拡大同相写像とカントール集合となる極小集合について

加藤久男 (Hisao Kato)

筑波大学数学系 (Institute of Mathematics, University of Tsukuba)

1 Introduction.

All spaces considerd in this paper are assumed to be metric spaces. Maps are continuous functions. By a compactum we mean a nonempty compact metric space. A continuum is a connected nondegenerate compactum. A homeomorphism $f: X \to X$ of a compactum X with metric d is called expansive (see[4], [12] and [13]) if there is c > 0 such that for any $x, y \in X$ and $x \neq y$, then there is an integer $n \in \mathbb{Z} = \{0, \pm 1, \pm 2, ...,\}$ such that

$$d(f^n(x), f^n(y)) > c.$$

A homeomorphism $f: X \to X$ of a compactum X is continuum-wise expansive [5] if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer $n \in \mathbb{Z}$ such that

$$\operatorname{diam} f^n(A) > c,$$

where diam $B = \sup\{d(x,y) | x, y \in B\}$ for a set B. Such a positive number c is called an *expansive constant* for f. Note that each expansive homeomorphism is continuumwise expansive, but the converse assertion is not true. There are many continuum-wise expansive homeomorphisms which are not expansive (eg., see [5], [6] and [8]). By the definitions, we see that expansiveness and continuum-wise expansiveness do not depend on the choice of the metric d of X. These notions have been extensively studied in the area of topological dynamics, ergodic theory and continuum theory (see [1]-[13]).

In [11], R. Mañé proved that minimal sets of expansive homeomorphisms are 0dimensional. More generally, minimal sets of continuum-wise expansive homeomorphisms are 0-dimensional (see [5]). Also, for each continuum-wise expansive homeomorphism $f: X \to X$ of a compactum X with dim X > 0, there is an f-invariant closed subset Y of X such that dim Y > 0 and $f|Y: Y \to Y$ is weakly chaotic in the sense of Devaney (see [9]). In this paper, we prove the following result: If $f: X \to X$ is a continuum-wise expansive homeomorphism of a compactum X with dim X = 1, then there is a Cantor set Z in X such that for some natural number N, $f^N(Z) = Z$ and $f^N|Z: Z \to Z$ is semiconjugate to the shift homeomorphism $\tilde{\sigma}: \tilde{\Sigma} \to \tilde{\Sigma}$, where $\tilde{\Sigma}$ is the Cantor set $\{0, 1\}^{\mathbb{Z}}$. As a corollary, there is a family $\{C_{\alpha} \mid \alpha \in \Lambda\}$ of minimal sets C_{α} of f such that each C_{α} is a Cantor set, $\operatorname{Cl}(\bigcup \{C_{\alpha} \mid \alpha \in \Lambda\}) = Y$ is 1-dimensional and $f|Y: Y \to Y$ is weakly chaotic in the sense of Devaney. Also, we study infinite minimal sets of continuum-wise fully expansive homeomorphisms.

2 Continuum-wise expansive homeomorphisms and infinite minimal sets.

Let X be a compact metric space with metric d and C(X) the hyperspace of all nonempty subcontinua of X with the Hausdorff metric d_H defined by

$$d_H(A,B) = \inf\{\epsilon > 0 \mid B \subset N(A,\epsilon), A \subset N(B,\epsilon) \}$$

for closed nonempty subsets A, B of X, where $N(A, \epsilon)$ denotes the ϵ -neighborhood of Ain X. Let $f: X \to X$ be a homeomorphism. A nonempty closed subset M of X is a minimal set of f if M is f-invariant, i.e., f(M) = M, and no proper nonempty closed subset A of M is f-invariant. Note that a closed subset M of X is a minimal set of f if and only if for any $x \in M$,

 $M = \omega(x) = \{y \in X | \text{ there is a sequence} \ n_1 < n_2 < \dots, \text{ of natural numbers such that } \lim_{i \to \infty} f^{n_i}(x) = y \}.$

Note that every homeomorphism of a compactum has a minimal set. If a minimal set M is a finite set, then M is a periodic orbit of some point $x \in X$, i.e., $M = \{x \ (= f^n(x)), f(x), f^2(x), ..., f^{n-1}(x)\}$. If a minimal set M is an infinite set, then M is perfect. If an infinite minimal set M is 0-dimensional, then M is a Cantor set.

Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0. Note that every minimal set of f is 0-dimensional (see [5, Theorem (5.2)]). Consider the following sets (see [9]):

- (1) $\mathcal{I}(f) = \{A \mid A \text{ is an } f \text{-invariant closed subset of } X\}.$
- (2) $\mathcal{M}_{\infty}(f)$ is the set of all infinite minimal sets of f. If $M \in \mathcal{M}_{\infty}(f)$, then M is a Cantor set.
- (3) $\mathcal{I}^+(f) = \{A \in \mathcal{I}(f) \mid \dim A > 0\}.$
- (4) $\mathcal{D}(f)$ is the set of all minimal elements in the partial order of $\mathcal{I}^+(f)$ by inclusion. Note that $\mathcal{D}(f) \neq \phi$ (see [9]).

Let Σ be the Cantor set, i.e., $\Sigma = \{0,1\}^{\omega}$. The shift map $\sigma : \Sigma \to \Sigma$ is defined by $\sigma(x_0, x_1, x_2, ...,) = (x_1, x_2, ...,)$ for each $(x_0, x_1, x_2, ...,) \in \Sigma$. Also, let $\widetilde{\Sigma} = \{0,1\}^{\mathbb{Z}} (= \{(x_n)_n | x_n \in \{0,1\}, n \in \mathbb{Z}\})$. The shift homeomorphism $\widetilde{\sigma} : \widetilde{\Sigma} \to \widetilde{\Sigma}$ is defined by $\widetilde{\sigma}((x_n)_n) = (x_{n+1})_n$ for $(x_n)_n \in \widetilde{\Sigma}$. Note that $\widetilde{\Sigma}$ is identified with the inverse limit of the inverse sequence $\{\Sigma, \sigma\}$ and $\widetilde{\sigma}$ is the homeomorphism induced by σ . Let $q : \widetilde{\Sigma} \to \Sigma$ be the natural projection. Then $q \cdot \widetilde{\sigma} = \sigma \cdot q$.

First, we obtain the following theorem.

(2.1) Theorem. If $f : X \to X$ is a continuum-wise expansive homeomorphism of a compactum X with dim X = 1, then there is a Cantor set Z in X such that for

some natural number N, Z is f^N -invariant and $f^N|Z : Z \to Z$ is semiconjugate to the shift homeomorphism $\tilde{\sigma} : \tilde{\Sigma} \to \tilde{\Sigma}$, i.e., there is an onto map $p : Z \to \tilde{\Sigma}$ such that $\tilde{\sigma} \cdot p = p \cdot (f^N|Z)$.

For the proof of (2.1), we need the followings.

(2.2) Lemma (see [5, (2.4) and (2.5)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0. Let c > 0 be an expansive constant of f and $0 < 2\epsilon \leq c$. Then there is a positive number $\delta \leq \epsilon$ satisfying the following conditions:

(1) $\mathbf{V}^{s}(\delta; \epsilon) \neq \phi$ or $\mathbf{V}^{u}(\delta; \epsilon) \neq \phi$, where

 $\mathbf{V}^{s}(\delta;\epsilon) = \{A \in C(X) | \operatorname{diam} A \geq \delta, \operatorname{and} \operatorname{diam} f^{n}(A) \leq \epsilon \text{ for each } n \geq 0\}, \\ \mathbf{V}^{u}(\delta;\epsilon) = \{A \in C(X) | \operatorname{diam} A \geq \delta, \operatorname{and} \operatorname{diam} f^{-n}(A) \leq \epsilon \text{ for each } n \geq 0\}.$

In particular, if $A \in \mathbf{V}^{s}(\delta; \epsilon)$, then $\lim_{n\to\infty} \operatorname{diam} f^{n}(A) = 0$. If $A \in \mathbf{V}^{u}(\delta; \epsilon)$, then $\lim_{n\to\infty} \operatorname{diam} f^{-n}(A) = 0$.

(2) For each $\gamma > 0$ there is a natural number $N = N(\gamma)$ such that if A is a subcontinuum of X with diam $A \ge \gamma$, then either diam $f^n(A) \ge \delta$ for all $n \ge N$ or diam $f^{-n}(A) \ge \delta$ for all $n \ge N$.

(2.3) Lemma. Let X be a 1-dimensional compactum. For any $\epsilon > 0$ there is a family $\{U_1, U_2, ..., U_m\}$ of open subsets of X such that $\operatorname{Cl}(U_i) \cap \operatorname{Cl}(U_j) = \phi(i \neq j)$, diam $U_i < \epsilon$ for each i and the diameters of components of $X - (\bigcup_{i=1}^m U_i)$ are less than ϵ .

To prove the next theorem (2.5), we need the following lemma.

(2.4) Lemma. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0 and $Y \in \mathcal{D}(f)$. Let c, ϵ and δ be positive numbers as in (2.2). Then for each $0 < \gamma \leq \delta$ and nonempty open subset V of Y there is a natural number $J = J(V, \gamma)$ such that if $A \subset Y$ and $A \in \mathbf{V}^u(\gamma; \epsilon)$, then there is a natural number j = j(A) such that $1 \leq j \leq J$ and $f^j(A) \cap V \neq \phi$.

(2.5) Theorem. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X = 1 and $Y \in \mathcal{D}(f)$. Then there is a sequence $M_1, M_2, ...,$ of minimal sets of f|Y such that each M_n is a Cantor set and $\lim_{n\to\infty} d_H(Y, M_n) = 0$. In particular,

$$\operatorname{Cl}(\bigcup \{M | M \in \mathcal{M}_{\infty}(f|Y)\}) = Y.$$

(2.6) Proposition. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0 and $Y \in \mathcal{D}(f)$. Then there is a sequence $M_1, M_2, ..., of$ minimal sets of f|Y such that $\lim_{n\to\infty} d_H(Y, M_n) = 0$.

Let $f: X \to X$ be a homeomorphism of a compactum X. Then f is sensitive if there is c > 0 such that if $x \in X$ and U is any neighborhood of x in X, there is $y \in U$ and a natural number $n \ge 1$ such that $d(f^n(x), f^n(y)) > c$. f is topologically transitive if there is a point $x \in X$ such that the orbit $\{x, f(x), f^2(x), ...,\}$ of x is dense in X. Also, f is weakly chaotic in the sense of Devaney (see [9]) if f is sensitive, f is topologically transitive and $Cl(\bigcup\{M \mid M \text{ is a minimal set of } f\}) = X.$

(2.7) Remark. In (2.5), we see that $f|Y: Y \to Y$ is weakly chaotic in the sense of Devaney (see [9]).

3 Infinite minimal sets of continuum-wise fully expansive homeomorphisms.

A homeomorphism $f: X \to X$ of a continuum X is continuum-wise fully expansive provided that for any $\epsilon > 0$ and $\delta > 0$, there is a natural number $N = N(\epsilon, \delta) > 0$ such that if A is a subcontinuum of X and diam $A \ge \delta$, then either $d_H(f^n(A), X) < \epsilon$ for all $n \ge N$, or $d_H(f^{-n}(A), X) < \epsilon$ for all $n \ge N$. By the similar proofs as before, we obtain the following result.

(3.1) Theorem. Let $f: X \to X$ be a continuum-wise fully expansive homeomorphism of a nondegenerate continuum X. Then

- (1) there is a Cantor set Z in X such that for some natural number N, Z is f^N -invariant and $f^N|Z: Z \to Z$ is semiconjugate to the shift homeomorphism $\tilde{\sigma}: \tilde{\Sigma} \to \tilde{\Sigma}$, and
- (2) there is a sequence $M_1, M_2, ..., of$ minimal sets of f such that each M_n is a Cantor set and $\lim_{n\to\infty} d_H(X, M_n) = 0$. In particular,

$$\operatorname{Cl}(\bigcup \{M | M \in \mathcal{M}_{\infty}(f)\}) = X.$$

(3.2) Example. Let $f: T^2 \to T^2$ be an Anosov diffeomorphism, say

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right)$$

on the 2-dimensional torus T^2 . Then f is a continuum-wise fully expansive homeomorphism. Hence $\operatorname{Cl}(\bigcup \{M | M \in \mathcal{M}_{\infty}(f)\}) = T^2$.

(3.3) Problem. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim $X \ge 2$. In this case, are the conclusions of (2.1) and (2.5) true?

References

- [1] N. Aoki, Topological dynamics, in: Topics in general topology (eds. K. Morita and J. Nagata), *Elsevier Science Publishers B. V.* (1989), 625-740.
- [2] B. F. Bryant, Unstable self-homeomorphisms of a compact space, Thesis, Vanderbilt University, Nashville, TN (1954).
- [3] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., *Addison-Wesley*, 1989.
- [4] W. Gottschalk and G. Hedlund, Topological dynamics, Amer. Math. Soc. Collog., 34 (1955).
- [5] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598.
- [6] H. Kato, Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke, *Fund. Math.*, 145 (1994), 261-279.
- [7] H. Kato, The nonexistence of expansive homeomorphisms of chainable continua, Fund. Math., 149 (1996), 119-126.
- [8] H. Kato, On indecomposability and composants of chaotic continua, Fund. Math. 150 (1996), 245-253.
- H. Kato, Minimal sets and chaos in the sense of Devaney on continuum-wise expansive homeomorphisms, Lecture Notes in Pure and Applied Mathematics, 170 (1995), 265-274.
- [10] K. Kuratowski, Topology Vol.1, Academic Press, Warszawa (1966).
- [11] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319.
- [12] W. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774.
- [13] R. F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc., 6 (1955), 308-309.

Hisao Kato Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan e-mail: hisakato@sakura.cc.tsukuba.ac.jp