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Abstract: This paper discusses a theory of modal predicate logic,
which is based on S5. This paper gives four ways to define this
theory. The first way is to define a system which tells whether
a context supports a formula or not. In this way we evaluate a
formula with not a model but a context. This theory distinguish
occasional equality from necessary equality, as is discussed with the
problem of referentially opaque context. The aim of this paper is to
observe the mathematical properties of this theory. The second way
is a derivation system of Hirbert-style, which is given by adding new
axiom schemata to the rules of S5. The third is a derivation system
of Gentzen-style, where a sequent is not a sequence of formulae but
a table of formulae. his system satisfies cut elimination. The fourth
is a kind of possible-world semantics. In the fourth way, a formula
is valid when the formula is true in each partial abstraction models.
This paper shows the equivalence of these four ways, that is, these
four ways define the same theory.
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1 Introduction

There is a curious system of modal logic which appears in a literature [T]. The
system is a kind of semantical system, which tells whether a context supports
a formula or not. we call this system a system of logic for necessity.

A context is a pair of formulae (C, D) which have no modal symbols and
are consistent to each other, that is, I =(C A D) in classical logic. The left
formula C of the context (C, D) is called a permeant context and the right
formula D is called a sheltered context. We write C, D |=1, P when the contest
(C, D) supports the formula P. The relation =1, is defined by induction on
the construction of the formula. The precise formal definition appears in Def.
3.4. The intuitive meaning of C, D |1, P is the following. The modal operator
O shelters the sheltered context, but cannot shelter the permeant context. For
example, if P is a classical formula, then C, D |=1, Piff - C D D D P in classical
logic, and C,D = OP iff - C D P in classical logic. We write =1, P and call
P a valid formula when C,D |=1, P for each context (C, D). Then the set of



valid formula is regarded as a theory of modal logic. For example, if zf, P D Q
and =1, P, then =1 @ (Cor. 3.13). The propositional part of =, is equivalent
to S5 (Cor. 4.6), although j£1, z =y D Oz = y.

There is some background discussion of this system from the view point of
logic in the literature [T]. But, the aim of this paper is not such a discussion
from the logical view point. This paper aims at discussing only the mathematical
properties of this system, with comparing other three systems.

This paper introduce three other systems of modal logic. The second system
is a derivation system of Hirbert-style, which is given by adding a new axiom
schema to the rules of S5. The third is a derivation system of Gentzen-style,
where a sequent is not a sequence of formulae but a table of formulae. This
system satisfies cut elimination. The fourth is a kind of possible-world semantics.
In the third way, a formula is valid when the formula is true in each partial
abstraction models. This paper shows the equivalence of these four ways, that
is, these four ways define the same theory.

2 Language of modal predicate logic

Definition 2.1 (Language) A set X consists of finite signatures. Some of
them are predicates and the others are function symbols. Each ¢ € ¥ has its
arity in {0,1,2,...}. A function symbol of arity 0 is regarded as a constant. A set
V is the set of infinitely many variables. There are four logical symbols, which
are conjunction A, negation —, universal quantifier V and modality of necessity
O.

Terms are generated in the ordinary way by the function symbols in ¥
and variables in V. Formulae are generated in the ordinary way by the terms,
predicates in X', and four logical symbols.

The set X' has at least one predicates. The set X' either may have equality
‘=" as a binary predicate, or not. The sets X and V is ordered by a linear
ordering. This ordering is used to define the lexicographical ordering over the
terms and the formulae.

The notions of free variables, bound variables, renaming of variables, and
substitution of variables with terms are defined in the ordinary way.

Notation 2.2 If ‘=" € X, then we write the equations in the usual way ast = t’
instead of =(¢,t').

Definition 2.3 (Classical formulae) A formula without O is called a clas-
sical formula.

Notation 2.4 The language does not have implication, disjunction, existential
quantifier, nor possibility as primitives. We will use such logical symbols as
abbreviations.

1. P>Q:=~(PA-Q)
2. PVQ:=-(PAQ)
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3. POCQ:=(PAQ)V(~PA-Q)
4. 3z.P := -Vz.-P
5. OP :=-~[1-P

Notation 2.5 In this paper, the connective powers of logical symbols are listed
in the order as 0,0, , A, V, D, DC,V, 3. The connective powers of (1, ¢ and —
are strongest and those of V and 3 are weakest. The symbols A and V are left
associative and the symbol D is right associative.

Definition 2.6 (Classical logic) For a classical formula P, we write k¢ P
if P is derivable in the classical logic. Note that if ‘=" € X' then the rules of
equalities, namely the transitivity, are derivable in this classical logic.

3 Logic for necessity

Definition 3.1 (Formula of truth) We write T for the formula —~(-P A P),
where P is the first closed classical formula in the lexicographical ordering. This
plays the role of the representative of true formulae.

Definition 3.2 (Consistency) Let P and @ be classical formulae, which may
be open or closed. Then the formula P is consistent iff I/c —P. The formula P
is consistent to Q iff Yc ~(P A Q). '

Definition 3.3 (Context, permeant context and sheltered context) Let
C and D be classical formulae which are consistent to each other. Then the pair
(C, D) is called a contert. In the context (C, D), the left formula C is called the
permeant context, and the right formula D is called the sheltered context.

If the sheltered context is T, then we sometimes write (C,—) instead of

(C,T).

Definition 3.4 (System of logic for necessity) For a formula P and a con-
text (C, D), the relation C, D [=, P is defined in the induction on P as below.

1. If P has no logical symbols, then C,D |1, P iff ¢ (C A D) D P.
2. C,DELPAQIffC,D =1 P and C,D |=L Q.

3. C,D =1, —P iff for an arbitrary classical formula D’ which is consistent
to C A D, it holds that C,D A D' £, P.

4. C,D =y Vz.P iff C, D [=1, PJt/z] for all the terms t.
5.C,D =L OPiff C,T k=L P
We sometimes write C,— =1, P for C, T |, P.

Definition 3.5 (Valid formula) For a formula P, we write |5y, P if C,D k=,
P for each context (C, D). we call P a valid formula when |=, P.
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Remark 3.6 it is because of the rule C,D =1, OP iff C, T |=1, P, that C is
called permeant and D is called sheltered.

Definition 3.7 (Weakest sheltered context) For a classical formula C' and
a formula P, the weakest sheltered context 6c(P) is a classical formula defined
in the induction on P as below.

1. If P has no logical symbols, then dc(P) := C D P.

. 0c(PAQ) :=dc(P) Aéc(Q).

. 8¢ (=P) := —=(C A dc(P)).

. 6¢(Vz.P) := Vy.5¢c(P[y/z]) where y is not a free variable in C nor in D.
. 6c(OP) := T iff C t¢ dc(P), and 6c(OP) := -C iff C ¢ 0c(P).

T W W N

Remark 3.8 All the free variable of §c(P) are some free variables in C' and P.

Remark 3.9 The formula dc(P V Q) is equivalent to dc(P) V 6c(Q). The
formula §¢(OP) is equivalent to —C' if C k¢ —=d¢(P), and 3¢ (OP) is equivalent
to T if C /¢ —d¢c(P).

Proposition 3.10 Let C be classical formula and P be a formula. Then Fc
-C D é6¢c(P)

Proposition 3.11 Let C and P be classical formulae.
1. Fc éc(P)DCCDP.
2. If-c C D P then 6¢(OP) =T, and if Yc C DO P then 6c(OP) = -C
8. Ift/c =(CAP) then 6c(OP) = T, and if Fc =(CAP) then éc(OP) = -~C

Lemma 3.12 Let P be a formula and C and D be classical formulae. Then
Fc D D d¢c(P) iff either b¢ =(C A D) or C,D = P.

Corollary 3.13 Let P and Q be formulae and (C, D) be a context. If C, D =1
P> Q and C,D k=, P, then C,D [, Q.

Corollary 3.14 (Consistency) The set of valid formulae of |=1 is consistent.
Moreover, it is a conservative extension of classical logic.

Notation 3.15 We write F[Xj, ..., X,] for a formula which is constructed from
propositional variables X, ..., X,, with logical symbols -, A and 0. Let P, ...,
P, be formulae. Then we write F[P,,..., P,] for the formula (F[Xj,..., Xn])
[P/ X1, ..., Pn/Xs] which is given by the substitution of X;’s with P;’s in F[X;,
vy Xn)

Lemma 3.16 If F[X,...,X,] does not contain O, then dc(F[Py,..., Py]) is
equivalent to F[dc(Py), ...,0c(Pn)] in classical logic.
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Corollary 3.17 If F[X3,...,X»] is a classical formula which is a theorem of
classical logic, then =1, F[Py, ..., Py].

Remark 3.18 According to Cor. 3.13, Cor. 3.14, and Cor. 3.17, the set of
valid formulae is regarded as a theory of modal logic.

Remark 3.19 The followings hold.
=L (Vz.OP) D OVz.P (Barcan formula)
EL (Vz.OP) D OVz.P
EL (3z.P A93z.Q) D 3z.P AQOQ, if P is a classical formula.

FLz=yDOz=y

Remark 3.20 There has been a lot of discussion over the failure of z = y O
Oz = y, which appears in the problem of referentially opaque context ([Q], and
also Sec. 2, Chap. 4 in [N]). We do not discuss such problems in this paper.

4 Propositional part of S5

Definition 4.1 (S5) The derivation system S5 is defined as the following rules:

Axiom: where P is one of the following:

B

e Classical theorem: F[P,..., P,], where F[Xy,...,X,] is a theorem of
classical logic.

¢ Instantiation: (Vz.P) D P[t/z]

o Universality sift: (Vz.P D Q) D P D Vz.Q, where z is not free in P.

e Equality: £ =y O P D P[y/z], where P is a classical formula, if the
language has the symbol ‘=".

e K: O(PDQ)DOPDOOQ

e T2OPDOP

e D: OT

e 5: OO0PDO>OP
Implication elimination: Ll % P
Universality introduction: ~VaP

P
OoP
We write g5 P if P is a theorem of S5.

Necessity introduction:
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Remark 4.2 The formula x = y D Oz = y is not a theorem in the system
S5 defined here, although the system S5 is sometimes defined such as z = y D
Oz = y is its theorem.

Definition 4.3 (Propositional Formula) A propositional formula is a for-
mula without the symbols V and =.

Definition 4.4 (S5P) The derivation system S5P, which is the propositional
part of S5, is defined as S5 with the restriction such that all of the formulae in
the proof are propositional formula. Thus, none of the rules of equality, instan-
tiation, universality sift, nor universality introduction appears in the proofs. We
write Fgsp P if P is a theorem of S5P.

Lemma 4.5 For each formula P, If kg5 P, then =1, P.

Corollary 4.6 (Global Soundness of S5P) For each propositional formula
P, Iftgsp P, then =L P.

Corollary 4.7 (Casewise soundness of S5P) Let P be a propositional for-
mula. Let C and D be classical propositional formulae which are consistent to
each other. If there are some classical propositional formulae Ey, Ey, ..., Ey, such
that each E; is consistent to C and Fssp OC D D DQOE; D ---OFE, D P, then
C,D L P.

Lemma 4.8 (Normalisation of S5P) Let P be a propositional formula. Then
there are classical propositional formulae

C1,Dy,En, ..., Eim,,

027 D2a E21) ey E2m2)

C'n., Dna Enl; L) Enmn
such that S5P derives
P DOcC AN ©OCivD;Vv V OE;;

i=1,..,n j=1,..,m;
As the duality, there also exists a disjunctive-conjunctive normal form.

Lemma 4.9 (Casewise completeness of S5P) Let P be a propositional for-
mula. Let C and D be classical propositional formulae which are consistent to
each other. If C, D =1 P, then there are some classical propositional formulae
E\,E,,...,E, such that each E; is consistent to C and Fgsp OC D D D OE; D
---OFE, D P,

Lemma 4.10 (Global completeness of S5P) Let P be a propositional for-
mula. If =1, P, then Fgsp P.
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5 Distributive modality

Definition 5.1 (S5D) The derivation system of distributive modality of S5 is
defined by adding the following axiom schema to the system S5.

¢ Distributivity:
(O032.C) A (3z.D) A (C3z.E1) A ... A (2. Ey)
D3x. A(CVDVELV..VE,)ADASOE, A...AOE,

where all of C, D, E;, ..., E, are classical formulae.

We call this system S5D. We write Fgsp P when P is derivable in this system.

Remark 5.2 The axiom of distributivity is equivalent to a little more compli-

cated form:
(O3z.CvDv VE,) A3dz.D A /_\OHa:.E,-) D Jz.0(CVDVVE,)ADA

AJz.OF;
i

The inverse direction of this fbrm
(3z.0(CVDVVE)ADAA3z.CE;) D (O32z.CVDVVE;)A3z.DA
i i i

/\OB:BE,
i
is already a theorem of S5.

Lemma 5.3 (Normalisation of S5D) Let P be an arbitrary formula. Then
there are classical formulae

Cl, Dl, Ell, ceey Elml ’

C2, Dz, Ea1, ..., Bom,,

Cn, Dm Enl PERES Enm,.
such that S5D derives
P>HocC /\ OC,;VD,'V V OF;;

i=1,..,n i=1,...,m;
As the duality, there also exists a disjunctive-conjunctive normal form.

Remark 5.4 Let P be a theorem of S5. We make a formula P’ by erasing
all the occurrences of O in P. Then P’ is a theorem -of classical logic. It
does not hold for S5D. For example, let A and B be classical formulae. Then
(3z.©A) A (Jz.OB) D Jz.CA A OB is a theorem of S5D, although, of course,
(3z.A) A (3z.B) D 3z.A A B is not a theorem of classical logic.

Lemma 5.5 (Global soundness of S5P) For each formula P, ‘if"."sf,]) P
then 1, P.

Corollary 5.6 The system S5D is consistent. Especially, V/ssp Vry.z = y.

Corollary 5.7 S5D is a conservative extension of S5P.



Corollary 5.8 (Casewise soundness of S5D) Let P be a formula and (C, D)
be a context. If there are some classical formulae E;, Es, ..., E, such that each E;
is consistent to C and bssp OC D D DOE; D ---OE, D P, then C,D =, P.

Theorem 5.9 (Casewise completeness of S5D) Let P be a formula and
(C,D) be a context. If C,D |=1, P, then there are some classical formulae
E\,E,,...,E, such that each E; is consistent to C and Fssp OC D D D OE; D
---OFE, D P.

Theorem 5.10 (Global completeness of S5D) For each formula P, if =1
P then Fssp P.

Remark 5.11 The system S5P satisfies the substitution on formulae, which is
the following property. Let P, @ be formulae and p be a predicate of arity 0.
The formula P[Q/p] is made by substitution of p with @ in P. If Fgsp P then
Fssp P[Q/p]- ‘

The theory of classical predicate logic also satisfies the substitution on pred-
icates, which is the following property. Let P, R[z1, ...,z be a formulae and p
be a predicate of arity n. The formula P[R/p] is made by substitution of each
occurrence of p(ti,...,t, with R[t,...,t,] in P. If k¢ P then ¢ P[R/p).

However, the systems S5 and S5D do not satisfies the substitution on pred-
icates. That is because the axioms of equation and distributivity are sensitive
of modality.

6 Gentzen-style derivation system
Remark 6.1 Hereafter, we require the language X' to have equation ‘=".

Definition 6.2 (Sequent) A sequentis a table formed of sequences of formulae
as below.

A117"'1A111 Blly'",Blm1

Anly--'yAnl,. Bnls---aBnm,.
El) teey El

n+1

where each of A;; and B;; is a formula, and each E; is an equation such as
t=t.

Some of sequences “A;y, ..., Ay,”, “Bi, ..., Bim,”, and “En, ..., B, ,” may be
empty. The number n, which is the number of the rows of the middle part, may
be 0. In such case, the middle part would be empty, such as

A1, A | By, ... Bm
B, Ep

Notation 6.3 Let I" be a sequence of formulae such as “A4,, ..., A,”. We write
—I for the sequence “-A;,...,mA,”. We write A" for the formulae “A; A ... A
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A,”, and VI for the formulae “4; V...V A,”, If I' is empty, then A" stands
for T and VI stands for -T.

Definition 6.4 (Interpretation) Let I, ..., I, Ay, ..., 4, be sequences of for-
mulae, and E be a sequence of equations. Let S be a sequent such as

Io | Ao
In | 4

S=|...|]-...
I'n | An
E

Then, the interpretation of S is the formula [S] such that

[S1 = ~(
O((Alo) A (A-40))
A ( A O((AL) A (/\"‘Ai)))
i=1,..,n

A0 ((/\E)V V (/\I"i)/\(/\-'Ai)>

i=1,..,n

Remark 6.5 The intuitive meaning of [S] is the following. If [S] does not
hold, then:

1. (AIR) A (A—4p) must hold.
2. (AL;) A (A-4;) may hold for each ¢ =1, ..., n.
3. AE must hold if none of (A3) A (A—A4;) for i = 1,...,n holds.

Definition 6.6 (Deduction rules) Unfortunately we cannot put the whole
rules in the main sections because of the limit of pages. The whole rules appear

in the appendix. The important rules are the rules on modality and variable
elimination. The left rules of modality are:

Io [ Ao Io | Ao P Iy | Ao
P | A | A | A
S S .
Pl, | Aol [t=0,10 20| To 1 2o’
| A ni|a| |opn|a
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and the right rules of modality are:

Ip | A
In | A I | Ao, P
I, | A, I | 4
E|P
E E
To 120, 0P | [To 1 4o
I | 4
r| A, 0P
I, | A, E
FE

The rule of variable elimination is:

Io | Qo
z=1t,I1 | L
T=1tn, 0| An
wztn-}-l)E

Io | Qo
I 4
.| A,
E

where the variable z does not appear freely in the other part.

Remark 6.7 The rules of modalities realise the modality of S5. The rule of
equation makes the axiom of distributivity sound.

Definition 6.8 (Theorem of the Gentzen-style system) For a formula P,

we write Fg P when a sequent P |is derived.

Theorem 6.9 tgsp P iff g P

7 Possible-world model
Definition 7.1 (Model)
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1. A modelis M = (W, X), which is a pair of a set of worlds W and a set of
concepts X.

2. A world is w = (Dy,I,) € W, that is, a world w consists of a set of
individuals D,, and an interpretation I,, for the language X.

3. The set D,,, called an individual domain, is not empty.

4. For each predicate p € X of arity n, the interpretation I, maps p into a
subset I,(p) C D2. If ‘=" € X, then the equality ‘=’ is always mapped into the
diagonal set, that is, I,,(‘=") = {(d,d) | d € D, }.

5. For each function symbol f € X' of arity n, the interpretation I,, maps f into
a function I,(f) : DI — D,. Each function symbol f € X of arity n has an
action f over [] D, such as:

weW .
For &1, ...,6n € HWDw, f(&1s s n)(w) = Lu(f) (&1 (W), .., én(w)).
wE .
6. X C J] Dy and X is closed under f for each function symbol f € X, that
weW

is, if &,...,&n € X and f is a function symbol of arity n, then f(&;,...,&,) € X.

Definition 7.2 (Environment) An environment is a map of variables V into
concepts X. For an environment p, a variable z € V and a concept £ € X, we
write p[{/z] for another environment such as:

- pl¢/zl(y) =€ifyis z.

- p[¢/z](y) = p(y) if y is a variable other than z.

Remark 7.3 An environment of this definition maps a variable not into an
individual but into a function of worlds into individuals. Hughes and Cless-
well discuss such kind of environment for variables (Sec. 4, Chap 11 in [HC]).
However, they do not give the axiomatisation nor the precise characterisation.

Definition 7.4 (Interpretation of terms) For an interpretation I, and an
environment p, the interpretation of terms is defined by induction on the terms
as follows:

1. I,p(z) = p(z)(w) forz € V

2. Lyp(f(t1,t2, .y tn)) = Ty (f) Twp(t1), Twp(t2), .oy Tup(tn))

Definition 7.5 (Interpretation of formulae) For a model M = (W, X), a
world w = (D, I,,) € W and an environment p : V — X, the interpretation of
formulae is defined by induction on the formulae as follows:

1. For an atomic formula p(t, t2, ..., tn),

(M, w, p) | plt1, b2, -oeytn) I (Tup(t1), ooy Tup(tn)) € Lo ()

2. (M, w,p) = PAQ iff (M,w,p) = P and (M, w,p) = Q

3. (M,w,p) =P iff (M,w,p) £ P

4. (M,w,p) EVz.Piff forall { € X, (M,w,p[é/z]) = P

5. (M,w,p) = 0OPiffforallve W, (M,v,p) =P
We write M |= P if (M,w,p) | PforallweWandp:V — X.
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Definition 7.6 (Total abstraction model) A model M = (W, X) is a total
abstraction model if the followings hold:

1. For each w € W, there are infinitely many worlds v € W which are
isomorphic to w.

2. X = [] Dy
weW

A formula P is valid for total abstraction iff M |= P for all the total abstraction
models M, and we write =1 P.

Definition 7.7 (Partial abstraction model) A model M = (W,X) is a
partial abstraction model if the followings hold:

1. For each w € W, there are infinitely many worlds v € W which are
isomorphic to w.

2. M= (O3z.P)D E!:L' O P for each classical formula P. In other words, for
each classical formula P and each environment p, if it holds (D, I,,, p) =
3z.P for each world w € W, then there is a concept £ € X such that
(Dw, Iy, p[€/]) = P for each world w € W.

3. For each concept £, each world w € W and each individual e € D,,, there
is a concept &' € X such that

—fw)=e
~g(v) =€) for v £ w

A formula P is valid for partial abstraction iff M |= P for all the partial ab-
straction models M. and we write |=p P.

Remark 7.8 Let M = (W, X) be a total abstraction model. If a world w € W
of M has at least two individuals in D,,, then the set of concepts X cannot
be countably many. That is because there are at least countably many worlds
v’s which are isomorphic to w. Thus each of D,’s has at least two individuals.
Therefore X must be an uncountable set.

On the other hand, a partial abstraction model can be a countable model
even if some worlds of it have plural elements.

Conjecture 7.9 For each formula P, =1 P iff Ep P.

Theorem 7.10 (Soundness of S5D for the models) If g P then =1 P,
thus =p P.

Theorem 7.11 (Completeness of S5D for partial abstraction models)
If =p P then P has a cut-free proof of Fg.

Proof. By standard tableau method. '
Corollary 7.12 = P iff =p P

Corollary 7.13 Fg satisfies cut elimination.
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8 Conclusion

We have defined four systems of modal logic =1, Fssp, Fg and |=p, and shown
that all the systems are equivalent to each other. As the consequence, the
Gentzen-style system Fg satisfies cut elimination. The system }=y, is a seman-
tical system defined in a purely syntactical way. On the other hand, the system
p is a semantical system defined by a variant of traditional possible-world se-
mantics. These two systems present a striking contrast to each other, although
they are equivalent to each other.
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Appendix

First of all we define the inequality which appears in structural rule.
— For sequences & = (21,2, ..., Tn) and ¥ = (¥1, Y2, -, Ym), the inequality & <
is defined as:
For each z; € {21, ...,Z,}, there is some y; € {y1,...,Ym }-
— For sequents Sand S’ such that

To | o Iy | Ap
I | A I A

S=|...|...|, 8= o
Il A, | an
E B

the inequality S < S’ is defined as:
1. Iy < I, A < 4p
2. There is sequences I, Iy, ..., I, AY, Ay, ..., A | such that
2.1 ((FlaAl)a (F2’ A2)1 ) (Fla Al)) < ((Fl"a Alll)’ (F‘L;’7 Ag)’ esy (Flﬂ7 All,))
2.2 I'!' < I and A} < Aj for each i.
3. EXFE
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Initial rule: Structural rule:

S ,
51T P 5 ifS<S
—-Left: —-Right:
Io | Ao Io | Ao, P Io | Ao P, Iy | Ao
Fz Ai,P Fz Az P,Fz Az Ft Az
FE E E E
Ty | 40| [=P. I | 4o To | 2o " [To | Do, —P
-P,I; | 4 ;| 4 I; | 4;,-P ;| 4;
A-Left: }
Io | Ao P,Q,Iy | Ao
P,Q,I | A; I | 4
E E
Tol a0l [PAQ, o] Ao
PAQ,T; | 4 I | 4
E E
A-Right:
Io | Ao Io | Ao Io | Ao, P || Io | Do, @
| A, P || IT | 4:,Q I | 4; I | 4
E E E E
Fo Ao ’ FO AO,PAQ
I Ai,P/\Q I; Ai
E E




V-Left:

Ao

Ao

Plt/z), T

E

I

Vz.P, T}

E

V-Right:

Iy Ao

I'i A‘i;P

E

Io | Ao

Fi A,;,Vil,'.P

E

z does not appear freely in the other parts. -

O-Left:

Ip | Qo

Io

Ao

P, I}

i

P)ﬂ Ai

I;

4;

I;

E t=t,FE E
P Iy | Qs t=t Iy | Qo ’ Io | Qo

I | A

I;

OP~,TI;

E

E

E
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O-Right:
Iy Ao
Fl Al Fo Ao,P
I, |4, I;
E|P
E E
To |20, 0P] [To] 2o
n| 4
-Fz AiaDP
I,| A, E '
E
Substitution:
Fot/(l) Ao:t/.’l}* F() AO
I"l[t/:z: Al[t/m Fl Al
ILt/z] | Anlt/z] I, | A,
Eft/z] E[t/z]
t:t',.r'(_)'fil/:ll1 A()_t'/:l,'1 Fo Ao
nt'/z] | Ailt'/z Inn|4
L[t /z] | Anlt' /] I, | A,
Elt' [z t=1t,E[t'/z]
I | Ao
Lilt/y] | Aslt/y)
E
Io | Ao
t=1t', Li[t/y] | Ailt'/y]

E

y does not appear freely in any scopes of [1.
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Variable elimination: Cut:
.’L‘Zt,.l—b AO Fo Ao Fo Ao FO AO
Fl Al x:tl,Fl Al
| a,P|| P 4
I,| A4, T =tn,In | 4n
E w—tn+1,E E E
I | Ao Io | 4o Iy | Ao
Fl Al Fl Al
I; | 4
I, | A, I, | A,
E E E

z does not appear freely in the other parts.




