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Abstract

In this paper, we propose aMarkov chain for sampling $(m+1)$-dimensional contingency tables

indexed by $\{1, 2\}^{m}\mathrm{x}\{1,2, \ldots,n\}$ . Stationary distribution of our chain is the uniform distribution

The mixing time of our chain is bounded by (1/2)n(n –1) $\mathrm{h}(dn/\epsilon)$ where $d$ is the average of the

values in cells and $\epsilon$ is agiven error bound. We use the path coupling method for estimating the
mixing time of our chain and showed that our chain is rapidly mixing. Lastly, we introduce some
results using Grobner bases for enumerating aU contingency tables.

1Introduction

$\{1,2|\mathrm{m}\ldots, n\}$ . Our chain has the uniform distribution as aunique stationary distribution. The mixing
time of our chain is bounded by (1/2)n(n-l) $\mathrm{h}(dn/\epsilon)$ where $d$ is the average of the values in cells and
$\epsilon$ is agiven error bound. We use the path coupling method $[5, 6]$ for estimating the mixing time of our

chain.
Contingency tables are used in statistics to store data from sample surveys. Consider ascenario

where $N$ subjects are categorized into atable according to some attributes. Data is often analyzed under
assumption that the attributes are independent; that is, the joint distribution is uniquely determined by

the marginal probabilities. We often assume that each table was generated from the uniform distribution

over the set of all the contingency tables (see [1, 2, 8, 15] for example). One of the commonly used
measure of independence is the $\chi^{2}$ statistics [23]. Atypical test of the independence asks what fraction
(the sum of probabilities) of tables have $\chi^{2}$ value smaller than aparameter $t$ , as $t$ varies. When the

marginal totals are sufficiently large, we can apply the Pearson chi-square test [23]. In case that marginal

totals includes asmall number, we need an exact inference for contingency tables [15]. For the analysis

of 2 $\mathrm{x}2$ contingency tables, an alternative to maximum likelihood estimation and $\chi^{2}$ goodness-0f fit tests

is the use of Fisher’s exact test for independence [16].

Exact test can be done by systematic enumeration of all the tables. When the number of tables is
huge, exact enumeration is impractical. Mehta and Patel [22] proposed anetwork algorithm for exact
counting (not for enumeration) of contingency tables. However, the computational efforts and memory

requirement of their algorithm is bounded by the table sum and so impractical when the table sum is
large. For estimating the moments of $\chi^{2}$ statistics efficiently, astandard technique is the ordinary Monte
Carlo method if we have amethod for sampling from the set of contingency tables. By using arapidly
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mixing Markov chain with the desired stationary distribution, we can sample acontingency table after

enough number of transitions of the Markov chain from arbitrary initial state.

It is known that the problem for generating -dimensional contingency tables is intractable. More

precisely, when we deal with 3-dimensional tables, the problem for checking the existence of at least

one table satisfying the given marginal totals is $\mathrm{N}\mathrm{P}$-complete[18]. Moreover Diaconis and Strumfels

[11] proposed algebraic algorithms for finding Markov bases for higher dimensional contingency tables.

Recently, Aoki and Takemura discussed Markov bases for some classes of 3-dimensional contingency tables

$[4, 27]$ . In this paper, we deal with aspecial class of $(m+1)$-dimensional contingency tables such that

the cells are indexed by $\{1, 2\}^{m}\mathrm{x}\{1,2, \ldots,n\}$ . For this class, anatural Markov basis exists, which is a

direct extension of 2-dimensional case. This class of contingency tables arises in many practical situations
$[14, 25]$ . There also exist some theoretical results on testing the independency of attributes of 2 $\mathrm{x}2\mathrm{x}K$

tables (see Agresti’s survey paper [1] for example).

The problem of almost uniform sampling of contingency tables can be solved by using aMarkov

chain that converges to the uniform distribution. Diaconis and Saloff-Coste [10] discussed the rate of

convergence of anatural Markov chain for 2-dimensional contingency tables. They have shown that

the ordinary chain mixes polynomial time in the table sum when the numbers of rows and columns are

fixed. Dyer, Kannan and Mount [13] proposed adifferent Markov chain for counting the number of 2-

dimensional contingency tables. In case of sufficiently large marginal totals, their chain mixes polynomial

time in the number of rows and columns. For 2-dimensional contingency tables with two rows, Hernek

[17] showed that the mixing time of the ordinary Markov chain is bounded by apolynomial of table

sum and number of columns. Hernek bounded the mixing time of the chain by using coupling lemma

shown by Aldous [3]. Dyer and Greenhill [12] proposed arapidly mixing Markov chain for two rowed

contingency tables. Their chain mixes polynomial time in the logarithm of table sum and the number

of columns. They analyzed the mixing rate of their chain by using path coupling technique proposed by

Bubley and Dyer $[5, 6]$ . Kannan, Tetali and Vempala [21] gave aMarkov chain with polynomial-time

convergence for the 0-1 case with nearly equal marginal totals. In contrast, Chung, Graham and Yau [7]

proposed aMarkov chain for contingency tables with large enough marginal sums and showed that their

chain converges in pseudo polynomial time.
In Section 2, we introduce some notations and summarize the path coupling method. In Section 3,

we describe our first chain whose stationary distribution is uniform. Section 4, we introduce some results

using Gr\"obner bases for enumerating all contingency tables.

2Notations and Definitions

We denote the set of integers (non-negative integers, positive integers) by $\mathrm{Z}(\mathrm{Z}_{+}, \mathrm{Z}_{++})$, respectively.

In this paper, we consider aset of $(m+1)$-dimensional contingency tables indexed by $\mathrm{B}^{m}\mathrm{x}J$ where

$\mathrm{B}=\{1,2\}$ and $J=\{1,2, \ldots,n\}$ . Any index in $J$ is called acolumn index. For any vector $x$
$\in \mathrm{Z}^{\mathrm{B}^{m}\mathrm{x}J}$ ,

both $\mathrm{x}(\mathrm{i};\mathrm{j})$ and $x$ ($i_{1}$ ,i2, $\ldots$ , $i_{m};j$) denote the element of $x$ indexed by: $=(i_{1},i_{2}, \ldots, i_{m})\in \mathrm{B}^{m}$ and

$j\in J$ . For any column index $j\in J$ , $x(j)\in \mathrm{Z}^{\mathrm{B}^{m}}$ denotes the subvector of $x$
$\in \mathrm{Z}^{\mathrm{B}^{m}\mathrm{x}J}$ consists of elements

defined by indices in $\mathrm{B}^{m}\mathrm{x}\{j\}.\dot{\mathrm{G}}$iven a vector of indices $:\in \mathrm{B}^{m}$ and an index $l\in\{1,2,\ldots,m\},\dot{\iota}_{\overline{l}}$

denotes the vector of indices $(i_{1}, \ldots,i_{l-1},i_{l+1}, \ldots,i_{m})\in \mathrm{B}^{m-1}$ and we also denote the vector :by $(\dot{l}_{\overline{l}},i\iota)$

by changing the order of elements. For any vector $x$
$\in \mathrm{Z}^{\mathrm{B}^{m}\mathrm{x}J}$ and $\mathit{1}\in\{1,2, \ldots,m\}$ , $x(\dot{l}_{\overline{l}},i\iota;j)$ denotes
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Figure 1: An example of $\mathrm{B}\mathrm{x}\mathrm{B}\mathrm{x}J(|J|=6)$ table (denoted by $x^{*}$ ).

the element $x(:;j)$ .
Let $(t^{1},r^{2}, \ldots,\mathrm{r}^{m};\mathrm{c})$ be asequence of non-negative integer vectors where $\Gamma^{l}\in \mathrm{Z}_{+}^{\mathrm{B}^{m-1}\mathrm{x}J}$ for each

$\mathit{1}\in\{1,2, \ldots,m\}\backslash$ and $\mathrm{c}\in \mathrm{Z}_{+}^{\mathrm{B}^{m}}$ . The element of $\tau^{l}$ indexed by $(:\prime jj)\in \mathrm{B}^{m-1}\mathrm{x}J$ is denoted by $r^{l}(:’;j)$ .
The set of contingency tables corresponding to $(T^{1}, r^{2}, \ldots,r^{m};\mathrm{c})$ is defined by

$\mathcal{T}^{\mathrm{d}\mathrm{e}\mathrm{f}}=$
.

$\{x$ $\in \mathrm{Z}_{+}^{\mathrm{B}^{m}\mathrm{x}J}|x(\dot{\iota}_{7},1j)+x(i_{\overline{l}},2.j)=r^{l}(i_{\overline{l}},\cdot j)\sum_{j\in J}x(\dot{l}j)=c(\cdot)$ $(\forall l\in\{1,2, \ldots,m\}(\forall\dot{l}\in \mathrm{B}^{m})’\forall\dot{l}_{\overline{l}}\in \mathrm{B}^{m-1}, \forall j\in J)$

,
$\}$ .

Each element in $\mathcal{T}$ is called atable for simplicity. In the following, $\sum_{\in \mathrm{B}}$. $\mathrm{c}(\mathrm{i})$( is denoted by $N$. Clearly,

for any table $x$ $\in \mathcal{T}$ , the sum total of elements of$is equal to $N$.
In the rest of this section, we briefly review the path coupling technique proposed by Bubley and

Dyer [5]. We use the technique in later sections to estimate the mixing time of our Markov chain.
Here we deal with aMarkov chain $\mathcal{M}$ with state space $\mathcal{T}$. Assume that $\mathcal{M}$ has aunique stationary

distribution $\pi$ : $\mathcal{T}arrow[0,1]$ . For any probability distribution function $\pi’$ on $\mathcal{T}$, define the total variation
distance between $\pi$ and $\pi’$ to be

$\mathrm{D}_{\mathrm{T}\mathrm{V}}(\pi,\pi’)=\mathrm{m}\mathrm{a}\mathrm{x}\mathrm{d}\mathrm{e}\mathrm{f}$
.

$\tau’\subseteq \mathcal{T}|\sum_{X\in \mathcal{T}},\pi(ax)-\sum_{l\in \mathcal{T}},\pi’(x)|=(1/2)\sum_{X\in \mathcal{T}}|\pi(x)-\pi’(ax)|$ .

If the initial state of the chain $\mathcal{M}$ is $, we denote the distribution of the chain at time $t$ by $P_{X}^{t}$ : $\mathcal{T}arrow[0,1]$ ,
i.e.,

$P_{X}^{t}(y)=\mathrm{P}\mathrm{r}[X_{t}\mathrm{d}\mathrm{e}\mathrm{f}.=y|X_{0}=x]$ $(\forall y\in\eta$ .
The rate of convergence to stationary from the initial state $x$ may be measured by

$\tau_{l}(\epsilon)=\min${
$\mathrm{d}\mathrm{e}\mathrm{f}$.

$t|\mathrm{D}_{\mathrm{T}\mathrm{V}}(\pi,P_{X}^{t})\square \epsilon$ for all $t’\geq t$}

where the error bound $\epsilon$ is agiven positive constant. The mixing time $\tau(\epsilon)$ of $\mathcal{M}$ is defined by

$\tau(\epsilon)=\max\tau_{X}(\epsilon)\mathrm{d}\mathrm{e}\mathrm{f}.$,
$ax\epsilon\tau$

72



which is independent of the initial state.
Next, we define aspecial Markov process with respect to $\mathcal{M}$ called joint process. Ajoint process of

$\mathcal{M}$ is aMarkov chain $(X_{t},\mathrm{Y}_{t})$ defined on $\mathcal{T}\mathrm{x}\mathcal{T}$ satisfying that each of $(X_{t})$ , $(\mathrm{Y}_{t})$ , considered marginally,

is afaithful copy of the original Markov chain $\mathcal{M}$ . More precisely, we require that

$\mathrm{P}\mathrm{r}[X_{t+1}=x’|(X_{t},\mathrm{Y}_{t})=(x, y)]$ $=$ $P_{\mathcal{M}}(x, ox’)$ ,

$\mathrm{P}\mathrm{r}[\mathrm{Y}_{t+1}=y’|(X_{t},\mathrm{Y}_{t})=(x, y)]$ $=$ $P_{\mathcal{M}}(y,y’)$ ,

for all $x$ , $y$ , $\mathrm{x}$

’

$,$

$\in \mathcal{T}$ where $P_{\mathrm{J}4}(x, x’)$ and $P_{\Lambda 4}(y,y’)$ denotes the transition probability from $x$ to $x’$

and from $y$ to $y’$ of the original Markov chain $\mathcal{M}$ , respectively.

Path coupling lemma [Bubley and Dyer [5]]

Let $G$ be adirected graph with vertex set $\mathcal{T}$ and arc set $A\subseteq \mathcal{T}\mathrm{x}\mathcal{T}$ . Let $\ell:Aarrow \mathrm{Z}_{++}$ be apositive

length defined on the arc set. We assume that $G$ is strongly connected. For any ordered pair of vertices

$(x, x’)$ of $G$ , the distance ffom $x$ to $x’$ , denoted by $\ell(x, x’)$ , is the length of the shortest path from $x$ to

$x’$ , where the length of apath is the sum of the lengths of arcs in the path. Suppose that there exists a

joint process $(X,\mathrm{Y})|arrow(X’,\mathrm{Y}’)$ with respect to $\mathcal{M}$ satisfying that

$1>\exists\beta>0$ , $\forall(X,\mathrm{Y})\in A$ , $\mathrm{E}[\ell(X’,\mathrm{Y}’)]\square \beta\ell(X,\mathrm{Y})$ .

Then the mixing time $\tau(\epsilon)$ of the original Markov chain $\mathcal{M}$ satisfies $\mathrm{r}(\mathrm{e})\square (1-\beta)^{-1}\mathrm{h}(D/\epsilon)$ where $D$

denotes the diameter of $G$ , i.e., the distance of afarthest (ordered) pair of vertices.

3Markov Chain for Uniform Distribution

First, we show alemma which implies an irreducible Markov chain defined on the set of tables $\mathcal{T}$. We

define the paity function $\mathrm{p}:\mathrm{Z}arrow\{1, -1\}$ by

$\mathrm{p}(x)=\{$
1($x$ is an even integer),

-1 ($x$ is an odd integer ).

For any index $:\in \mathrm{B}^{m}$ , we denote $\mathrm{p}(i_{1}+i_{2}+\cdots+i_{m})$ by $\mathrm{p}(:)$ . The vector $\Delta\in\{1, -1\}^{\mathrm{B}^{m}}$ is defined by

$\Delta(i)=\mathrm{p}(i)\mathrm{d}\mathrm{e}\mathrm{f}$.for each index $i\in \mathrm{B}^{m}$ . Given an ordered pair of distinct column indices $(j’,j’)$ , we define

the vector $\Delta[j’,j’]\in \mathrm{Z}^{\mathrm{B}^{m}\mathrm{x}J}$ by

$\Delta[j’,j^{l/}](j)=\mathrm{d}\mathrm{e}\mathrm{f}$
.

$\{$

0 $(j\in J\backslash \{j’,j’\})$ ,
$\Delta$ $(j=j’)$ ,

$-\Delta$ $(j=j’)$ .
For any table $x$ $\in \mathcal{T}$, we introduce the set of neighboring tables;

$\mathrm{N}^{0}(x)\mathrm{e}=\{x’\in \mathcal{T}|\mathrm{d}\mathrm{f}.\exists(j’,j’)\in J\cross J, j’\neq j’, x’=x +\Delta[j’,j’]\}$ .

It is easy to see that if $x’=x$ $+.\mathrm{A}[\mathrm{j}’,\mathrm{j}"]$ , then $x$ $=x’-\Delta \mathrm{b}’.,j’$] $=x’+\Delta[j’,j’]$ , and so $x’\in$

$\mathrm{N}^{0}(x)$ implies $x$ $\in \mathrm{N}^{0}(x^{j})$ . For any pair of vectors $x$ , $x’\in \mathrm{z}^{\mathrm{B}^{m}\mathrm{x}J}$, $||x-x’||_{1}$ denotes the distance

$\mathrm{I}$ $|x(:;j)-x’(:;j)|$ between $x$ and $x’$ .
$(:_{i})\in \mathrm{B}^{m}\mathrm{x}J$
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Figure 2: The vector $\Delta[4,2]$ .

Lemma 1Let $\sigma$ be an undirected graph with vertex set $\mathcal{T}$ and for any pair of vertices $\{x, ax’\}$ , there
exists an edge between $x$ and $x’$ if and only if $x’\in \mathrm{N}^{0}(x)$ . Then the graph $G^{0}$ is connected, :. $e.$ , for any
pair of vertices $\{x, x’\}$ of $G^{0}$ , there exists $\dot{a}$ path on $\sigma$ between $x$ anti $x’$ . The diameter (the distance of
farthest pair of vertices) is less than or equal to $N/2^{m+1}$

Proof. Assume on the contrary that $G^{0}$ is not connected. Let $\{x, x’\}$ be apair of vertices which
minimizes $||x-x’||_{1}$ subject to the condition that there does not exist any path between $x$ and $ox’$ .
Without loss of generality, we can assume that $\exists j’\in J$, $\mathrm{x}(\mathrm{i};\mathrm{j}\mathrm{f})<d(2;j’)$ , where 2is the all-two vector
in Bm. It directly implies the followings;

1. $\mathrm{x}(\mathrm{i};\mathrm{j}\mathrm{f})<x’(i;j’)$ for any $:\in \mathrm{B}^{m}$ satisfying $\mathrm{p}(i)=\mathrm{p}(\mathrm{i})$ ,

2. $\mathrm{x}(\mathrm{i};\mathrm{j}\mathrm{f})>x’(i;j’)$ for any $i\in \mathrm{B}^{m}$ satisfying $\mathrm{p}(i)\neq \mathrm{p}(\mathrm{i})$ ,

3. $|x(:;j’)-x’(:;j’)|=|x(2;j’)-x’(2;j’)|$ for any $:\in \mathrm{B}^{m}$ .

Since $\sum_{j\in J}x(2;j)=\sum_{j\in J}x’(2;j)$ , there exists acolumn index $j’$ satisfying $x(2;j’)>\mathrm{z}’(2,\mathrm{j}")$. Then

we have the following properties;

1. $\mathrm{x}(\mathrm{i};\mathrm{j}\mathrm{f})>x’(:;j’)$ for any $i\in \mathrm{B}^{m}$ satisfying $\mathrm{p}(\mathrm{i})=\mathrm{p}(\mathrm{i})$ ,

2. $\mathrm{x}(\mathrm{i};\mathrm{j}\mathrm{f})<x’(:;j’)$ for any $i\in \mathrm{B}^{m}$ satisfying $\mathrm{p}(:)\neq \mathrm{p}(\mathrm{i})$ ,

3. $|x(\dot{\iota};j’)-x’(i;j’)|=|x(2;j’)-x’(2;j’)|$ for any $:\in \mathrm{B}^{m}$ .

The vector $x’=x$ $+\mathrm{A}[\mathrm{j}\mathrm{f},\mathrm{j}"]$ is non-negative and so $x’\in \mathcal{T}$. Since $x’\in \mathrm{N}^{0}(x)$ , there does not exist

any path between $x’$ and $x’$ . The inequality $||x-x’||_{1}>||x’-x’||_{1}$ contradicts with the minimality of

$||x-x’||_{1}$ . The definition of $x’$ implies that $||x-x’||_{1}=2^{m+1}$ .
The above procedure decreases the distance between adistinct pair of vertices and the decrement is

$2^{m+1}$ . If we apply the procedure $\lfloor||x-x’||_{1}/2^{m+1}\rfloor$ times, the distance of two vertices is less than $2^{m+1}$ .
It implies that the obtained pair of vertices are identical. Thus the diameter of $\sigma$ is less than or equal

to $N/2^{m+1}$ . $\square$

The above lemma indicates the existence of an irreducible Markov chain on $\mathcal{T}$ such that the transition

probability of an ordered pair of tables $(x, x’)$ is positive if and only if $x$ and $x’$ are adjacent on $\sigma$ .
When $m=1$ , this chain is aspecial case of the Markov chain proposed by Diaconis and Saloff-Coste [10].

However as discussed in Dyer and’ Greenhill [12], the mixing rate of Diaconis and Saloff-Coste’s chain is

low. In the following, we describe our chain, which is an extension of the chain discussed by Dyer and

Greenhill [12] for contingency tables with two rows
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For any table $x\in \mathcal{T}$ and any pair of distinct column indices $\{j’,j’\}$ , we define the following set of

tables;

$N(x, \{j’,j’\})=\mathrm{d}\mathrm{e}\mathrm{f}$
.

$\{(y. (j’),y(j’))\in \mathrm{Z}_{+}^{\mathrm{B}^{m}\mathrm{x}\{j’,j’\}}|\exists\theta\in \mathrm{Z}$, $(y(j’), y(j’))=(x(j’), x(j’))+\theta(\Delta, -\Delta)\geq 0\}$ .

13131313
$35$ $07$ $62$ $61$ $\mathrm{f}_{7}^{1}\mathrm{f}_{5}^{2}1$ $08$ $43$

$47$ $83$ $65$ $47$ $\mathrm{f}_{5}^{6}\mathrm{f}_{5}^{6}1$ $47$ $65$

$N(x^{*}, \{1,3\})$

3 0
5 7

2 1
6 6

0 3
8 4

4 8
7 3

5 7
6 4

7 5
4 6

Figure 3: Vectors in $N(x^{*}, \{1,3\})$ .
$\mathrm{c}$

Markov Chain $\mathcal{M}$

We introduce our chain $\mathcal{M}$ with state space $\mathcal{T}$. For any table $x$ $\in \mathcal{T}$ and any pair of distinct column

indices $\{j’,j’\}$ , we define the following set of tables;

$\mathrm{N}^{1}$ ($x$ , $\{j’,j’\}$ ) $\mathrm{d}\mathrm{e}\mathrm{f}=$.
$\{x’\in \mathcal{T}$ $|x’(j)=x(j)$ $(\forall j\in J\backslash \{j’,j’\})$ , $(x’(j’),$ $ax’(j’))\in N(x$ , $\{j’,j’\})\}$

$=$ $\{x’\in \mathcal{T}|\exists\theta\in \mathrm{Z}, x’=ox +\theta\Delta[j’,j’]\geq 0\}$ .

The Markov chain $\mathcal{M}$ with the state space $\mathcal{T}$ is defined by the following transition procedure. We

denote the state of the chain $\mathcal{M}$ at time $t$ by $X_{t}$ and the element of $X_{t}$ indexed by $($:; $j)$ is denoted by

$X_{t}(i;j)$ . Then the state $X_{t+1}$ at time $t+1$ is determined as follows. First, choose apair of distinct

column indices $\{\mathrm{j}’,\mathrm{j}"\}$ randomly. Next, choose atable $X_{t+1}$ from $\mathrm{N}^{1}(X_{t}|, \{j’,j’\})$ at random.

Figure 4: The set of neighbors $\mathrm{N}^{1}$ ($’ , {1, 3}).

We estimate the mixing time of our chain $\mathcal{M}$ . According to the definition, it is clear that $\mathcal{M}$ is

aperiodic and irreducible. The transition probability of $\mathcal{M}$ from $x$ to $y$ , denoted by $P_{\mathcal{M}}(x,y)$ is

$P_{\mathcal{M}}(x,y)=\{$

( $(\begin{array}{l}n2\end{array})$ $|N(x, \{j’,j’\})|$) ( if $y\in \mathrm{N}^{1}(x;$ $\{j’,j’\})$ ),

$\sum_{j’<j^{ll}}$ ( $(\begin{array}{l}n2\end{array})$ $|N(x, \{j’,j’\})|$) $(x =y)$ ,

0 (otherwise)

75



Since $P_{\Lambda 4}(x, y)=P_{\Lambda 4}(y,x)$ , the stationary distribution of the chain is uniform.
First, we introduce adirected graph $G$ with the vertex set $\mathcal{T}$ and the arc set $A=\{(x, x’)|x’\in \mathrm{N}^{0}(x)\}$ .

We define that the length $\ell(a)$ of each arc $a\in A$ is equal to 1. The distance of any ordered pair of vertices
$(x, x’)$ on $G$ is denoted by $\ell(x,x’)$ . Next, we define ajoint process $(X, \mathrm{Y})-\succ$ ($\mathrm{X}7$ ,Y7) with respect to $\mathcal{M}$ .
For any pair of tables $(X, \mathrm{Y})\in A$ , we define the transition probability of our joint process from $(X,\mathrm{Y})$

to $(X’,\mathrm{Y}’)$ . Without loss of generality, we can assume that $\mathrm{X}(1)\neq \mathrm{Y}(1),X(2)\neq \mathrm{Y}(2)$ and $X(j)=\mathrm{Y}(j)$

for all $j\in J\backslash \{1,2\}$ . In the joint process, we choose apair of distinct column indices $(j’,j’)$ .
Case 1 $\cdot$. When $\{j’,j’\}\subseteq\{3, \ldots,n\}$ , it is clear that $N(X, \{j’,j’\})=\mathrm{M}(\mathrm{Y}, \{j’,j’\})$ and so we choose a
pair $(Z(j’), Z(j’))$ ffom $N(X, \{j’,j’\})$ at random. We set $X’$ and $\mathrm{Y}’$ to the contingency table obtained
from $X$ and $\mathrm{Y}$ by replacing $(X(j’),X(j’))$ and $(\mathrm{Y}(;7),\mathrm{Y}(\mathrm{j}"))$ by $(Z(j’), Z(j’))$ , respectively. Then, it is
clear that $(X’,\mathrm{Y}’)$ is also in $A$ and so $\ell(X’,\mathrm{Y}’)=1$ .

$\underline{\mathrm{C}\mathrm{a}\mathrm{e}\mathrm{e}2\cdot.}$ Next, consider the case that $\{j’,j’\}=\{1,2\}$ . It is clear that $N(X, \{j’,j’\})=N(\mathrm{Y},\{j’,j’\})$ .
We construct $X’$ and $\mathrm{Y}’$ by using the same manner of Case 1. Then, we have $X’=\mathrm{Y}’$ and $\ell(X’,\mathrm{Y}’)=0$.
case $\mathrm{s}$ Finally, we consider the case that $j’=1$ and $j’=3$. Other cases are treated in the same way
as follows.
$\underline{\mathrm{C}\mathrm{a}\mathrm{e}\mathrm{e}3-1}$ Consider the case that $\mu(X, \{j’,j’\})|=W(\mathrm{Y}, \{j’,j’’\})|$.

We denote $\mathrm{N}^{1}(X, \{j’,j’\})=\{X^{1},X^{2}, \ldots,X^{k}\}$ and $\mathrm{N}^{1}(\mathrm{Y}, \{j’,j’\})=\{\mathrm{Y}^{1},\mathrm{Y}^{2}, \ldots,\mathrm{Y}^{k}\}$. By arranging
the order of the elements, we assume that Xx $($1; $1)>X^{2}(1;1)>\cdots>X^{k}(1;1)$ and $\mathrm{Y}^{1}(1;1)>\mathrm{Y}^{2}(1;1)>$

$\ldots>\mathrm{Y}^{k}(1;1)$ . Then we choose $(X’,\mathrm{Y}’)$ randomly from $\{(X^{1},\mathrm{Y}^{1}), (X^{2},\mathrm{Y}^{2}), \ldots, (X^{k},\mathrm{Y}^{k})\}$ . It is easy to
see that $(X’,\mathrm{Y}’)\in A$ and so $\ell(X’, \mathrm{Y}’)=1$ .
iCase3-2 We only need to consider the case that $|N(X, \{j’,j’\})|>\psi(\mathrm{Y}, \{j’,j’\})|$ without loss of
generality. Since $(X,\mathrm{Y})\in A$ , it is easy to show that $\mu(X,\{j’,j’\})|=|N(\mathrm{Y}, \{j’,j’\})|+1$ . By arranging
the order of elements in $\mathrm{N}^{1}(X, \{j’,j’\})=\{X^{1},X^{2}, \ldots,X^{k+1}\}$ and $\mathrm{N}^{1}(\mathrm{Y}, \{j’,j’\})=\{\mathrm{Y}^{1},\mathrm{Y}^{2}, \ldots, \mathrm{Y}^{k}\}$,
we can assume that $\mathrm{X}(1)1)>X^{2}(1;1)>\cdots>X^{k+1}(1;1)$ and $\mathrm{Y}^{1}(1;1)>\mathrm{Y}^{2}(1;1)>\cdots>\mathrm{Y}^{k}(1;1)$.
Then we choose $(X’,\mathrm{Y}’)$ as follows;

$(X’,\mathrm{Y}’)=\{$

$(X^{t},\mathrm{Y}^{5})$ with probability $(k-i+1)/\mathrm{k}(\mathrm{k}+1)$ for $:\in\{1,2, \ldots,k\}$ ,
$(X^{i+1},\mathrm{Y}‘)$ with probability $i/k(k+1)$ for $i\in\{1,2, \ldots, k\}$ ,

where the sum total of the probabilities is $(1+2+\cdots+k)/k(k+1)+(k+\cdots+2+1)/k(k+1)=1$. Figure 5
shows an example. Clearly from the definition, $(X^{\ell},\mathrm{Y}^{t})$ , $(X^{t},\mathrm{Y}^{:+1})\in A$ for each $:\in\{1,2, \ldots,k\}$ and so
$\ell(X’,\mathrm{Y}’)=1\backslash$ .

From the above, we have

$\mathrm{E}[\ell(X’,\mathrm{Y}’)]=(1-$ $(\begin{array}{l}\mathrm{n}2\end{array}))$ .

It implies the following result.

$\tau(\epsilon)\square (1/2)n(n$ -1) $\ln(dn/(2\epsilon))$ ,

where d is the average of the values in celb, :. e., d $=N/(2^{m}n)$ .
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$=\mathrm{Y}^{1}+\Delta[1,2]$ $=\mathrm{Y}^{2}+\Delta[1,2]$

$\mathrm{P}\mathrm{r}[(\mathrm{X}’,\mathrm{Y}’)=(X^{1},\mathrm{Y}^{1})|(j’,j’)=(1, 3)]=3/12$ , $\mathrm{P}\mathrm{r}[(X’,\mathrm{Y}’)=(X^{2},\mathrm{Y}^{1})|(j’,j’)=(1,3)]=1/12$,
$\mathrm{P}\mathrm{r}[(\mathrm{X}’,\mathrm{Y}’)=(X^{2},\mathrm{Y}^{2})|(j’,j’)=(1,3)]=2/12$ , $\mathrm{P}\mathrm{r}[(\mathrm{X}’,\mathrm{Y}’)=(X^{3},\mathrm{Y}^{2})|(j’,j’)=(1,3)]=2/12$,
$\mathrm{P}\mathrm{r}[(\mathrm{X}’,\mathrm{Y}’) (X^{3},\mathrm{Y}^{3})|(j’,j’)=(1,3)]=1/12$ , $\mathrm{P}\mathrm{r}[(X’,\mathrm{Y}’)=(X^{4},\mathrm{Y}^{3})|(j’,j’)=(1,3)]=3/12$.

Figure 5: An example of Case 3-2.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\dot{\mathrm{f}}$. The diameter of the graph $G$ is equal to that of $G^{0}$ and so less than or equal to $N/2^{m+1}$ . Path

coupling lemma induces the desired result. $\square$

Our chain is rapidly mixing. Moreover, our result indicates that the mixing time independent of the

dimension $m+1$ of acontingency table in the case that the size is 2 $\mathrm{x}2\mathrm{x}\cdots$ $\mathrm{x}J$ .

4Discussion

In this paper, we proposed the Markov chain for sampling 2 $\mathrm{x}2\mathrm{x}\cdots \mathrm{x}J$ contingency tables. Though the

author considered for constructing an efficient algorithm for finding all contingency tables, we couldn’t

propose it. With regard to enumeration algorithms for contingency tables, there are some results. $\mathrm{R}\triangleright$

cently, to enumerate 2-dimensional contingency tables, Sturmfels proposed an algorithm using Grobner

bases which arise from algebraic geometry [26]. His enumeration algorithm is based on the reverse search

technique. Sakata, Sawae and Kroumov have calculated Grobner bases for months to enumerate 4 $\mathrm{x}4\mathrm{x}4$

contingency tables [24]. Thus we need to consider about practical algorithms for enumerating contingency

tables.
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