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0 Introduction
In this note, we summarize the definitions and the results in [Kal, Ka2, Ka3] where
structures of C’-algebras associated with topological graphs are examined. Topolog-
ical graphs generalize (discrete) graphs as well as topological dynamical systems, and
our construction of C’-algebras from topological graphs is acommon generalization
of those of graph algebras [KPRR, KPR, FLR] and homeomorphism C’-algebras.

Sections 1and 2contain definitions of topological graphs and $C^{*}$ algebras ass0-
ciated with them. In Sections 3, we give the 6-term exact sequences of KK-groups
and $K$-groups. Sections 4is devoted to asummary of examples of C’-algebras as-
sociated with topological graphs. For the detail, see [Ka2]. The rest of the sections
contain results of [Ka3] where we generalize many notion such as minimality from
dynamical systems to topological graphs.

Some of the results in this note are generalized to the non-commutative setting
in [Ka5, Ka6]. We changed some notations from [Ka4].

1Topological correspondences
In this section, we introduce anotion of topological correspondences between locally
compact spaces, and construct C’-correspondences from them.

Let $A$ , $B$ be C’-algebras. A(right) Hilbert $B$-module $X$ is aBanach space with
a $B$-valued inner product $\langle\cdot$ , $\cdot\rangle$ and aright action of $B$ satisfying certain conditions
(for the detail, see [L]). For aHilbert $B$-module $X$ , we denote by $\mathcal{L}(X)$ the set of
adjointable operators on $X$ , and by $\mathcal{K}(X)$ the ideal of $\mathcal{L}(X)$ spanned by the elements
of the form $\theta_{\xi,\eta}$ for 4, y7 $\in X$ where $\theta_{\xi,\eta}\in \mathcal{L}(X)$ is defined by $\theta_{\xi,\eta}(\zeta)=\xi\langle\eta$ , $()$ for
$\zeta\in X$ . By aleft action of the C’-algebra $A$ on the Hilbert $B$-module $X$ , we mean a
$*$ -homomorphism $\pi$ : $Aarrow \mathcal{L}(X)$ . AHilbert $B$-module $X$ together with aleft action
of $A$ on $X$ is called aC’-correspondence from $A$ to $B$ . From $\mathrm{a}*$-homomorphism
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$\varphi$ : A $arrow B$ , we can define aC’-correspondence from A to B by taking X $=B$ .
Thus we consider $C^{*}$ -correspondences as ageneralization $\mathrm{o}\mathrm{f}*$-homomorphisms.

Definition 1.1 Let $E^{0}$ and $F^{0}$ be locally compact (HausdorfF) spaces. Atopological
correspondence $(E^{1}, d, r)$ from $E^{0}$ to $F^{0}$ consists of alocally compact space $E^{1}$ , a
local homeomorphism $d:E^{1}arrow E^{0}$ , and acontinuous map $r:E^{1}arrow F^{0}$ .

Acontinuous map $\sigma$ : $E^{0}arrow F^{0}$ gives atopological correspondence $(E^{0}, \mathrm{i}\mathrm{d}, \sigma)$ .
More generally, aset of continuous maps $\sigma_{i}$ : $O_{i}arrow F^{0}$ defined only on open subsets
$O_{i}$ of $E^{0}$ gives atopological correspondence $(E^{1}, d, r)$ by setting $E^{1}=\square _{i}O_{i}$ and
defining $d$ by the embedding and $r$ by $\sigma_{i}’ \mathrm{s}$ . We can say that the subset $r(d^{-1}(v))\subset$

$F^{0}$ is the “image” of apoint $v\in E^{0}$ under atopological correspondence $(E^{1}, d, r)$ ,
which can be empty or infinite. Thus topological correspondences are “multi-valued”
generalizations of continuous maps.

Let us take atopological correspondence $(E^{1}, d, r)$ from $E^{0}$ to $F^{0}$ . Denote by
$C_{d}(E^{1})$ the set of continuous functions 4of $E^{1}$ such that $\langle\xi, \xi\rangle(v)=\sum_{e\in d^{-1}(v)},|\xi(e)|^{2}<$

$\infty$ for any $v\in E^{0}$ and $\langle\xi, \xi\rangle\in C_{0}(E^{0})$ . For $\xi$ , $\eta\in C_{d}(E^{1})$ and $f\in C_{0}(E^{0})$ , we define
$\xi f\in C_{d}(E^{1})$ and $\langle\xi, \eta\rangle\in C_{0}(E^{0})$ by

$(\xi f)(e)=\xi(e)f(d(e))$ for $e\in E^{1}$ ,

$\langle\xi, \eta\rangle(v)=\sum_{e\in d^{-1}(v)}\overline{\xi(e)}\eta(e)$
for $v\in E^{0}$ .

With these operations, $C_{d}(E^{1})$ is aHilbert $C_{0}(E^{0})$ -module([Kal, Proposition 1.10]).
We define aleft action $\pi_{r}$ of $C_{0}(F^{0})$ on $C_{d}(E^{1})$ by $(\pi_{r}(f)\xi)(e)=f(r(e))\xi(e)$ for
$e\in E^{1}$ , $\xi\in C_{d}(E^{1})$ and $f\in C_{0}(F^{0})$ . Thus we get aC’-correspondence $C_{d}(E^{1})$ from
$C_{0}(F^{0})$ to $C_{0}(E^{0})$ . Acomposition of two topological correspondences can be defined
naturally, and this relates to the internal tensor product of C’-correspondences.

2C’-algebras arising from topological graphs
Atopological dynamical system $\Sigma=(X, \sigma)$ consists of alocally compact space $X$

and ahomeomorphism aon $X$ . Since topological correspondences generalize con-
tinuous maps, apair of alocally compact space $E^{0}$ and atopological correspondence
$(E^{1}, d, r)$ from $E^{0}$ to itself generalizes atopological dynamical system. Such pair is
called atopological graph.

Definition 2.1 Atopological graph $E=(E^{0}, E^{1}, d, r)$ consists of two locally com-
pact spaces $E^{0}$ , $E^{1}$ , alocal homeomorphism $d$ : $E^{1}arrow E^{0}$ , and acontinuous map
$r$ : $E^{1}arrow E^{0}$ .

We think that $E^{0}$ is aset of vertices and $E^{1}$ is aset of edges and that an edge
$e\in E^{1}$ is directed from its domain $d(e)\in E^{0}$ to its range $r(e)\in E^{0}$ . We denote by
$E_{\Sigma}=(X, X, \mathrm{i}\mathrm{d}, \sigma)$ the topological graph defined by atopological dynamical system
$\Sigma=(X, \sigma)$ . As we saw in Section 1, atopological graph $E=(E^{0}, E^{1}, d, r)$ gives us
aC’-correspondence $C_{d}(E^{1})$ from $C_{0}(E^{0})$ to itself
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Definition 2.2 Let E $=(E^{0}, E^{1},$d, r) be atopological graph. AToeplitz E-pair
on aC’-algebra A is apair of maps T $=(T^{0}, T^{1})$ where $T^{0}$ : $C_{0}(E^{0})arrow A$ is a
$*$ -homomorphism and $T^{1}$ : $C_{d}(E^{1})arrow A$ is alinear map satisfying that

(i) $T^{1}(\xi)^{*}T^{1}(\eta)=T^{0}(\langle\xi, \eta\rangle)$ for 4, $\eta\in C_{d}(E^{1})$ ,

(ii) $T^{0}(f)T^{1}(\xi)=T^{1}(\pi_{r}(f)\xi)$ for $f\in C_{0}(E^{0})$ and $\xi\in C_{d}(E^{1})$ .

For $f\in C_{0}(E^{0})$ and $\xi\in C_{d}(E^{1})$ , the equation $T^{1}(\xi)T^{0}(f)=T^{1}(\xi f)$ holds
automatically from the condition (i). For aToeplitz $E$-pair $T=(T^{0}, T^{1})$ , we write
$C’(T)$ for denoting the C’-algebra generated by the images of the maps $T^{0}$ and
$T^{1}$ . We can define a $*$-homomorphism $\Phi^{1}$ : $\mathcal{K}(C_{d}(E^{1}))arrow C’(T)$ by $\Phi^{1}(\theta_{\xi,\eta})=$

$T^{1}(\xi)T^{1}(\eta)$
’ for $\xi$ , $\eta\in C_{d}(E^{1})$ .

Definition 2.3 Let $E=(E^{0}, E^{1}, d, r)$ be atopological graph. We define an open
subset $E_{\mathrm{r}\mathrm{g}}^{0}$ of $E^{0}$ by

$E_{\mathrm{r}\mathrm{g}}^{0}=\{v\in E^{0}|$ there exists aneighborhood $V$ of $v$

such that $r^{-1}(V)\subset E^{1}$ is compact, and $r(r^{-1}(V))=V\}$ ,

and set $E_{\mathrm{s}\mathrm{g}}^{0}=E^{0}\backslash E_{\mathrm{r}\mathrm{g}}^{0}$ .

Avertex in $E_{\mathrm{r}\mathrm{g}}^{0}$ is called regular, and avertex in $E_{\mathrm{s}\mathrm{g}}^{0}$ is called singular. We can
show that the restriction of $\pi_{\Gamma}$ to $C_{0}(E_{\mathrm{r}\mathrm{g}}^{0})$ is an injection into $\mathcal{K}(C_{d}(E^{1}))$ [Kal].

Definition 2.4 Let $E=(E^{0}, E^{1}, d, r)$ be atopological graph. AToeplitz E-pair
$T=(T^{0}, T^{1})$ is called aCuntz-Krieger $E$ -pair if $T^{0}(f)=\Phi^{1}(\pi_{r}(f))$ for all $f\in$

$C_{0}(E_{\mathrm{r}\mathrm{g}}^{0})$ . We denote by $\mathcal{O}(E)$ the universal C’-algebra generated by aCuntz-Krieger
$E$-pair $t=(t^{0}, t^{1})$ .

When $E$ is adiscrete graph, $\mathcal{O}(E)$ is isomorphic to the graph algebra of the
opposite graph of $E$ . For atopological graph $E_{\Sigma}$ defined by atopological dynamical
system $\Sigma=(X, \sigma)$ , the $C’$ algebra $\mathcal{O}(E_{\Sigma})$ is isomorphic to the homeomorphism $C^{*}-$

algebra $A(\Sigma)=C_{0}(X)x_{\sigma}\mathbb{Z}$ . The universal Cuntz-Krieger pair can be characterized
by the following two conditions.

Definition 2.5 AToeplitz pair $T=(T^{0}, T^{1})$ is called injective when $T^{0}$ is injective,
and said to admit a gauge action when for each complex number $z$ with $|z|=1$ there
exists an automorphism $\beta_{z}’$ on C’ (T) such that $\beta_{z}’(T^{0}(f))=T^{0}(f)$ and $\beta_{z}’(T^{1}(\xi))=$

$zT^{1}(\xi)$ .

For an injective Toeplitz pair $T=(T^{0}, T^{1})$ , the linear map $T^{1}$ is isometric.

Theorem 2.6 ([Kal, Theorem 4.5]) A Cuntz-Krieger pair $T$ is universal if and
only if it is injective and admits a gauge action.

We can define a $C^{*}$ algebra $\mathcal{O}(E)$ without using the open set $E_{\mathrm{r}\mathrm{g}}^{0}$ nor anotion
of Cuntz-Krieger pairs
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Proposition 2.7 ([Ka2]) Let E be a topological graph. For an injective Toeplitz E-
pair T admitting a gauge action, there exists a (unique) surjection $\rho$ : $C^{*}(T)arrow \mathcal{O}(E)$

such that $t^{i}=\rho\circ T^{i}$ for i $=0,$ 1.

Thus $\mathcal{O}(E)$ can be defined as the smallest C’-algebra generated by an injective
Toeplitz Eimpair admitting agauge action. Note that the existence of such smallest
$C$’-algebra is anon-trivial fact. Now Theorem 2.6 can be rephrased as follows.

Proposition 2.8 Let $E$ be a topological graph. For an injective Toeplitz $E$ -pair $T$

admitting a gauge action, the surjection $\rho$ : $C^{*}(T)arrow \mathcal{O}(E)$ in Proposition 2.7is an
isomorphism if and only if $T$ is a Cuntz-Krieger E-pair.

We can construct the C’-algebra $\mathcal{O}(E)$ concretely using the Fock space. This
construction gives us an isomorphism between the $C^{*}$ algebra $\mathcal{O}(E)$ and the relative
Cuntz-Pimsner algebra of $C_{d}(E^{1})$ with respect to the ideal $C_{0}(E_{\mathrm{r}\mathrm{g}}^{0})$ of $C_{0}(E^{0})$ defined
in [MS].

3Nuclearity and KK-groups
For all topological graph $E$ , the $C’$ algebra $\mathcal{O}(E)$ is nuclear ([Kal, Proposition
6.1]), and it satisfies the Universal Coefficient Theorem (UCT) of [RoSc] when it is
separable ([Kal, Proposition 6.6]). The C’-algebra $\mathcal{O}(E)$ is separable if and only if
$E$ is second countable, which means both $E^{0}$ and $E^{1}$ are second countable. We get
6-term exact sequences of $KK$-groups and $K$-groups which help to compute those
of the C’-algebra $\mathrm{O}(\mathrm{E})$ .

Let us denote by $\iota_{*}\in KK(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}), C_{0}(E^{0}))$ the element defined by the inclusion
$\iota$ : $C_{0}(E_{\mathrm{r}\mathrm{g}}^{0})\mathrm{c}arrow C_{0}(E^{0})$ , and by $[\pi_{r}]\in KK(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}), C_{0}(E^{0}))$ the element defined
by the triple $(C_{d}(E^{1}), \pi_{r}, 0)$ . Note that the element $[\pi_{r}]$ is obtained from the map
$\pi_{r}$ : $C_{0}(E_{\mathrm{r}\mathrm{g}}^{0})arrow \mathcal{K}(C_{d}(E^{1}))$ , the strong Morita equivalence between $\mathcal{K}(C_{d}(E^{1}))$ and
$C_{0}(d(E^{1}))$ defined by the Hilbert module $C_{d}(E^{1})$ , and the inclusion $C_{0}(d(E^{1}))\subset$

$C_{0}(E^{0})$ .

Proposition 3.1 ([Kal, Proposition 6.9]) Let $E$ be a second countable topologi-
$cal$ graph. For any separable C’-algebra $B$ we have the follow $ing$ ttno exact sequences:

$KK_{0}(B, C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}))\vec{\iota_{*}-[\pi_{r}]}KK_{0}(B, C_{0}(E^{0}))\vec{t_{*}^{0}}$
$KK_{0}(B, \mathcal{O}(E))$

$\uparrow$
$\downarrow$

$KK_{1}(B, \mathcal{O}(E))$
$\underline{t_{*}^{0}}KK_{1}(B, C_{0}(E^{0}))\underline{\iota_{*}-[\pi_{r}]}KK_{1}(B, C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}))$

and

$KK_{0}(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}), B)\overline{\iota_{*}-[\pi_{r}]}KK_{0}(C_{0}(E^{0}), B)\overline{t_{*}^{0}}$
$KK_{0}(\mathcal{O}(E), B)$

$\downarrow$
$\uparrow$

$KK_{1}(\mathcal{O}(E), B)$ $\underline{t_{*}^{0}}KK_{1}(C_{0}(E^{0}), B)arrow\iota_{*}-[\pi_{r}]KK_{1}(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}), B)$.
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Corollary 3.2 ([Kal, Corollary 6.10]) For a second countable topological graph
E, the following sequence of $K$ -groups is exact:

$K_{0}(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}))\vec{\iota_{*}-[\pi_{r}]}K_{0}(C_{0}(E^{0}))\vec{t_{*}^{0}}$
$K_{0}(\mathcal{O}(E))$

$\uparrow$ $\downarrow$

$K_{1}$ (Ct (E)) $\underline{t_{*}^{0}}K_{1}(C_{0}(E^{0}))\underline{\iota_{*}-[\pi_{r}]}K_{1}(C_{0}(E_{\mathrm{r}\mathrm{g}}^{0}))$ .

4Examples
Topological graphs are generalizations of not only (discrete) graphs and topological
dynamical systems but also other notions such as partial homeomorphisms [E], singly
generated dynamical systems [Re] and so on. Moreover the construction of $C^{*}-$

algebras from topological graphs generalizes those of

$\bullet$ homeomorphism C’-algebras,

$\bullet$ graph algebras [KPRR, KPR, FLR],

$\bullet$ crossed products by partial homeomorphisms [E],

$\bullet$ $C$’-algebras associated with branched coverings [DM],

$\bullet$ $C$’-algebras associated with singly generated dynamical systems [Re],

$\bullet$ C’-algebras associated with infinite matrices [EL],

$\bullet$ C’-algebras associated with subshifts [M].

The class of C’-algebras arising from topological graphs contains many examples of
nuclear C’-algebras such as;

$\bullet$ all AF-algebras

$\bullet$ all simple AT-algebras with real rank zero,

$\bullet$ many $\mathrm{A}\mathrm{H}$-algebras including all Goodearl algebras (see [RoSt, Example 3.1.7])
and purely infinite $\mathrm{A}\mathrm{H}$-algebras constructed in $[\mathrm{R}\emptyset]$ ,

$\bullet$ all simple separable nuclear purely infinite C’-algebras satisfying UCT,

$\bullet$ many simple stably projectionless C’-algebras.

The class of C’-algebras arising from topological graphs is closed under taking

$\bullet$ direct sums,

$\bullet$ unitizations,

$\bullet$ tensor products with $\mathrm{M}_{n}$ or $\mathrm{K}$ ,
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$\bullet$ tensor products with commutative C’-algebras,

$\bullet$ inductive limits by certain connecting maps,

$\bullet$ ideals which is invariant under the gauge action,

$\bullet$ quotients by ideals which is invariant under the gauge action.

5Orbits and invariant sets
In this section, we introduce anotion of orbits and invariant sets of topological
graphs. These are closely related ideal structures of the C’-algebra $\mathcal{O}(E)$ of atop0-
logical graph $E$ . The difference of definitions of positive orbit spaces and negative
orbit spaces comes from the irreversible feature of topological correspondences.

Let us fix atopological graph $E=(E^{0}, E^{1}, d, r)$ . We set $d^{0}=r^{0}=\mathrm{i}\mathrm{d}_{E^{0}}$ and
$d^{1}=d$ , $r^{1}=r$ . For $n=2,3$ , $\ldots$ , we define aspace $E^{n}$ of paths with length $n$ by

$E^{n}=$ { $(e_{1}, e_{2}, \ldots, e_{n})\in E^{1}\cross\cdots\cross E^{1}\cross E^{1}|d$ {$ek)=r(e_{k+1})$ for $k=1,2$ , $\ldots$ , $n-1$ }.

We define domain and range maps $d^{n}$ , $r^{n}$ : $E^{n}arrow E^{0}$ by $d^{n}(e)=d(e_{n})$ and $r^{n}(e)=$

$r(e_{1})$ for $e=(e_{1}, e_{2}, \ldots, e_{n})\in E^{n}$ . Note that (E, $d^{n}$ , $r^{n}$ ) is the $n$-times com-
position of the topological correspondence $(E^{1}, d, r)$ on $E^{0}$ . An infinite path $e=$
$(e_{1}, e_{2}, \ldots, e_{n}, \ldots)$ means that $e_{k}\in E^{1}$ and $d(e_{k})=r(e_{k+1})$ for each $k=1,2$ , $\ldots$ .
The set of all infinite paths is denoted by $E^{\infty}$ . The range $r^{\infty}(e)\in E^{0}$ of an infinite
path $e=$ $(e_{1}, e_{2}, \ldots, e_{n}, \ldots)\in E^{\infty}$ is defined by $r(e_{1})$ .

Definition 5.1 We define the positive orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)$ of $v\in E^{0}$ by

$\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)=\{r^{n}(e)\in E^{0}|e\in(ff)^{-1}(v)\subset E^{n}, n\in \mathrm{N}\}$.

Definition 5.2 For $n\in \mathrm{N}\cup\{\infty\}$ , apath $e\in E^{n}$ is called anegative orbit of $v\in E^{0}$

if $r^{n}(e)=v$ and $d^{n}(e)\in E_{\mathrm{s}\mathrm{g}}^{0}$ when $n<\infty$ .

Note that each $v\in E^{0}$ has at least one negative orbit, but may have many
negative orbits in general.

Definition 5.3 For anegative orbit $e=$ $(e_{1}, e_{2}, \ldots, e_{n})\in E^{n}$ of $v\in E^{0}$ with $n\in \mathrm{N}$ ,
the negative orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)$ is defined by

$\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)=\{v, d(e_{1}), d(e_{2}), \ldots, d(e_{n})\}\subset E^{0}$ .

Similarly, for anegative orbit $e=$ $(\mathrm{e}\mathrm{i}, e_{2}, \ldots, e_{k}, \ldots)\in E^{\infty}$ of $v\in E^{0}$ , the negative
orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)$ is defined by

$\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)=\{v, d(e_{1}), d(e_{2}), \ldots, d(e_{k}), \ldots\}\subset E^{0}$ .
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Definition 5.4 We define the orbit space Orb(v, e) of v $\in E^{0}$ with respect to a
negative orbit e of v by

Orb(v, $e$ )
$=,\cup \mathrm{O}\mathrm{r}\mathrm{b}^{+}(v’)v\in \mathrm{O}\mathrm{r}\mathrm{b}^{-}(v,e)$

.

Remark 5.5 Anegative orbit $e$ of $v\in E^{0}$ determines “the past” of $v$ , and the
negative orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)$ consists of the points in “the past” , while the positive
orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)$ is the set of all points in “the future” of $v$ . The orbit space
Orb(v, $e$ ) of $v$ with respect to the negative orbit $e$ consists of the all points which are
reached from some point in “the past”. “The past” $e\in E^{n}$ may have an “origin”
$d^{n}(e)$ which should be asingular point (when $n<\infty$), or may come from long, long
time ago (when $n=\infty$ ). When “the past” $e$ has an “origin” $v’\in E_{\mathrm{s}\mathrm{g}}^{0}$ , the orbit
space Orb(v, $e$ ) coincides with the positive orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v’)$ of the “origin” $v’$ .

Definition 5.6 Asubset $X$ of $E^{0}$ is said to be positively invariant if $d(e)\in X$

implies $r(e)\in X$ for each $e\in E^{1}$ , and negatively invariant if for $v\in X\cap E_{\mathrm{r}\mathrm{g}}^{0}$ , there
exists $e\in E^{1}$ with $r(e)=v$ and $d(e)\in X$ . Asubset $X$ of $E^{0}$ is said to be invariant
if $X$ is both positively and negatively invariant.

It is easy to see the following two lemmas.

Lemma 5.7 For each $v\in E^{0}$ , the positive orbit space $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)$ is positively invari-
ant. A subset $X$ of $E^{0}$ is positively invariant if and only if $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)\subset X$ for all
$v\in X$ .

Lemma 5.8 For each $v\in E^{0}$ and each negative orbit $e$ of $v$ , the negative orbit space
$\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)$ is negatively invariant. A subset $X$ of $E^{0}$ is negatively invariant if and
only if for each $v\in X$ , there exists a negative orbit $e$ of $v$ such that $\mathrm{O}\mathrm{r}\mathrm{b}^{-}(v, e)\subset X$.

From these lemmas, we get the following.

Proposition 5.9 For each $v\in E^{0}$ and each negative orbit $e$ of $v$ , the orbit space
Orb(v, $e$ ) is invariant. A subset $X$ of $E^{0}$ is invariant if and only if for each $v\in X$ ,
there exists a negative orbit $e$ of $v$ such that Orb(v, $e$ ) $\subset X$ .

We are interested in closed invariant subsets.

Lemma 5.10 If a subset $X$ of $E^{0}$ is positively invariant or negatively invariant,
then so is the closure $\overline{X}$ . Hence $\overline{X}$ is invariant for an invariant set $X\subset E^{0}$ .

By this lemma, $\overline{\mathrm{O}\mathrm{r}\mathrm{b}(v,e)}$ is aclosed invariant set for anegative orbit $e$ of $v\in E^{0}$ .
Let $X^{0}$ be aclosed subset of $E^{0}$ , and define $X^{1}=d^{-1}(X^{0})\subset E^{1}$ . If $X^{0}$ is positively
invariant, then we have $r(X^{1})\subset X^{0}$ and so $X=(X^{0}, X^{1}, d, r)$ is atopological graph.
We can state acondition for aclosed positively invariant set $X^{0}$ to be negatively
invariant (hence invariant) using the topological graph $X$ .
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Proposition 5.11 A closed positively invariant subset $X^{0}$ of $E^{0}$ is invariant if and
only if $X_{\mathrm{s}\mathrm{g}}^{0}\subset E_{\mathrm{s}\mathrm{g}}^{0}$ .

By this proposition, for aclosed invariant subset $X^{0}$ of $E^{0}$ , we have the inclusion
$X_{\mathrm{s}\mathrm{g}}^{0}\subset E_{\mathrm{s}\mathrm{g}}^{0}\cap X^{0}$ . In general, this inclusion is not equal. We will see this difference in
the study of ideals of $\mathcal{O}(E)$ (see Definition 7.1). We finish this section by studying
complements of invariant subsets.

Definition 5.12 Asubset $V$ of $E^{0}$ is said to be hereditary if $V$ satisfies $d(r^{-1}(V))\subset$

$V$ , and said to be saturated if we have $v\in V$ for $v\in E_{\mathrm{r}\mathrm{g}}^{0}$ satisfying $d(r^{-1}(v))\subset V$ .

Proposition 5.13 A set $X$ is positively invariant if and only if the complement $V$

of $X$ is hereditary, and negatively invariant if and only if $V$ is saturated.

Definition 5.14 For asubset $V$ of $E^{0}$ , we define $H(V)$ , $S(V)\subset E^{0}$ by

$H(V)=\cup d^{n}((r^{n})^{-1}(V))n=0\infty$ .

and by $S(V)= \bigcup_{n=0}^{\infty}V_{n}$ where $V_{0}=V$ and for $n=1,2$ , $\ldots$ , $V_{n}$ is defined inductively
by

$V_{n}=V_{n-1}\cup\{v\in E_{\mathrm{r}\mathrm{g}}^{0}|d(r^{-1}(v))\subset V_{n-1}\}$.

Proposition 5.15 For a subset $V$ of $E^{0}$ , $H(V)$ is the smallest hereditary subset
containing $V$ and $S(V)$ is the smallest saturated subset containing $V$ .

It is not difficult to see that if asubset $V$ is hereditary then so is $S(V)$ . Hence
we have the following.

Proposition 5.16 For a subset $V$ of $E^{0}$ , $S(H(V))$ is the smallest hereditary and
saturated subset containing $V$ .

By noting that if V is open then so is both $H(V)$ and $S(V)$ , we get the following.

Proposition 5.17 For an open subset $V$ of $E^{0}$ , the open set $S(H(V))$ is the small-
est open set which contains $V$ and whose complement is a closed invariant subset.

6The space of negative orbits, and the one-sided
Markov shift

We denote by $E_{\infty}^{0}$ the set of all negative orbits, and by $E_{\infty}^{1}$ the subset of $E_{\infty}^{0}$

consisting of the negative orbits whose length is grater than or equal to 1. We
define topologies on $E_{\infty}^{0}$ and $E_{\infty}^{1}$ as follows
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Let $\overline{E}^{1}=E^{1}\cup\{\infty\}$ be the one-point compactification of $E^{1}$ . We consider a
negative orbit e $\in E^{n}$ with n $\geq$ 1 as an element of the infinite direct product
$E^{1}\cross\overline{E}^{1}\cross\cdots$ of the compact space $\overline{E}^{1}$ by

$E^{n}$ a $(e_{1}, \ldots, e_{n})\vdash\Rightarrow(e_{1}, \ldots, e_{n}, \infty, \infty, \ldots)\in\overline{E}^{1}\cross\overline{E}^{1}\cross\cdots$ when $n<\infty$ ,
$E^{\infty}\ni$ $(e_{1}$ , $\ldots$ , $e_{k}$ , $\ldots$

$)$ -$ $(e_{1}, \ldots, e_{k}, \ldots)\in\overline{E}^{1}\mathrm{x}\overline{E}^{1}\cross\cdots$ when $n=\infty$ .

Thus we can consider $E_{\infty}^{1}$ as asubset of the compact set $\overline{E}^{1}\cross\overline{E}^{1}\cross\cdots$ , and we
define the relative topology on $E_{\infty}^{1}$ .

The set $E_{\infty}^{0}$ is adisjoint union of $E_{\mathrm{s}\mathrm{g}}^{0}$ and $E_{\infty}^{1}$ . We consider $E_{\infty}^{0}$ as asubset of
$E^{0}\cross\overline{E}^{1}\cross\overline{E}^{1}\cross\cdots$ by the embeddings

$E_{\mathrm{s}\mathrm{g}}^{0}\ni v\}arrow(v, \infty, \infty, \ldots)\in E^{0}\cross\overline{E}^{1}\cross\overline{E}^{1}\cross\cdots$ ,
$E_{\infty}^{1}$ a ( $e_{1}$ , e2, $\ldots$ ) $-+(r(e_{1}), e_{1}, e_{2}, \ldots)\in E^{0}\cross\overline{E}^{1}\cross\overline{E}^{1}\cross\cdots$ ,

and define the relative topology on $E_{\infty}^{0}$ . We denote by $r_{\infty}$ the embedding $E_{\infty}^{1}arrow E_{\infty}^{0}$ .
Then we have the following.

Proposition 6.1 The topological spaces $E_{\infty}^{0}$ and $E_{\infty}^{1}$ are locally compact, and the
map $r_{\infty}$ : $E_{\infty}^{1}arrow E_{\infty}^{0}$ is a homeomorphism onto an open subset of $E_{\infty}^{0}$ .

We define amap $d_{\infty}$ : $E_{\infty}^{1}arrow E_{\infty}^{0}$ by $d_{\infty}$ ( $e_{1}$ , e2, $\ldots$ ) $=(d(e_{1}), e_{2}, e_{3}, . . .)$ . Then $d_{\infty}$

is alocal homeomorphism, and so we get atopological graph $E_{\infty}=(E_{\infty}^{0}, E_{\infty}^{1}, d_{\infty}, r_{\infty})$ .
In the case that atopological graph $E$ has finitely many vertices and edges, and has
no sinks or sources (which means that $d$ and $r$ are surjective), the topological graph
$E_{\infty}$ is nothing but the one-sided Markov shift considered in [CK].

We define two maps $m^{0}$ : $E_{\infty}^{0}arrow E^{0}$ and $m^{1}$ : $E_{\infty}^{1}arrow E^{1}$ by

$m^{0}$ ( $v,$ $e_{1}$ , e2, $\ldots$ ) $=v$ , $m^{1}(e_{1}, e_{2}, \ldots)=e_{1}$ .

Then both $m^{0}$ and $m^{1}$ are surjective proper continuous maps and we have $m^{0}\circ d_{\infty}=$

$d\circ m^{1}$ and $m^{0}\circ r_{\infty}=r\circ$ $m^{1}$ . The pair $m=(m^{0}, m^{1})$ satisfying these conditions
(and one more condition) is called afactor map from $E_{\infty}$ to $E$ [Ka2]. Let us
define $\mathrm{a}*$-homomorphism $\mu^{0}$ : $C_{0}(E^{0})\ni f\vdasharrow f\circ m^{0}\in C_{0}(E_{\infty}^{0})$ and alinear map
$\mu^{1}$ : $C_{d}(E^{1})\ni\xi\vdasharrow\xi\circ m^{1}\in C_{d_{\infty}}(E_{\infty}^{1})$ . Since the factor map $m=(m^{0}, m^{1})$ satisfies
the condition called regularity, we get $\mathrm{a}*$-homomorphism $\mu$ : $\mathcal{O}(E)arrow \mathcal{O}(E_{\infty})$ such
that $\mu\circ t^{i}=t_{\infty}^{i}\circ\mu^{i}$ for $i=0,1$ where $t=(t^{0}, t^{1})$ is the universal Cuntz-Krieger E-
pair on $\mathcal{O}(E)$ and $t_{\infty}=(t_{\infty}^{0}, t_{\infty}^{1})$ is the universal Cuntz-Krieger $E_{\infty}$ pair on $\mathcal{O}(E_{\infty})$ .
The following is one of the main theorems of [Ka7].

Theorem 6.2 $The*$ -homomorphism $\mu$ : $\mathcal{O}(E)arrow \mathcal{O}(E_{\infty})$ is an isomorphism.

By this theorem, the C’-algebra $\mathcal{O}(E)$ is shown to be related to the dynamical
system $E_{\infty}=(E_{\infty}^{0}, E_{\infty}^{1}, d_{\infty}, r_{\infty})$ which can be considered as ageneralization of one-
sided Markov shifts. Recall that this observation was important in the work of
[CK]. We also see from Theorem 6.2 that the C’-algebra $\mathcal{O}(E)$ is obtained from a
topological groupoid whose unit space is $E_{\infty}^{0}$ .
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7Gauge invariant ideals
The set of all gauge invariant ideals is parameterized by pairs of two closed subsets
of $E^{0}$ called admissible pairs.

Definition 7.1 Apair $\rho=(X^{0}, Z)$ of closed subsets of $E^{0}$ satisfying the following
two conditions is called an admissible pair;

(i) $X^{0}$ is invariant,

(i) $X_{\mathrm{s}\mathrm{g}}^{0}\subset Z\subset E_{\mathrm{s}\mathrm{g}}^{0}\cap X^{0}$ .

Define aC’-subalgebra $\mathcal{F}^{1}\subset \mathcal{O}(E)$ and $\mathrm{a}*$-homomorphism $\pi_{0}^{1}$ : $\mathcal{F}^{1}arrow C_{0}(E_{\mathrm{s}\mathrm{g}}^{0})$

by
$F^{1}=\{t^{0}(f)+\varphi^{1}(x)|f\in C_{0}(E^{0}), x\in \mathcal{K}(C_{d}(E^{1}))\}$ ,

and $\pi_{0}^{1}(t^{0}(f)+\varphi^{1}(x))=f|_{E_{\epsilon \mathrm{g}}^{0}}$ . For an ideal I of $\mathcal{O}(E)$ , we define closed subsets $X_{I}^{0}$

and $Z_{I}$ of $E^{0}$ by

$X_{I}^{0}=$ {$v\in E^{0}|f(v)=0$ for all $f\in C_{0}(E^{0})$ with $t^{0}(f)\in I$},
$Z_{I}=$ { $v\in E_{\mathrm{s}\mathrm{g}}^{0}|f(v)=0$ for all $f\in\pi_{0}^{1}(I\cap F^{1})$ }.

Proposition 7.2 For an ideal I of $\mathcal{O}(E)$ , the pair $\rho_{I}=(X_{I}^{0}, Z_{I})$ is an admissible
paw.

Definition 7.3 For an admissible pair $\rho=(X^{0}, Z)$ , we define atopological graph
$E_{\rho}=(E_{\rho}^{0}, E_{\rho}^{1}, d_{\rho}, r_{\rho})$ as follows. Set $Y_{\rho}=Z\backslash X_{\mathrm{s}\mathrm{g}}^{0}$ , $\partial Y_{\rho}=\overline{Y_{\rho}}\backslash Y_{\rho}$ , and define

$E_{\rho}^{0}=X^{0}\mathrm{I}\mathrm{I}\overline{Y_{\rho}}\partial Y_{\rho}$ ’ $E_{\rho}^{1}=X^{1}\mathrm{I}\mathrm{I}d^{-1}(\overline{Y_{\rho}})d^{-1}(\partial Y_{\rho})$.

The domain map $d_{\rho}$ : $E_{\rho}^{1}arrow E_{\rho}^{0}$ is defined from $d:X^{1}arrow X^{0}$ and $d:d^{-1}(\overline{Y_{\rho}})arrow\overline{Y_{\rho}}$.
The range map $r_{\rho}$ : $E_{\rho}^{1}arrow E_{\rho}^{0}$ is defined from $r:X^{1}arrow X^{0}$ and $r:d^{-1}(\overline{Y_{\rho}})arrow X^{0}$ .

Note that for an admissible pair $\rho=(X^{0}, Z)$ with $Z=X_{\mathrm{s}\mathrm{g}}^{0}$ , we have $E_{\rho}=X$ .
By using Theorem 2.6, we can show the following.

Proposition 7.4 For a gauge-invariant ideal I of $\mathcal{O}(E)$ , there exists a natural is0-
morphism $\mathcal{O}(E)/I\cong \mathcal{O}(E_{\rho t})$ .

From this proposition and some computation, we get the next theorem.

Theorem 7.5 The map $I\vdash\not\simeq\rho_{I}$ gives us an inclusion reversing one-tO-One corre-
spondence between the set of all gauge-invariant ideals and the set of all admissible
pairs.

This theorem is acontinuous counterpart of [BHRS, Theorem 3.6]
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8 Freeness and topological freeness
Apath $e\in E^{n}$ with $n\geq 1$ is called aloop if $r^{n}(e)=d^{n}(e)$ . The vertex $r^{n}(e)=d^{n}(e)$

is called the base point of the loop $e$ . Aloop $e=$ $(e_{1}, \ldots, e_{n})$ is said to be simple if
$r(e_{i})\neq r(e_{j})$ for $i\neq j$ , and without entrances if $r^{-1}(r(e_{i}))=\{e_{i}\}$ for $i=1$ , $\ldots$ , $n$ .

Definition 8.1 Atopological graph $E$ is said to be topologically free if the set of
base points of loops without entrances has an empty interior.

This generalizes topological freeness of ordinary dynamical systems and Condi-
than $\mathrm{L}$ of graph algebras (see, for example, [T] and [KPR]).

Theorem 8.2 ([Kal, Theorem 5.12]) If a topological graph $E=(E^{0}, E^{1}, d, r)$ is
topologically free, then the natural surjection $\mathcal{O}(E)arrow C’(T)$ is an isomorphism for
all injective Cuntz-Krieger $E$ -pair $T=(T^{0}, T^{1})$ .

The necessity of topological freeness in Theorem 8.2 is proved in [Ka3]. By
Theorem 8.2, we have the following (cf. Proposition 7.4).

Proposition 8.3 Let I be an ideal of $\mathcal{O}(E)$ . If the topological graph $E_{\rho I}$ is topolog-
ically free, then I is gauge-invariant.

Definition 8.4 For apositive integer $n$ , we denote by $\mathrm{P}\mathrm{e}\mathrm{r}_{n}(E)$ the set of vertices
$v$ satisfying the following three conditions;

(i) there exists asimple loop $(e_{1}, \ldots, e_{n})\in E^{n}$ whose base point is $v$ ,

(ii) for each $i=1,2$ , $\ldots$ , $n$ , there exist no $e\in E^{1}$ satisfying $r(e)=r(e_{i})$ and
$d(e)\in \mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)$ other than $e_{i}$ ,

(iii) $v$ is isolated in $\mathrm{O}\mathrm{r}\mathrm{b}^{+}(v)$ .

We set Per(E) $= \bigcup_{n=1}^{\infty}\mathrm{P}\mathrm{e}\mathrm{r}_{n}(E)$ and Aper(E) $=E^{0}\backslash \mathrm{P}\mathrm{e}\mathrm{r}(E)$ .

An element in Per(J5) is called aperiodic point while an element in Aper(E) is
called an aperiodic point The conditions (i) and (ii) above mean that $v\in E^{0}$ is a
base point of exactly one simple loop, and the condition (iii) says that there exist
no “approximate loops” whose “base points” are $v$ .

Definition 8.5 Atopological graph $E$ is said to be free if Aper(E) $=E^{0}$ .

This is ageneralization of freeness of ordinary dynamical systems and Condition
$\mathrm{K}$ of graph algebras (see, for example, [KPRR]).

Proposition 8.6 A topological graph $E$ is free if and only if $E_{\rho}$ is topologically free
for every admissible pair $\rho$ .

In particular, free topological graphs are topologically free. From Theorem 7.5,
Proposition 8.3 and Proposition 8.6, we have the following.

Theorem 8.7 If a topological graph $E$ is free, then every ideal is gauge-invariant.
Hence the set of all ideals corresponds bijectively to the set of all admissible pairs by
the map $I\vdash\not\simeq\rho_{I}$ .
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9 Minimality and topological transitivity

In [Ka3], we generalize minimality and topological transitivity from topological dy-
namical systems to topological graphs.

Definition 9.1 Atopological graph $E$ is said to be minimal if there exists no closed
invariant sets other than G) or $E^{0}$ .

The following characterization of minimality is naturally expected.

Proposition 9.2 For a topological graph $E$ , the following conditions are equivalent.

(i) $E$ is minimal.
(ii) An orbit space Orb(v, $e$ ) is dense in $E^{0}$ for all $v\in E^{0}$ and all negative orbit $e$

of $v$ .
(iii) For every non-empty open set $V\subset E^{0}$ , we have $S(H(V))=E^{0}$ .

The condition (ii) in Proposition 9.2 is related to cofinality of (discrete) graphs
[KPRR]. By Theorem 7.5, $E$ is minimal if and only if $\mathcal{O}(E)$ has no non-trivial gauge
invariant ideals. We can prove the following.

Theorem 9.3 For a topological graph $E$ , the following conditions are equivalent.

(i) The C’-algebra $\mathcal{O}(E)$ is simple.

(ii) $E$ is minimal and topologically free.
(iii) $E$ is minimal and free.

For topological dynamical systems $\Sigma=(X, \sigma)$ , minimality implies topological
freeness when $X$ is infinite. This is not the case for topological graphs (or even
discrete graphs).

Definition 9.4 Atopological graph $E$ is called topologically transitive if we have
$\mathrm{H}(\mathrm{V}\mathrm{i})\cap H(V_{2})\neq\emptyset$ for two non-empty open sets $V_{1}$ , $V_{2}\subset E^{0}$ .

Proposition 9.5 If there exist $v\in E^{0}$ and a negative orbit $e$ of $v$ such that the
orbit space Orb(v, $e$ ) is dense in $E^{0}$ , then $E$ is topologically transitive.

The converse of Proposition 9.5 is true when $E^{0}$ is second countable, but in
general it is false even for topological dynamical systems.

Proposition 9.6 For a topological graph $E$ , the following are equivalent.

(i) $E$ is topologically transitive.

(ii) For two non-empty open sets $V_{1}$ , $V_{2}\subset E^{0}$ , we have $S(H(V_{1}))\cap S(H(V_{2}))\neq\emptyset$ .

(iii) If two closed invariant subsets $X_{1}^{0}$ , $X_{2}^{0}$ satisfies $X_{1}^{0}\cup X_{2}^{0}=E^{0}$ , then either
$X_{1}^{0}=E^{0}$ or $X_{2}^{0}=E^{0}$ holds.

Theorem 9.7 A C’-algebra $\mathcal{O}(E)$ is primitive if and only if $E$ is topologically free
and topologically transitive.
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