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Abstract

In this paper, we consider acontinuous version of the convex network flow prob-
lem which involves the integral of the Euclidean norm of the flow and its square in
the objective function. Adiscretized version of this problem can be cast as asecond-
order cone program, for which efficient primal-dual interior-point algorithms have been
developed recently. An optimal magnetic shielding design problem of the MAGLEV
train, anew bullet train under development in Japan, is formulated as the continuous
convex network flow problem, and is solved with the primal-dual interior-point alg0-
rithm. Taking advantage of its efficiency and stability, the algorithm is further applied
to robust design of the magnetic shielding.

1Introduction
Let us consider the following optimization problem:

minimize $\int_{\Theta}\{||a_{0}(x)v(x)||^{2}+||a_{1}(x)v(x)||+a_{2}(x)^{T}v(x)\}dx$

(1)

subject to $\mathrm{d}\mathrm{i}\mathrm{v}v(x)=b(x)$ , $||v(x)||\leq c(x)$ , $x\in\subset R^{2}$ ,

where $a_{0}$ , $a_{1}$ , $b$ , $c$ are continuous scalar functions and $a_{2}$ is atw0-dimensional continuous
vector function defined over acompact region 0. $v$ is acontinuously differentiable vector
field defined over $\Theta$ with respect to which the objective function is minimized. We assume
appropriate boundary conditions. In the context of applications, $v$ may be regarded as
aflow of physical quantities over the region 0. The constraint $\mathrm{d}\mathrm{i}\mathrm{v}v=b$ represents the
conservation law and $||v||\leq c$ represents aconstraint on the maximum capacity at each
point. The objective function typically represents energy or cost of the flow. This problem
is acontinuous version of convex network flow problems and have anumber of possible
applications [28]. Adiscretized version of (1) becomes an example of convex optimization
problems called second-0rder cone programs, to which efficient polynomial interior-point
algorithms have been developed recently.

In this paper, areal-world optimal magnetic shielding design problem which arises in
the development of anew bullet train in Japan [22] is formulated as aspecial case of (1),
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and will be solved with the help of polynomial-time primal-dual interior-point algorithms for
second-0rder cone programming. The algorithm is further applied to robust optimization of
the magnetic shielding. Through this real-world example, we demonstrate how this type of
optimization problems can be reasonably treated by combination of finite element methods
and interior-point algorithms. For example, such problems as optimal design of adraining
system protecting an area from floods, estimation of aflow from observed data etc. are also
formulated as (1) or its slight variation, and can be solved with the techniques developed
here. Contact problems with tangential frictional force in mechanics can be cast as similar
problems with different linear equality constraints [15].

The bullet train, which is called MAGLEV (superconducting MAGnetically LEVitated
vehicle)., is held in the air by strong magnetic fields and propelled by linear synchronous
motors. Each car is equipped with several super-conducting magnet units which generate
the magnetic field. Passengers inside the car need to be shielded from the magnetic field
outside. The optimal design problem of the magnetic shielding is to minimize the weight
of the shielding by adjusting the thickness of the shielding taking into account the external
magnetic field. Intuitively, the shield needs to be thick at apoint where the field is strong
while it can be thinner at apoint where the field is weaker.

After some appropriate simplification, this optimization problem is f\‘ormulated as acon-
vex program of minimizing the sum of Euclidean norm under linear equality constraints.
Plausibility of the model has been confirmed through previous research by one of the au-
thors [23], where the problem was solved with aconventional iterative method and the result
was compared with physical experiments. While the computational results seemed plausible,
there was no guaranteed bound on the optimal value.

In this paper, we cast this problem into asecond-0rder cone program which is aspe-
cial case of linear programs over symmetric cones, and solve it with the primal-dual path-
following interior-point algorithms developed recently. With the new approach, we can solve
the problem in amuch more efficient and stable way, providing anice lower bound on the
optimal weight automatically. Furthermore, we are able to handle problems with linear in-
equality constraints. This allows more flexibility to design, and is crucial in some situations.
For example, minimum thickness constraints can be required on some part of the shielding
to keep enough strength of the body.

The interior-point algorithm solves optimization problems by tracing vector fields defined
in the interior of the feasible region. The algorithm enjoys polynomial-time convergence and
has been studied extensively as one of the central topics in the field of optimization since
1984 when Karmarkar proposed the projective scaling method for linear programming (LP).
Primal-dual algorithms. which generate sequences in the space of both primal and dual
problems, turned out to be the method of choice for LP (see, e.g., [32]). In $1990’ \mathrm{s}$ , primal
dual algorithms were extended to an important class of convex programming called “linear
programming over symmetric cones.” In particular, semidefinite programming (SDP), lin-
ear function optimization over the intersection of an affine space and the cone of positive
semidefinite matrices, was studied extensively from the viewpoint of algorithms, theories,
and applications $[1_{\dot{J}}20,31]$ .

The second-0rder cone programming (SOCP) is another example of linear programming
over symmetric cones which optimizes alinear objective function over intersection of an
affine space and adirect product of second-0rder cones. Recently, the polynomial primal-
dual path-following algorithms for LP and SDP are extended to SOCP by Nesterov and Todd
and one of the authors $[21, 30]$ (See also [19, 26]). We apply these algorithms to the optimal
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magnetic shield design problem of the MAGLEV train. The number of design variables $y$ in
the problems we solved ranges from about 1600 to 60000, and the number of primal variables
$x$ ( $=\mathrm{t}\mathrm{h}\mathrm{e}$ number of dual variables $s$ ) is 4800\sim 180000. The result is considered from the
physical point of view, and the performance of the primal-dual algorithm is compared with
the previous algorithm. Then the primal-dual algorithm is applied to robust optimization
of the magnetic shielding $[4, 5. 7_{\dot{J}}8_{J}.12]$ . Arobust design is obtained by solving perturbed
optimization problems 10000 times in several hours.

This paper is organized as follows. In Section 2, we introduce the optimal magnetic
shielding design problem and formulate the problem as asecond-0rder cone program. In
Section 3, we introduce SOCP and explain the primal-dual interior-point algorithms. In
Section 4, we solve the problem and show the optimized design of shielding. We analyze the
results from an engineering point of view. In Section 5, the primal-dual algorithm is applied
to robust design of the magnetic shielding. Section 6is conclusion.

2Static Magnetic Shield Design Problem and MA-
GLEV Train

Optimal design of static magnetic shielding arises naturally in several areas including mag-
netically levitated (MAGLEV) train design, MRI (Magnetic Resonance Image) and low
magnetic field measurement etc. In this paper, we focus on the problem which arises in
the development of the MAGLEV train [22]. We introduce asimplified formulation of the
optimal magnetic shielding design problem and cast this problem into asecond-0rder cone
program through discretization by the Finite Element Method.

2.1 Formulation of aSimplified Optimal Magnetic Shielding De-
sign Problem and Second-Order Cone Programming

In MAGLEV train, each car is equipped with two SuperConducting Magnet units (SCM
units) which produce magnetic field. Each SCM unit consists of four SuperConducting Coils
(SCCs) placed sequentially on each side of the corridor, as is shown in Figure 1. Thus, atotal
of eight SCCs are laid along the corridor connecting two coaches. Each SCC has racetrack
shape with the length $1.07\mathrm{m}$ and the height $0.5\mathrm{m}$ , and it is energized at $700\mathrm{k}$ Ampere. The
pair of SCCs facing each other on the both sides are magnetized in the same direction. The
directions of magnetization of the four sequential SCCs on the SCM unit are S-N-S-N along
the direction of travel.

Our purpose is to design amagnetic shielding with the minimum weight which has
enough thickness at each point to shield passengers inside from the magnetic field generated
by the SCM units. In the previous paper [23], one of the authors proposed asimplified
design problem for magnetic shielding which minimizes the required magnetic materials for
shielding. We explain it briefly in this subsection.

For magnetic shielding. we enclose the region 0(interior region) where we want to shield
magnetic field by ferromagnetic material, which typically is iron or an iron-based alloy. Our
purpose is to reduce the weight of this ferromagnetic material. Magnetic field generated by
the current sources which are placed in $R^{3}-\Omega$ (exterior region) is bypassed through this
ferromagnetic material and does not leak into the interior region in principle. We show this
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Figure 1: MAGLEV train and configuration of SCCs (unit: $\mathrm{m}\mathrm{m}$ ).

Figure 2: Situation of the proble
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situation in Figure 2. We make the following assumptions regarding this magnetic shielding
problem.

[A1] Interior region $\Omega$ is completely enclosed by ferromagnetic material, i.e., $\Omega$ is enclosed
by ferromagnetic material which is placed on all points of an (surface of Q) and has a
sheet-like shape.

[A2] Ferromagnetic material has infinite initial permeability.

[A3] Ferromagnetic material has saturated magnetic flux density $B_{s}$ (unit: Tesla $=\mathrm{W}\mathrm{b}/\mathrm{m}^{2}$).
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Figure 3: Assumed B-H curve

The assumed B-H curve of ferromagnetic material is shown in Figure 3. In the above
assumptions [A2] and [A3], we take into account only saturated magnetic flux density of
shielding material and ignore the detailed features of its B-H curve (in general, nonlinear
features). With this simplification, we obtain aconvex optimization problem, which is easier
to solve but does not lose the essence of the original shielding problem. We explain it in the
following.

Due to the nature of the shielding material, the external field generated by the SCM
units would not be influenced by changing the thickness of the shielding as long as mag-
netic saturation does not occur in the shielding. This enables us to solve the problem of
determining the external magnetic field separately. Under the assumptions [A1], [A2] and
also the prescribed current distribution i$\mathrm{n}$

$R^{3}-\Omega$ . we can solve Maxwell equations for the
static magnetic field in the exterior region $(R^{3}-\Omega)$ with the help of boundary conditions
on ac (tangential component of $\vec{B}\mathrm{s}.\mathrm{t}.\vec{B}\cross\vec{n}=0$ , where $\vec{n}$ is aunit normal on $\partial\Omega$ ). After
computation, we obtain the normal component of magnetic flux density $B_{n}$ on an (unit:
Tesla) which flows into the shield through an at right angles. We can use any analytic or
numerical method to solve this boundary value problem (we call it an exterior field problem)
and the obtained value of $B_{n}$ is used later.

Due to the assumption [A2] of infinite permeability of initial B-H curve for shielding
material, magnetic flux does not leak into the interior region $\Omega$ enclosed by the shielding
material (surface). We also assume that magnetic flux density $\vec{B}$ inside the shield is unifor$\mathrm{m}$
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with respect to thickness. Taking this assumption into account, now we introduce atw0-
dimensional vector field $\vec{F}=(F_{1}, F_{2})$ (unit: $\mathrm{W}\mathrm{b}/\mathrm{m}$ ) as the integral of $\vec{B}$ with respect to
thickness (the unit of thickness is meter). Then we have the following equation about the
balance of magnetic flux ..on.. an:

$\mathrm{d}\mathrm{i}\mathrm{v}\vec{F}=B_{n}$ on $\partial\Omega$ . (2)

The tw0-dimensional divergence operator $\mathrm{d}\mathrm{i}\mathrm{v}$ in (2) is also taken on an. So if $\partial\Omega$ is aplane
(at least locally) and coordinates $x_{1}$ and $x_{2}$ are Cartesian, we have

$\mathrm{d}\mathrm{i}\mathrm{v}\vec{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}$.

Secondly, from the assumption [A3], ferromagnetic material has asaturated magnetic
flux density $B_{s}$ and we must use ferromagnetic material at amagnetic flux density of less
than $B_{s}$ . Otherwise ferromagnetic material would be “saturated” and the magnetic field
would leak into the interior region Q. Therefore, we need at least

$\frac{||\vec{F}||}{B_{s}}$ meter

as the thickness at every point on an. We use $B_{s}=1.5$ Tesla throughout the paper.
This value reflects the physical nature of the shielding material which typically is iron or
iron-based alloy as was mentioned above, and was used in [23]. Since the total weight of
the shield material is proportional to its volume and the volume is given by integrating
the thickness over the surface, the problem of minimizing the total weight of the shield
material is formulated as the following optimization problem, which is acontinuous version
of minimizing the sum of Euclidean norm problem:

minimize $\frac{1}{B_{s}}\iint_{\partial\Omega}||\vec{F}||dS$,

subject to $\mathrm{d}\mathrm{i}\mathrm{v}\vec{F}=B_{n}$ on an,
where the unknown variable $\vec{F}$ is defined on $\partial\Omega$ and $B_{n}$ is given on can. This way, the
optimal magnetic shielding design problem can be formulated as aconvex network flow
problem introduced in (1).

Introducing the auxiliary variable $F_{0}$ , the problem is rewritten as follows:

minimize $\frac{1}{B_{s}}\iint_{\partial\Omega}F_{0}dS$, (3a)

subject to $\mathrm{d}\mathrm{i}\mathrm{v}\vec{F}=B_{n}$ on an, (3b)
$F_{0}\geq||\vec{F}||$ on an. (3c)

This is the formulation that we adopt to solve the magnetic shielding design problem. In
this formulation, the objective function (3a) and the constraint (3b) are linear with respect
to $F_{0}$ and F. respectively. The second constraint (3c) is not linear but is convex with respect
to $F_{0}$ and $\vec{F}$ . The constraint of this type is called the second-0rder cone constraint and plays
amain role in this paper. Thus the magnetic shielding design problem is formulated as a
convex optimization problem (3). This problem is acontinuous version of second-0rder cone
programs which will be formally introduced in the next section
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2,2 Discretization of the Problem by Finite Element Method
In this subsection, we discretize the optimization problem (3) by Finite Element Method
(FEM) and cast it into asecond-0rder cone program. We consider quarter of the body of
the car as $\Omega$ in consequence of taking advantage of symmetry, and discretize an (frontier of
interior region) into 1669 rectangular finite elements (subregions) $\partial\Omega_{i}(\mathrm{i}=1,\ldots, 1669)$ . The
discretization is shown in Figures $4(\mathrm{a})$ and (b), together with (approximated) $B_{n}$ obtained
by solving the exterior field problem. As is seen in the figures, the coach and corridor are
modeled as two different-sized bricks. We see that the mesh becomes dense at four places
along the corridor corresponding to the ends of the two SCCs, where the change of the
magnetic field is supposed to be large.

Amain part of the discretization of (3) is the linear equality constraint (3b). By using
the theorem of Gauss and the boundary condition on $\partial\partial\Omega$ , aweak form of (3b) is given by

$\iint_{\partial\Omega}[(\vec{F}, \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\lambda’)+\lambda’B_{n}]dS=0$ ,

where $(, )$ means inner product of tw0-dimensional vectors, and operator $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}$ is taken
on tw0-dimensional plane (or more generally surface) an. “Test function” $\lambda’$ is arbitrary
function taken from space $H^{1}(\partial\Omega)$ . We use the bilinear finite element over arectangular
domain for $\lambda’[6]$ . The degree of freedom of each element is associated with the nodes of the
mesh. As to $\vec{F}=(F_{1}, F_{2})$ and $F_{0}$ , we adopt constant elements. We denote by $F_{0j}^{*}$ and $\vec{F_{j}}^{*}$

the discretized $F_{0}$ and $\vec{F}$ associated with the finite element $j$ . Degrees of freedom of all finite
elements for $F_{0}$ and $\vec{F}$ are attached to center of gravity of each element and the second-0rder
cone condition is evaluated at this point. The external field $B_{n}$ in our case is an elementwise
constant scalar function as an approximate solution of the external problem. We denote this
approximated solution by $\hat{B}_{n}^{*}$ .

In order to complete the discretization, we have to determine the boundary conditions.
We consider the following boundary conditions on $\partial\partial\Omega$ . Below $\vec{n}’$ denotes outward normal
of $\partial\partial\Omega$ on an.
[B1] Dirichlet-type boundary condition $\vec{F}\cross\vec{n}’=0$:To satisfy this condition, we set (dis-

cretized) $\lambda’$ to be zero.

[B2] Neumann-type boundary condition $\vec{F}\cdot$ $\vec{n}’=0$:To satisfy this condition, we just let
(discretized) $\lambda’$ free and impose no boundary condition on $\vec{F}$ explicitly.

We applied the Dirichlet-type boundary condition to all the parts of the boundary except for
the section cut by the plane $y=0$ . where we applied the Neumann-type boundary condition
(cf. Figure 4). (It is not relevant to the problem which boundary condition is applied to that
center part of the coach, because the magnetic field is weak there.)

The Neumann-type boundary condition [B2] corresponds to the natural boundary con-
dition in usual finite element procedure. Concerning the Dirichlet-type boundary condition
[B1], it is not apparent whether the condition is satisfied by just setting $\lambda’$ to zero. However,
the boundary condition is indeed satisfied “after optimization.” This is an interesting aspect
of this optimization problem which we observed in the original version [24] of this paper, but
we do not go into details here.

Using the quantities introduced above, (3) is discretized as follows:

minimi$\mathrm{z}\mathrm{e}$

$\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ , (4a)
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$\mathrm{y}$

$\mathrm{x}$

(a) view from inside

$\mathrm{x}$

(b) view from outside

$|\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of shield surface an and the normal component of the
rnal field $\hat{B}_{n}^{*}$ . (Each rectangular area is afinite element. The arro
iter of each element is proportional to $\hat{B}_{n}^{*}.$ )
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subject to
$\sum_{j\in E}D_{ij}\vec{F}_{j}^{*}=(\overline{B}_{n}^{*})_{i}$

, $i\in V$,

$||\vec{F}_{j}^{*}||\leq F_{0j}^{*}$ , $j\in E$ ,

(4b)

(4c)

where $E$ and $V$ are the sets of indices of finite elements and nodes of the mesh, respectively,
$w_{j}$ is the area of the element $\mathrm{j}$ . $D$ is the FEM discretization of $\mathrm{d}\mathrm{i}\mathrm{v}$ operator, and $(\overline{B}_{n}^{*})_{i}$ is the
inner product of the test $;\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ with $\hat{B}_{n}^{*}$ associated with the node $i$ . $F_{0j}^{*}$ of the optimal
solution of (4) represents thickness of the optimized shield at the element $j$ .

3Second-Order Cone Programming and Primal-Dual
Interior-point Algorithms

In this section, we formally introduce second-0rder cone programming (SOCP) and explain
the primal-dual interior-point algorithms.

3.1 Second-Order Cone Programming
The Second-Order cone $\mathcal{K}(p)$ is acone in $R^{p}$ defined as follows.

$\mathcal{K}(p)=\{x=(x_{0}, x_{1})\in R\cross R^{p-1}|x_{0}^{2}-x_{1}^{T}x_{1}\geq 0, x_{0}\geq 0\}$ .

This cone is known as one of the typical examples of symmetric cones, i.e., self-dual and
homogeneous cones [9]. As aconvention, by $x[succeq] \mathrm{O}$ and $x\succ \mathrm{O}$ we mean $x\in \mathcal{K}(p)$ and
$x\in \mathrm{I}\mathrm{n}\mathrm{t}(\mathcal{K}(p)).$

, respectively. We denote by $\mathcal{K}^{*}(p)$ the dual cone of $\mathcal{K}(p)$ . Since $\mathcal{K}(p)$ is
self-dual (with respect to $‘’.\mathrm{t}\mathrm{h}\mathrm{e}$ ordinary inner product”), we have

C’ (p) $=$ $\{s\in R^{p}|x^{T}s\geq 0, x\in \mathcal{K}(p)\}$

$=$ $\{s=(s_{0}, s_{1})\in R\cross R^{p-1}|s_{0}^{2}-s_{1}^{T}s_{1}\geq 0, s_{0}\geq 0\}=\mathcal{K}(p)$ .

Asecond-0rder cone program is an optimization problem of minimizing alinear function
over the intersection of an affine space and the direct product of second-0rder cones, and is
written as follows:

(P) minimize $\sum_{i=1}^{n}c_{i}^{T}x_{i}$ ,

subject to $\sum_{i=1}^{n}A_{i}x_{i}=b$ , $x_{i}=\{\mathrm{x}0,$ $x_{i1}$ ) $[succeq] 0$ , $i=1$ , $\ldots$ , $n$ ,

where $A_{i}\in R^{m\cross k_{i}}$
.

$(i=1, \ldots, n)$ , $b\in R^{m}$ , $c_{i}\in R^{k_{i}}.$ . $n$ denotes the number of second-0rder
cones. Like LP and SDP, SOCP has anumber of applications in many areas [16]. Obviously,
our problem (4) formulated in the last section is asecond-0rder cone program. The dual
problem is defined by

(D) maximize $b^{T}y$ ,
subject to $s_{i}=c_{i}-A_{i}^{T}y$ , $s_{i}=(s_{i0}, s_{i1})[succeq] 0$ , $i=1$ , $\ldots$ , $n$ .
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To simplify the notation, let

$A=(A_{1}A_{2}\ldots A_{n})\in R^{?n\cross K}$ , $c=(c_{1}, \cdots, c_{7l})\in R^{K}$ ,
$x=(x_{1}, \ldots, x_{n})\in R^{K}$ , $s=(s_{1}, \ldots, s_{n})\in R^{K}$ ,
$\mathcal{K}=\mathcal{K}_{1}\cross\ldots\cross \mathcal{K}_{n}$ ,

where $K= \sum_{i=1}^{n}k_{i}.$ . $K$ is the number of primal (and dual) variables. Then (P) and (D) are
represented in aform similar to $\mathrm{L}\mathrm{P}$ :

(P) minimize $c^{T}x$ ,
subject to $Ax=b$, $x[succeq] \mathrm{O}$ ,

(D) maximize $b^{T}y$ ,
subject to $s=c-A^{T}y$ , $s[succeq] 0$ ,

where we abuse the notation $[succeq] \mathrm{i}\mathrm{n}$ an obvious way. In fact, linear inequality constraints can
be handled formally just by regarding the half-line as the one-dimensional second-0rder cone
$\mathcal{K}(1)$ . Observe that, for any feasible solutions $x$ and $(s, y)$ of (P) and (D), we have

$c^{T}x-b^{T}y=x^{T}(c-A^{T}y)=x^{T}s\geq 0$ ,

where the last equality follows from $x\in \mathcal{K}$ and $s\in \mathcal{K}^{*}=\mathcal{K}$ . Thus, the primal objective
value is always greater than or equal to the dual objective value for any feasible primal and
dual solutions. The quantity $x^{T}s(=c^{T}x-b^{T}y)$ is referred to as “duality gap”. Furthermore,
if we can find the feasible solutions $x$ and $(s, y)$ of (P) and (D) with no duality gap. i.e.,
$(x, s, y)$ satisfying the following conditions:

(PD) $s^{T}x=0$ , $Ax=b$, $s=c-A^{T}y$ , $x[succeq] \mathrm{O}$ , $s[succeq] \mathrm{O}$ ,

then $x$ and $(s, y)$ are the optimal solutions of (P) and (D), respectively. The existence of such
optimal solutions is always ensured if both (P) and (D) have interior feasible solutions, i.e.,
feasible solutions such that $x\succ \mathrm{O}$ and $s\succ \mathrm{O}$ . In our case, we can check that this condition
is satisfied and hence (P) and (D) have optimal solutions with no duality gap.

Before going to the next section, we explain how the problem (1), which contains the
quadratic term $||a_{0}v||^{2}$ as integrand, can be converted to (a continuous version of) asecond-
order cone program. It is known $[16, 20]$ that aquadratic constraint $z^{T}z\leq\alpha$ is equivalent
to

$||$ $(\begin{array}{ll}\alpha -1 2z\end{array})$ $||\leq\alpha+1$ , $\alpha\geq 0$ .

By using this result, (1) can be rewritten as the follows:

minimize $\int_{\Theta}\{u+w+a_{2}^{T}v\}dx$ ,

subject to $\mathrm{d}\mathrm{i}\mathrm{v}v=b$ , $||v||\leq c$ ,

$||a_{1}v||\leq w$ , $||$ $(\begin{array}{l}u-12a_{0}v\end{array})$ $||\leq u+1$ , $u\geq 0$ ,

where $u$ and $w$ are continuous scalar functions in $x$ . This way, (1) is represented as a
continuous version of asecond-0rder cone program.
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3.2 Central Trajectory and Primal-dual Path-following Algorithms

The primal-dual interior point algorithms solve optimization problems by following atrajec-
tory called central trajectory. This trajectory is defined in the interiors of feasible regions of
(P) and (D), and we approach the optimal solutions of (P) and (D) along the trajectory. A
formulation of the central trajectory is given on the basis of the Euclidean Jordan algebra
[9, 10, 11, 30]. We introduce the following product defined between the two elements $x_{i}$ and

$s_{i}$ of $R^{k_{i}}$ :
$x_{i}\circ s_{i}=(x_{i}^{T}s_{i}, x_{i0}s_{i1}+s_{i0}x_{i1})$ .

The vector space $R^{k_{i}}$ equipped with this product is the Euclidean Jordan algebra associated
with the second-Under cone $\mathcal{K}(k_{i}.)$ $[30]$ . In terms of this product, $\mathcal{K}(k_{i}.)$ is represented as
$\mathcal{K}(k_{i}.)=\{v|v=w\circ w, w\in R^{k_{i}}\}$ . The element $e_{i}=(1,0, \ldots, 0)$ is aunit element of this
algebra. The Euclidean Jordan algebra can be easily extended to the whole space by defining
the product

$x\mathrm{o}s=(x_{1}\circ s_{1}, \ldots, x_{n}\circ s_{n})$ ,
where $e=$ $(e_{1}, \ldots, e_{n})$ is the unit element.

Observe that $x\circ s=0$ implies that $x^{T}s=0$ , because

$e^{T}(x \circ s)=\sum_{i}e_{i}^{T}(x_{i}\circ s_{i})=\sum_{i}x_{i}^{T}s_{i}=x^{T}s$ . (6)

Thus, the problems (P) and (D) are formulated as finding feasible solutions $x$ and $(s, y)$ of
(P) and (D) satisfying the condition $x\circ s=0$ .

The central trajectory of (P) and (D) is defined as the set of the solutions of the following
parameterized system of bilinear equations with the parameter $\nu\in(0, \infty]$ .

$x\circ s=\nu e$ , $Ax=b$ , $A^{T}y+s=c$ , $x[succeq] \mathrm{O}$ , $s[succeq] \mathrm{O}$ , (7)

where $e=$ $(e_{1}, \ldots, e_{n})$ . Under the assumption of existence of interior feasible solutions of (P)
and (D), it is known that (7) defines asmooth path in the interiors of the feasible regions
of (P) and (D) which approaches the optimal sets as $\nu$ tends to zero [11]. The solution of
(7) is referred to as the center point (with parameter $\nu$ ). Due to (6), (7) and the fact that
$e^{T}e=n$ , the relation $\nu=x^{T}s/n$ holds on the central trajectory.

The primal-dual path-following algorithms solve second-0rder cone programs by following
the central trajectory with the Newton method (or its variant) based on this formulation. We
generate asequence in the interior of the cone $\mathcal{K}\cross \mathcal{K}$ by solving approximately the equation
(7) repeatedly, reducing $\nu$ to zero. Typically, we start from an initial point $(x, s, y)=$
$(0, \nu_{0}e, 0)$ with $\nu_{0}>0$ , which is in the interior of the primal-dual cone, and restrict the
iterates to stay inside the cone in the subsequent iterations. The Newton direction for
(7) is called AHO direction [2]. Many primal-dual interior-point algorithms adopt variants
of the Newton direction called the scaled Newton directions. There are three well-known
scaled Newton directions called the Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-
$\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{a}/\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{r}\mathrm{o}(\mathrm{H}\mathrm{R}\mathrm{V}\mathrm{W}/\mathrm{K}\mathrm{S}\mathrm{H}/\mathrm{M})$ direction [13, 14, 18], the $\mathrm{H}\mathrm{R}\mathrm{V}\mathrm{W}/\mathrm{K}\mathrm{S}\mathrm{H}/\mathrm{M}$ dual direction
[18] and the Nesterov-Todd (NT) direction [21].

Ageneric primal-dual path-following algorithm for SOCP is described as follows.

Generic Algorithm:

Let $\epsilon\in(0,1)$ and $\theta\in(0,1)$ be precision parameter and step-size parameter, and let
$(x^{0}, s^{0}, y^{0})\in R^{K}\cross R^{K}\cross R^{m}$ be apoint such that $(x^{0}, s^{0})\in \mathrm{I}\mathrm{n}\mathrm{t}(\mathcal{K})\cross \mathrm{I}\mathrm{n}\mathrm{t}(\mathcal{K})$ . Let
$\mu^{0}:=((s^{0})^{T}x^{0})/n$ and set $k:=0$ .
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Repeat until $\mu^{k}\leq\epsilon\mu^{0}$ do

1. Let $(x, s, y):=(x^{k}, s^{k}, y^{k})$ and $\mu:=\mu^{k}$ .
2. Determine a $\in(0,1)$ .
3. Compute aNewton-type search direction $(\Delta x, \Delta s, \Delta y)$ at $(x, s, y)$ for the

center point with the parameter $\nu:=\sigma\mu$ .
4. Choose the step-size $\alpha>0$ which brings the iterate to the fraction $\theta$ of the

way to the boundary of the primal-dual cone, and let $(x^{k+1}, s^{k+1}, y^{k+1}):=$

$(x, s, y)+\mathrm{a}$ (Ax, $\Delta s,$ $\Delta y$ ) $\in \mathrm{I}\mathrm{n}\mathrm{t}(/\mathrm{C})$ $\cross \mathrm{I}\mathrm{n}\mathrm{t}(/\mathrm{C})$ $\cross R^{m}$ .
5. Set $\mu^{k+1}:=((x^{k+1})^{T}s^{k+1})/n$ and increment $k$. by 1.

End

Note that the search direction in Step 3aims at the center point which would reduce the
duality gap by afactor of $\sigma$ .

There are two well-known versions of algorithms in implementation. The first one is the
algorithm which we call “Basic algorithm.” In this algorithm we take $\sigma$ to be aconstant and
use the Newton direction or the scaled Newton directions as the search direction without
modification. The other one is called “Mehrotra Predictor-Corrector (MPC) algorithm” and
incorporates with adaptive update of $\sigma$ and modification of search directions taking account
of asecond-0rder correction. The MPC algorithm is astandard technique to speed up the
primal-dual interior-point algorithms $[17, 32_{J}.29]$ .

The major task in one iteration of the primal-dual path following algorithms is compu-
tation of search directions. Like in other interior-point algorithms for LP and SDP, this part
consists of (i) computation of the Shur complement matrix which is the $m\cross m$ coefficient
matrix of asystem of linear equations to determine asearch direction, and (ii) solution of
the system of linear equations. They require $O(m^{2}K)$ and $O(m^{3})$ arithmetic operations,
respectively, assuming that $A$ is dense. However, the number of arithmetic operations can
be much less when we deal with such asparse problem like the one treated in this paper. We
do not go into details of computation of the search directions. We refer interested readers
to [30] and [3].

4Computational Results and Analysis
We implemented the primal-dual algorithms to solve the optimal magnetic shielding problems
explained in Sections 2and 3. All experiments are conducted on apersonal computer
with dual Pentium III $700\mathrm{M}\mathrm{H}\mathrm{z}$ CPUs. 1GB main memory and Windows $\mathrm{N}\mathrm{T}4.0$ operating
system. (But only one processor was used in the computation.) The code is written in
Fortran and compiled with Microsoft Visual Fortran Vers. 5. for Windows. All floating-
point computations are executed with double-precision.

The problem is as explained in Section 2and Section 3. The number of second-0rder
cone constraints is 1669, where the dimension of each cone is three, and hence the number
of primal and dual variables are 5007$(=1669\cross 3)$ for each. The number of $y$ variables is
1630. In this problem, the matrix $A$ is sparse. The number of second-0rder cone constraints
is large but their dimensions are the same and small. The techniques for taking advantage
of sparsity in solving second-0rder cone programs of this type are very similar to the ones in
$\mathrm{L}\mathrm{P}$ . We exploited these special structures in computing the search direction, namely, both

261



in forming the Shur complement matrix and solution of the resulting sparse system of linear
equations. We employed the sparse Cholesky factorization routines in IMSL attached to
Visual Fortran. In the following, we report the results with asparse implementation of the
primal-dual algorithm with the NT direction.

4.1 Performance of the Algorithm

The algorithm very quickly converged to optimal solutions. The problem was solved in 1.8 $\sec$

and 21 iterations with MPC algorithm, and 3.3 $\sec$ and 41 iterations with Basic algorithm.
(The iteration was stopped when the duality gap was smaller than 10. Feasibility was
also satisfied with the same level in order.) In order to observe dependency of performance
of the algorithm on the size of the problem, we constructed larger problems by dividing
each rectangular finite element by $k\cross k$ (A $=2$ , $\ldots$ , 6). We report the result for the largest
problem with $k=6$ . The number of second-0rder cones of this problem is 60084, the number
of $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}/\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}$ variables of this extended problem is 180252 $(=60084\cross 3)$ , and the number
of $y$ variables is 59850. This problem was solved in 725 $\sec$ and 34 iterations with MPC
algorithm, and 1940 $\sec$ and 110 iterations with Basic algorithm, with the same stopping
condition as above.

Our code is specialized to this design problem, but the timing data reported here suggests
that it is at least comparable in speed with other well-known SOCP codes like MOSEK [3]
and SeDuMi [27] for this type of problem. See [24] for more detailed results of numerical
experiments where we compared performance of the four major search directions AHO,
$\mathrm{H}\mathrm{R}\mathrm{V}\mathrm{W}/\mathrm{K}\mathrm{S}\mathrm{H}/\mathrm{M}$ , $\mathrm{H}\mathrm{R}\mathrm{V}\mathrm{W}/\mathrm{K}\mathrm{S}\mathrm{H}/\mathrm{M}$ dual and $\mathrm{N}\mathrm{T}$ .

4.2 Optimized Design
Now we analyze the optimized design from the physical point of view. As was mentioned
in Section 2, we took $B_{s}=1.5$ Tesla. The optimal value, which represents one quarter of
the volume of the shield, is 2.525069751 $\cross 10^{-2}\mathrm{m}^{3}$ . I $\mathrm{n}$ reference to the stopping criteria we
adopted, this value is considered to be correct up to the order of 10. The volume of
shielding of the car is 1.0100279004 $\cross 10^{-1}\mathrm{m}^{3}$ $(=4\cross 2.525069751\cross 10^{-2}\mathrm{m}^{3})$ . The obtained
design is shown in Figure 5. The units of $x$ , $y$ and $z$-axis and bargraph in Figure 5are meter.

Before explaining this figure, we describe the magnetic field $\hat{B}_{n}^{*}$ generated by the SCM
units. As was explained in Section 2.2, the area consists of the coach and the corridor
(cf. Figures 1and 4). The coach is enclosed by the bottom, side, ceiling and end plates,
whereas the corridor is enclosed by the bottom, side and ceiling plates.

First we explain the $\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{g}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{g}$magnetic flux in the coach. See Figure $4(\mathrm{a})$ . The
flux goes into the shield at the corridor side of the bottom plate and the lower part of the
end plate. On the other hand, as is seen in Figure $4(\mathrm{b})$ , the flux goes out from the part of
the side plate closer to the end plate.

The magnetic flux in the corridor is as follows. See Figure $4(\mathrm{a})$ . The lower parts of the
side plate and the bottom plate on the coach side are sinkers of the magnetic flux. On the
other hand, as is seen in Figure $4(\mathrm{b})$ , the magnetic flux goes out from the further lower part
of the side plate and the bottom plate (seen from the coach). This is arough sketch of the
magnetic flux $\vec{F}^{*}$ on the surface generated by the SCM units.

Now we explain the magnetic flux inside the optimized shield. See Figure 5. Basically,
at the bottom plate of the corridor, the magnetic flux flows along the guidance directio$\mathrm{n}$
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( $x$-direction), because the SCCs placed on this side and the opposite side of the corridor
are magnetized in the same direction, as was explained in Section 2.1. The shield becomes
thicker two times at the bottom of the corridor along the direction of travel (y-direction)
around $y=-7.8$ and $y=-9.5$ . These thick parts correspond to the place where the flow
is strong. The direction of the magnetic flux $F^{*}$ is opposite to each other at the both thick
parts.

Secondly in the coach, the magnetic flux flows from the bottom plate to the side plate
and also flows from the end plate to the side plate. This is because the end plate and the
bottom plate are sinkers of magnetic flux from the SCM units and magnetic flux goes back
from the side plate into the SCM units. Reflecting this flow of magnetic flux, the shielding
becomes thicker around $(x, y, z)\sim(0, -7,0.3)$ and $(x, y, z)\sim(0, -7,0)$ . However, the total
outgoing flux from the side plate is not sufficient to balance the incoming flux to the end
plate and the bottom plate. Therefore, to satisfy the total balance of the flux, there exists a
strong flow in the guidance direction to the other side of the coach through the part beneath
the corridor. This is why the thickest part exists at the lower and center part of the end plate
below the corridor $((x, y, z)\sim(1.2, -7,0.1))$ . It is interesting to note that the magnetic flux
$B_{n}$ at this place is not very strong as is seen from Figures $4(\mathrm{a})$ and (b). Nevertheless, the
shield has to be thick there to satisfy the conservation law of the flow $\vec{F}^{*}$ .

4.3 Comparison with the Previous Approach

In this subsection, we compare our result with the previous result obtained by one of the
authors [23]. As is formulated in Section 2. the magnetic shielding design problem is a
problem of minimizing the sum of weighted Euclidean norm $\sum_{j\in E}w_{j}||\vec{F}_{j}^{*}||$ subject to the
linear constraint (4b). In the previous paper [23], asolution of this problem was obtained
by iteratively solving the following weighted least squares problem:

$\vec{F}^{*(k+1)}=\arg\min_{\vec{p}*}\{\sum_{j\in E}w_{j}\frac{||\vec{F_{j}}^{*}||^{2}}{||\vec{F_{j}}^{*(k)}||}$. : $\vec{F}^{*}$ satisfies $(4\mathrm{b})\}$ , $k=0,1$ , $\ldots$

In the following, this method is referred to as the iterative least squares (ILS) algorithm. The
number of arithmetic operations per iteration is more or less the same as the primal-dual
(PD) algorithm.

We compare the ILS algorithm and the primal-dual (PD) algorithm. With the ILS
algorithm, the objective function converged in 184 iterations to 2.525117105 $\cross 10^{-2}$ before
the running process broke down due to numerical difficulty. The obtained optimal value of
the ILS algorithm is correct just up to the order of $10^{-7}\sim 10^{-8}$ , which is much worse than
the accuracy of 10 attained by the PD algorithm. Furthermore, the number of iterations
is much less with the PD algorithm. Thus, the PD algorithm is superior to the ILS algorithm
both in efficiency and accuracy. Another advantage of the PD algorithm is availability of a
lower bound of the optimal value with the dual objective value. With the ILS algorithm,
there is no automatic way to obtain such alower bound.

We observed that the global structures of the both designs are similar, but thickness
considerably differs at some places even though the objective function values of the two
designs are very close. In particular, the two designs differ at the bottom part of the end plate
beneath the corridor, where the shield becomes thickest. The design by the ILS algorithm
is smooth compared with the design by the PD algorithm. This is because the design by
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the ILS method is not yet optimized. When optimization is complete, the solution tends to
be nonsmooth. From an engineering point of view, asmooth solution would be preferable.
When we use the interior-point algorithms, we can incorporate such smoothness conditions
into the formulation explicitly. For example, we may require upper bounds on $\max\alpha_{ij}|F_{0i}^{*}-$

$F_{0j}^{*}|$ , $\sum\beta_{ij}|F_{0i}^{*}-F_{0j}^{*}|$ or $\sum\gamma_{ij}(F_{0i}^{*}-F_{0j}^{*})^{2},$, where $\alpha_{ij}$ , $\beta_{ij}$ , $\gamma_{ij}$ are appropriate weights and the
maximum and summation are taken over all two neighbor elements which share an edge.
We may also modify the objective function by adding these terms with appropriate weights.
All of these modifications can still be cast as second-0rder cone programs (with additional
linear inequalities).

5Application to Robust Optimization
We apply the primal-dual interior-point algorithm to robust design of our magnetic shield
design problem. Our physical model for the shielding design contains some approximation
errors and uncertainty parts. Therefore, ideally, optimization should be done over “the set
of shielding which would function even when such errors and uncertainty are taken into ac-
count.” This type of meta-0ptimization approach is called robust optimization in more gen-
eral context and has been extensively studied recently [4, 5, 7, 8, 12]. The meta-0ptimization
problem taking into account of the worst-case scenario is called “robust counterpart” of the
original optimization problem. Tractability of the robust counterpart depends on the origi-
nal optimization problem and the shape of the region of uncertainty we consider, but these
recent studies revealed that there are several interesting and useful cases where the robust
counterpart can be formulated as tractable convex programs such as SOCP and SDP. Here
we consider arobust counterpart of the magnetic shielding problem. and make an attempt
to solve it approximately by solving perturbed problems repeatedly taking advantage of
efficiency and stability of the primal-dual interior-point algorithm.

In the following, we use the same notations as in Subsection 2.2. Main sources of errors
and uncertainty incurred in the model are the FEM discretization and the approximate
solution of the exterior field problem. We denote by $B_{n}^{*}$ the approximated elementwise
constant function of the exterior field $B_{n}$ , and focus on uncertainty in $B_{n}^{*}$ . Specifically, we
assume that uncertainty incurred in $B_{n}^{*}$ is represented as the following set $\Gamma$ :

$\Gamma\equiv\{B_{n}^{*}\in R^{|E|}|(B_{n}^{*})_{j}=(\hat{B}_{n}^{*})_{j}+(\Delta B_{n}^{*})_{j}, |(\Delta B_{n}^{*})_{j}|\leq 0.05|(\hat{B}_{n}^{*})_{j}|, j\in E\}$ , (8)

where $\hat{B}_{n}^{*}$ is the concrete approximated elementwise constant function given in Subsection
2.2 based on which optimization in the previous section is done. Intuitively, we assume that
”10% elementwise relative error” can be incurred in $\hat{B}_{n}^{*}$ .

Let $G_{i}(B_{n}^{*})$ be the inner product of $B_{n}^{*}$ with the test function associated with the ith
node, and define $G(B_{n}^{*})=(G_{1}(B_{n}^{*}), \ldots, G_{|V|}(B_{n}^{*}))$ . Then we have $\overline{B}_{n}^{*}=G(\hat{B}_{n}^{*})\dot,$ where $\overline{B}_{n}^{*}$ is
as defined in Section 2.2 (cf.(4b)). Possible changes on the righthand side of (4b) when $B_{n}^{*}$

is assumed to be in the box $\Gamma$ is given by $G(\Gamma)$ . Note that $G(\Gamma)$ is apolyhedral set in $R^{|V|}$ .
Now we are ready to present the robust counterpart of our magnetic shielding problem.

Designed shielding is represented by the vector $F_{0}^{*}\equiv$ $(F_{01}^{*}, \ldots, F_{0|E|}^{*})$ . where $F_{0i}^{*}$ is thickness
of the $i\mathrm{t}\mathrm{h}$ element. Robustness of the shielding $F_{0}^{*}$ means that

“For each possible approximated external field $B_{n}^{*}\in \mathrm{F}$ , there exists afeasible flow of magnetic
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flux $\vec{F}^{*}\equiv$
$(\vec{F}_{1}^{*}, \ldots, \vec{F_{|V|}}^{*})$ satisfying

$\sum_{j\in E}D_{ij}\vec{F}_{j}^{*}=G_{i}(B_{n}^{*})$
, $i\in V$, and $||\vec{F}_{j}^{*}||\leq F_{0j}^{*}$ , $j\in E.$

” (9)

If this condition is satisfied, we say that $F_{0}^{*}$ is robust. We denote by $$ the set of robust $F_{0}^{*}$ .
In the following, the flow $\vec{F}^{*}$ satisfying (9) is referred to as $‘’.\mathrm{a}$ feasible flow with respect to
$B_{n}^{*},$”indicating dependency on $B_{n}^{*}$ explicitly. Now the robust counterpart of the shielding
design problem is written as

minimize $\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ , subject to $F_{0}^{*}\equiv$ $(F_{01}^{*}, \ldots, F_{0|E|}^{*})\in$, (10)

where

$\equiv$ { $F_{0}^{*}\in R^{|E|}|$ For each $B_{n}^{*}\in\Gamma$ , there exists afeasible flow $\vec{F}^{*}$ satisfying (9).}

This robust counterpart is aconvex semi-infinite program, where the convexity of $$ is
readily verified by using the triangular inequality. Unfortunately, this problem is unlikely to
afford atractable convex program reformulation. Therefore, we consider to solve it approx-
imately. Asimple way to solve (10) approximately is to replace $\Gamma$ with the set of $N$ points
$(B_{n}^{*})^{1}$ , $\ldots$ , $(B_{n}^{*})^{N}$ sampled from $\Gamma$ . Let $\Gamma_{N}\equiv\{(B_{n}^{*})^{1}, \ldots, (B_{n}^{*})^{N}\}$ . Then the approximated
robust counterpart is written as

minimize $\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ , subject to $F_{0}^{*}\in_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}$ , (11)

where

$_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}\equiv$ { $F_{0}^{*}\in R^{|E|}|$ For each $(B_{n}^{*})^{k}\in\Gamma_{N;}$ there exists afeasible flow $(\vec{F}^{*})^{k}$ satisfying (9).}

Since $\Gamma_{N}$ is afinite set, it is not difficult to see that (11) is rewritten as the following
second-0rder cone program with $|E|\cross N$ second-0rder cone constraints:

minimize $\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ ,

subject to $\sum_{j\in E}D_{ij}(\vec{F_{j}}^{*})^{k}=G_{i}((B_{n}^{*})^{k})$
, $i\in V$, $k=1$ , .., $N$, (12)

$||(\vec{F_{j}}^{*})^{k}||\leq F_{0j}^{*}$ , $j\in E$ , $k=1$ , $\ldots$ , $N$.

Even though the problem (11) and (12) appear to be afinite point approximation, it is
worthwhile to note that the optimal solution of (11) is the optimal solution of the following
convex semi-infinite program where $\Gamma$ in the original robust counterpart (10) is replaced by
the convex hull $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\Gamma_{N})$ of $\Gamma_{N}$ .

minimize $\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ ,

where

subject to $F_{0}^{*}\in_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}}$ , (13)

$_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}}\equiv$ { $F_{0}^{*}\in R^{|E|}|$ For each $B_{n}^{*}\in \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\Gamma_{N})$ . there exists afeasible flow $\vec{F}^{*}$ satisfying (9).}
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Equivalence of these two problems (11) and (13) is seen as follows. $_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}}\subseteq_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}$ is obvious
by definition. To show the reverse inclusion, given $F_{0}^{*}\in_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}$ . we will show that, for any
$B_{n}^{*}\in \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\mathrm{r}\mathrm{V})$ , there always exists afeasible flow $\vec{F}^{*}$ satisfying (9). Let $(\vec{F}^{*})^{k}$ be afeasible
flow with respect to $(B_{n}^{*})^{k}\in\Gamma_{N}$ . Then $||(\vec{F}^{*})^{k}||\leq F_{0}^{*}$ holds for all $k$. $=1$ , $\ldots$ , $N$ . Let
us represent $B_{n}^{*}$ as aconvex combination of $(B_{n}^{*})^{1}$ , $\ldots$ , $(B_{n}^{*})^{N}$ as $B_{n}^{*}=\Sigma_{k}\beta_{k}(B_{n}^{*})^{k}$ . where
$\beta\in R^{N}$ , $\Sigma\beta_{k}=1$ , $\beta\geq 0$ . By using the triangular inequality, it is easy to see that
$\vec{F}^{*}=\Sigma_{k}\beta_{k}(\vec{F}^{*})^{k}$ is afeasible flow with respect to $B_{n}^{*}$ satisfying $||\vec{F}^{*}||\leq F_{0}^{*}$ . Thus, it
is always possible to find afeasible flow with respect to any $B_{n}^{*}\in \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\mathrm{I}\mathrm{V})$ as long as
$F_{0}^{*}\in_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}$ . This implies that $F_{0}^{*}\in_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}}$ and completes the proof.

Now, the set conv(rjv) converges to $\Gamma$ as $N$ tends to infinity if the sampling procedure
is carried out properly. Then the optimal solution of (11) approaches the optimal solution
of the robust counterpart (10). Thus, it makes some sense to work with the approximation
(11). Based on the relationship among (10), (11) and (13) exploited here, one might further
develop aconcrete theoretical and empirical analysis of performance of (11) or (13) as an
approximation to (10).

But the problem is that even the approximated robust counterpart (11) is very difficult
to solve, because the number of second-0rder cones involved in (11) (i.e., (12)) is $|E|\cross N$

and hence it can be ahuge problem. In our case, $|E|=1669$ and $N$ needs to be at least
several thousands. Therefore, we develop aheuristic procedure to solve (12) approximately
which we describe below.

For simplicity, we call points in $\Gamma_{N}$ as perturbed external field, and $(\Delta B_{n}^{*})^{k}=(B_{n}^{*})^{k}-\hat{B}_{n}^{*}$ ,
$k=1$ , $\ldots$ , $N$ (cf. (8)) as perturbation. We assume that $(\Delta B_{n}^{*})_{j}^{k}$ obeys to independent uniform
distribution $U[-0.05|(\hat{B}_{n}^{*})_{j}|, 0.05|(\hat{B}_{n}^{*})_{j}|]$ for each $k*$ and $j$ . In the procedure described below,
we solve asecond-0rder cone program associated with each perturbed external field one by
one repeatedly. The idea is to increase thickness of the elements bit by bit at each iteration
so that feasibility of the flow is maintained with the minimum increase of the cost as we
solve the perturbed problems. $T_{j}^{k}$

. is the thickness of the element $j$ of the obtained design at
the A-th iteration.

Procedure for Robust Optimization

1. Let $N$ be the total number of iterations. Set $k:=0$, $T_{j}^{0}:=0$ for all $j\in E$ . and
$(\Delta B_{n}^{*})_{j}^{0}:=0$ for all $j\in E$ (initialization).

2. If $k$. $\geq 1$ then generate $(\Delta B_{n}^{*})_{j}^{k}(j\in E)$ by drawing from the uniform distribution
$U[-0.05|(\hat{B}_{n}^{*})_{j}|, 0.05|(\hat{B}_{n}^{*})_{j}|]$ .

3. Compute the right hand side $G^{k}\equiv G(\hat{B}_{n}^{*}+(\Delta B_{n}^{*})^{k})$ of (4b) associated with the per-
turbed external field $\hat{B}_{n}^{*}+(\Delta B_{n}^{*})^{k}$ .

4. Solve the second-0rder cone program

minimum$\mathrm{z}\mathrm{e}$

$\frac{1}{B_{s}}\sum_{j\in E}w_{j}F_{0j}^{*}$ ,

subject to $\sum_{j\in E}D_{ij}\vec{F_{j}}^{*}=G_{i}^{k}.$
, $i\in V$, $\max[T_{j}^{k},$ $||\vec{F}_{j}^{*}||]\leq F_{0j}^{*}$ , $j\in E$ .

For each $j\in E\dot,$ Let $\hat{F}_{0j}^{*}$ be the value of $F_{0j}^{*}$ at the obtained optimal solution
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5. $T_{j}^{k+1}:=\hat{F}_{0j}^{*}$ for all j $\in E$ .

6. $k$. $:=k+1$ .

7. If $k=N$ then stop; else go to Step 2.

The quantity $\sum_{j}w_{j}T_{j}^{k}$ represents the volume of the shield at the $(k$. –1 $)$ -th iteration. Ob-
viously, for any $k\geq 1$ , $T_{j}^{k}$ , $j\in E$ represents adesign which is feasible for all perturbations
$(\Delta B_{n}^{*})^{l}$ , $l=0$ , $\ldots$

$k$. –1. This implies that $T^{N}\equiv(T_{1}^{N}, \ldots, T_{|E|}^{N})\in_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}(=_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}})$ . As was
mentioned before, by taking $N$ large enough, we obtain arobust design taking account of
uncertainty incurred in $B_{n}^{*}$ .

We implemented this procedure with the primal-dual algorithm (the basic algorithm with
NT direction; sparse implementation). The computational environment is the same as in
Section 4. The second-0rder cone program solved at Step 3contains 1669 three-dimensional
second-0rder cone constraints and the same number of linear inequality constraints. Thus,
the number of primal (dual) variables is 6676 ( $=1669\cross 3$ +1669. The number of $y$

variables is 3299(=1669+1630). We stop the iteration when the duality gap becomes less
than $1.0\cross 10_{J}^{-8}$.and it is confirmed that feasibility is satisfied to the same level in order.

We run the procedure with $N=1\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}$. It took 21457 $\sec$ to run the whole procedure
by solving 10000 second-0rder cone programs. The first iteration gives the optimal solution
2.52507 $\cross 10^{-2}$ for the original problem because $(\Delta B_{n}^{*})^{0}=0$ and $T^{0}=0$ . After 10000
iterations, the volume is increased to 2.55321 $\cross 10^{-2}$ , which is 101.1% of the original optimal
design. In Figure 6, we plot volume $\mathrm{v}\mathrm{s}$ . the number of iterations. It is observed that the
volume of the designed shield saturates as $k$. increases. We do not show the picture of the

Number of iterations

Figure 6: The volume of designed shield (unit $:10^{-2}\mathrm{m}^{3}$ ) $\mathrm{v}\mathrm{s}$ . the number of iterations
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obtained robust design because it is almost the same as the original one, but we can say that
robustness is to aconsiderable extent improved at the cost of increase of 1.1% of weight.

One might think that this is anaive and heuristic approach. It gives aconservative
approximate solution to the approximated robust counterpart (11), and the obtained solution
can be too optimistic in view of robustness if the finite point (or polyhedral) approximation
of the robust counterpart is crude. But on the other hand, from the engineering point of
view, one might well be satisfied, since the method provided afairly good approximate
optimal solution whose robustness is guaranteed for perturbations within the convex hull
of 10000 uniformly sampled points drawn from the domain of uncertainty. Anyway, this is
arobust optimization problem which we need to solve in reality, and there seems no nice
way to solve such aproblem without any approximation. In this respect, it is areasonable
approach to the problem with which we can be much more confident of the resulting design.
We emphasize that this type of robust optimization by simulation cannot be done without
astable and efficient algorithm like the primal-dual interior-point algorithm.

6Conclusion
In this paper, we dealt with the continuous version of the convex network flow problem which
can be formulated as a(continuous version of) second-0rder cone program. We proposed
to apply the primal-dual interior-point algorithms for second-0rder cone programming to
solve the problem after appropriate discretization. In particular, the magnetic shielding
design problem for the MAGLEV train was formulated as the continuous version of the sum
of Euclidean norm problem, and was solved successfully with finite element discretization
and the primal-dual interior-point algorithms. The optimal design was examined from the
physical point of view, and was compared with the one obtained by the previous approach. It
was confirmed that the method can solve the problem efficiently with high accuracy compared
with the previous approach, providing anice lower bound of the optimal value. As afurther
application of the primal-dual interior-point algorithm, we developed aheuristic procedure
for robust optimization. The procedure, which requires solution of thousands of perturbed
design problems, was successfully implemented with the primal-dual algorithm to obtain a
reasonable robust design. Further analysis of performance of the proposed procedure and
development of amore sophisticated procedure of robust optimization is an interesting topic
for further research.
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