if the lower level set $L(f; \gamma) = \{x \in$ $C: f(x) \leq \gamma\}$ is convex for any $\gamma \in \mathbf{R}$. Next we consider the following linear optimization problem (e.g. [4]):

 $a_0^T x \preceq b_0$ subject to $a_i^T x \preceq b_i$, (2.1)

$$i = 1, 2, \cdots, m, \quad x \ge 0, \quad (2.2)$$

where the symbol " \preceq " denotes a relaxed or fuzzy version of the ordinary inequality " \leq ". The first fuzzy inequality (fuzzy goal) means that "the objective function $a_0^T x$ should be essentially smaller than or equal to an aspiration level $b_0 \in \mathbf{R}$ of the decision maker (DM)" and the second (fuzzy constraints of DM) means that "the constraints $a_i^T x$ should be essentially smaller than or equal to $b_i \in$ $\mathbf{R}, i = 1, \cdots, m^{"}$. Membership functions $u_i \in$ $\mathcal{F}(\mathbf{R})$, $i=0,1,\cdots,m,$ and it follows that $u_i(y)$ is non-decreasing in $y \in [C_i, b_i]$, non-increasing in $y \in [b_i, D_i]$ and $u_i(y) \equiv 0$ elsewhere. Here $C_i \leq b_i \leq D_i$ are constants. Let u_i be concave on the set $[C_i, D_i]$. Put $S_i = \{x \in \mathbb{R}^n : C_i \leq i \}$ $a_i^T x \leq D_i$ and $S = \bigcap_{i=0}^n S_i$.

Then, in order to solve the above problem, we have the following optimization problem:

maximize
$$u(x)$$
, (2.3)

where
$$u(x) = \min_{0 \le i \le m} [u_i(a_i^T x)].$$
 (2.4)

In [5] we showed the existence criterion for optimal solutions of fuzzy optimization problems as follows:

v

Theorem 1 Let $u_i(\cdot) \in \mathcal{F}$ for $i = 0, 1, \dots, m$. The following statements (i) and (ii) hold;

(i) Let $\mu_0 = \max_x \min_i u_i(a_i^T x)$. Then we have

$$\begin{array}{ll} \mu_0 & = & \max\{0 < \alpha \leq 1 : \cap_{i=0}^m L_\alpha(u_i) \neq \emptyset\} \\ \\ & = & \sup\{0 < \alpha \leq 1 : \cap_{i=0}^m L_\alpha(u_i) \neq \emptyset\}. \end{array}$$

(ii) We have at least one optimal solution x* for ((2.3),(2.4)), if and only if there exists an α₀ > 0 such that

$$\bigcap_{i=0}^m L_{\alpha_0}(u_i) \neq \emptyset.$$

The above condition (ii) can be reduced to another type of condition by applying Ky Fan's theorem in [2] as follows:

Theorem K Let C be a compact and convex set in a topological linear space. Suppose that functions $f_i: C \to \mathbf{R}, i = 1, 2, \dots, n$, are lower semi-continuous and convex. Let $d \in \mathbf{R}$. Then the following (i) and (ii) are equivalent each other:

(i) There exists an $x_0 \in C$ such that

$$f_i(x_0) \leq d$$

for $i = 1, 2, \dots, n;$

(ii) for $c = (c_1, \dots, c_n)$ such that $c_i \ge 0, i = 1, 2, \dots, n$, and $\sum_{i=1}^{n} c_i = 1$, there exists a $y_c \in C$ satisfying

$$\sum_{i=1}^n c_i f_i(y_c) \leq d.$$

From the above theorem, Problem ((2.3),(2.4)) has an optimal solution x^* if and only if there exist $0 < \alpha_0 \le 1$ and x_0 such that

$$u_i(a_i^T x_0) \geq \alpha_0$$

for $i = 0, 1, \dots, m$.

Theorem 2 Let $S = \bigcap_{i=0}^{n} S_i$ be non-empty and $u_i(\cdot)$ concave on $[C_i, D_i]$ for i = $0, 1, \dots, m$. Then Problem ((2.3),(2.4)) has an optimal solution x^* , if and only if for some α_0 with $0 < \alpha_0 \le 1$ and $c = (c_0, \dots, c_m) \in \mathbb{R}^{m+1}$ with $c_i \ge 0, i = 0, 1, \dots, m$, there exists a $y_c \in S$ such that

$$\sum_{i=0}^m c_i u_i(a_i^T y_c) \geq \alpha_0.$$

3 Quasiconvex Functions

In this section we suppose the quasiconvexity of membership functions and we show an extension of Ky Fan's theorem by applying the following lemma.

Lemma 1 Let C be a compact and convex set in a topological linear space E. Suppose that a set $A \subset C \times C$ satisfies the following conditions (a) - (c):

(a) The set $\{x \in C : (x, y) \in A\}$ is closed for any $y \in C$;

(b) the set $\{y \in C : (x, y) \notin A\}$ is convex for any $x \in C$;

(c) for $x \in C$, the point $(x, x) \in A$.

Then there exists some $x_0 \in C$ such that $\{x_0\} \times C \subset A$.

The above Lemma can be proved by applying the following type of fixed points theorem for a class of set-valued mappings (e.g., Theorem 10.3.6 in [1]).

Theorem 3 Let E be a topological linear space and C a non-empty, compact and convex set in E. Let T be a mapping from Cto the set of all subsets of C. Assume that the image T(x) is non-empty and convex for

189

each $x \in C$. If for each $y \in C$, the inverse $T^{-1}(y) = \{x \in C : T(x) \ni y\}$ is open, then T has a fixed point in C, i.e, there exists an $x_0 \in C$ such that $x_0 \in T(x_0)$.

Proof of Lemma 1

Suppose that for any $x \in C$ there exists a $y \in C$ such that $(x, y) \notin A$. Denote a setvalued mapping T from C to the set of all subsets of C by $T(x) = \{y \in C : (x, y) \notin A\}$. The image $T(x) \subset C$ is non-empty and convex from Condition (b) for any $x \in C$. From Condition (a) the set $T^{-1}(y) = \{x \in C : (x, y) \notin A\}$ is open set in E. Then, by applying Theorem 3, T has a fixed point $x_0 \in C$, i.e., $x_0 \in T(x_0)$. It follows that $(x_0, x_0) \notin A$, which contradicts Condition (c). Thus the conclusion holds.

Q.E.D.

By utilizing the above lemma we think that the following results of an extension of Theorem K can ce shown as the below outline of proof.

Extension of Theorem K(ETK)

- Let f_i: C → R for i = 1,...,n, be lower semi-continuous and quasiconvex, where C is a compact and convex set in a topological linear space E and let d ∈ R. Then the following (i) and (ii) are equivalent each other:
 - (i) There exists an $x_0 \in C$ such that

$$f_i(x_0) \leq d$$

for $i = 1, 2, \dots, n$; (ii) for $c = (c_1, \dots, c_n)$ such that $c_i \ge 0, i = 1, 2, \dots, n$, and $\sum_{i=1}^n c_i = 1$, there exists a $y_c \in C$ such that

$$\sum_{i=1}^n c_i f_i(y_c) \le d$$

In the similar way to the discussion of Chapter 6 in [7], we expect that we can prove the above extension.

4 Extensions of Minimax Theorems

[7] gives definitions of convexlike or concavelike functions, which play an important role in proving an extension of minimax theorems under that ETK holds.

Definition 3 Let C, D be two sets and F a mapping from $C \times D$ to R. It is said that F is concavelike on D for $x \in C$ if for each $y_1, y_2 \in$ D and $0 < \lambda < 1$, there exists an $y_0 \in D$ such that $F(x, y_0) \ge \lambda F(x, y_1) + (1 - \lambda)F(x, y_2)$. It is said that F is convexlike on C for $y \in D$ if for each $x_1, x_2 \in C$ and $0 < \lambda < 1$, there exists an $x_0 \in C$ such that $F(x_0, y) \le \lambda F(x_1, y) +$ $(1 - \lambda)F(x_2, y)$.

In what follows we show an extension of minimax theorems concerning concavelike functions.

Extension of Minimax Theorems (EMT)

Let C be a convex and compact set in a topological linear space and D an arbitrary non-empty set. A function F : C×D → R satisfies the following conditions (i) and (ii).

- (i) $F(\cdot, y)$ is lower semi-continuous and quasiconvex on C for $y \in D$;
- (ii) $F(x, \cdot)$ is concavelike on D for $x \in C$.

Then it follows that

 $\sup_{y\in D}\min_{x\in C}F(x,y)=\min_{x\in C}\sup_{y\in D}F(x,y).$

Proof. From (i) and the compactness of C there exists $\min_{x \in C} F(x, y)$. Let c = $\sup_{y \in D} \min_{x \in C} F(x, y) < +\infty$. For any $x \in C$, $\{y_1, y_2, \cdots, y_n\} \subset D \text{ and } \{\lambda_i \geq 0 : \sum_{i=1}^n \lambda_i =$ 1}, Condition (ii) means that there exists a $y_0 \in D$ such that $\sum_{i=1}^n \lambda_i F(x, y_i) \leq F(x, y_0)$. From (i) there exists an $x_0 \in C$ such that $F(x_0, y_0) = \min_x F(x, y_0) \leq c$ and also we have $\sum_{i=1}^{n} \lambda_i F(x, y_i) \leq c$ for any $x \in C$. By Condition (i) and ETK, there exists an $x_1 \in C$ such that $F(x_1, y_i) \leq c$ for any *i*. Then we get $\bigcap_{i=1}^{n} \{x \in C : F(x, y_i) \leq i \}$ $c\} \neq \emptyset$. From the compactness of C, we have $\bigcap_{y \in D} \{x \in C : F(x,y) \leq c\} \neq \emptyset$, which means that there exists an $x_2 \in C$ and any $y \in D$ such that $F(x_2, y) \leq c$, or $\min_x \sup_y F(x, y) \leq \sup_y \min_x F(x, y)$. Since $F(x,y) \geq \min_{x} F(x,y)$ for $y \in D$, we have $\sup_{y} F(x,y) \geq \sup_{y} \min_{x} F(x,y)$ and also $\min_x \sup_y F(x, y) \ge \sup_y \min_x F(x, y)$. Therefore $\sup_{y} \min_{x} F(x, y) = \min_{x} \sup_{y} F(x, y)$. If $\sup_{y \in D} \min_{x \in C} F(x, y) = \infty$, it can be seen

Q.E.D.

The above theorem is an extension of Sion's minimax theorem and Tuy's one. In the following remark an example illustrates EMT.

that the conclusion holds.

Remark 3 (a) In [6] Sion assumes that F is upper semi-continuous and quasiconcave on

D under the condition that D is compact, in addition to the conditions of EMT. He gets the conclusion that

$$\min_{x \in C} \max_{y \in D} F(x, y) = \max_{y \in D} \min_{x \in C} F(x, y).$$

Thus EMT is an extension of Sion's theorem.

(b) Tuy [8] assumes that C and D are convex. He shows that the conclusion

$$\inf_{x \in C} \sup_{y \in D} F(x, y) = \sup_{y \in D} \inf_{x \in C} F(x, y)$$

under the condition that F is upper semicontinuous in y in addition to conditions of EMT.

(c) Let F(x,y) = f(x)g(y) for $(x,y) \in [-n,n] \times (-1,1)$, where $n \ge 1$ is integer, f denotes the largest integer which is less than |x|. Here

$$g(y) = y^2 + |y\sin\frac{\pi}{2y}|,$$

where $y \in (-1,1)$. Then function F satisfies Conditions (i) and (ii) of EMT. Since $\min_{x} F(x,y) = 0$ and $\sup_{y} F(x,y) = 2f(x)$, It follows that the conclusion of EMT holds.

References

- V.I. Istrăţescu: Fixed Points Theory, Reidel Pub., 1981.
- [2] K.Fan: Existence Theorems and Extreme Solutions for Inequalities Concerning Convex Functions or Linear Transformations, Math. Z., 68, 205-217 (1957).
- [3] M.L.Puri and D.A.Ralescu: Differential of Fuzzy Functions, J. Math. Anal. Appl., 91, 552-558 (1983).

- [4] M. Sakawa: Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, 1993.
- [5] S.Saito and H.Ishii: Existence Criteria for Fuzzy Optimization Problems, Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka ed.), World Scientific, 321-325 (1998).
- [6] M.Sion : On General Minimax Theorems, Pacific J. Math., 8, 171-176 (1958).
- [7] W.Takahashi: Nonlinear Functional Analysis -Fixed Point Theory and Its Applications -, Yokohama Publ., 2000.
- [8] H.Tuy: Convex Analysis and Global Optimization, Kluwer Academic Publ., 1998.