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Abstract

Answering aproblem of A. V. $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}1’ \mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}}$, we give acharacter-
ization of absolute weak $C$-embedding in Hausdorff spaces. We also
introduce an alternative proof of the Bella-Yaschenko Theorem, which
characterize absolute weak $C$-embedding in Tychonoff spaces.

All spaces are assumed to be $T_{1}$ spaces. $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}1’ \mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}}[2]$ says asubspace $\mathrm{Y}$

of aspace $X$ weakly $C$-embedded in $X$ if every real-valued continuous function
on $\mathrm{Y}$ can be extended to areal-valued function on $X$ which is continuous
at each point of Y. As was discussed in [2] (see also [5], [12]), some results
of type of relative topological properties immediately follow from those of
weak $C$-embeddings(see Section 2). It is obvious that $C$-embedding implies
weak $C$-embedding. In fact, weak $C$-embedding is strictly weaker than z-
embedding [12], where asubspace $\mathrm{Y}$ of aspace $X$ is said to be z-embedded
in $X$ if for every zer0-set $Z$ of $\mathrm{Y}$ there exists azer0-set $Z’$ of $X$ such that
$Z’\cap \mathrm{Y}=Z$ .

For aspace $X$ and asubspace $\mathrm{Y}$ of $X$ , the space $X_{\mathrm{Y}}$ denotes the set $X$

with the topology consisting all sets of form $U\cup V$ , where $U$ is open in $X$ and
$V\subset X$ -Y. Notice that asubspace $\mathrm{Y}$ of aspace $X$ is weakly $C$-embedded in
$X$ if and only if $\mathrm{Y}$ is $C$-embedded in Xy. In [12], we characterize asubspace
$\mathrm{Y}$ of aspace $X$ is weakly $C$-embedded in $X$ if and only if every disjoint
cozer0-sets $U_{0}$ and $U_{1}$ of $\mathrm{Y}$ can be separated by disjoint open subsets in $X$ .

Weak $C$-embedding plays an important role not only in the theory of
relative topological properties but also in the extension theory of continuous
functions themselves. For classical results related to absolute embedding of
continuous functions in the realm of Tychonoff spaces, recall the following
Theorem 1. ATychonoff space $\mathrm{Y}$ is said to be almost compact $\mathrm{i}\mathrm{f}|\beta \mathrm{Y}-\mathrm{Y}|\leq 1$ ,
where $\beta \mathrm{Y}$ denotes the Stone-Cech compactification of Y.

Theorem 1(Blair [6], Blair-Hager [7], Hager-Johnson [11]). Let $\mathrm{Y}$ be $a$

Tychonoff space. Then, $\mathrm{Y}$ is $z$ -embedded in every larger Tychonoff space if
and only if $\mathrm{Y}$ is almost compact or $Lindel\dot{\mathit{0}}f$.

An alternative proof of Theorem 1is recently given in [14] (see also Appendi
$\backslash$
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Acorresponding result for weak $C$-embedding was recently obtained by
Bella-Yaschenko [5] as follows. Assuming the normality of Y, Matveev-
Pavlov-Taitir [13] also proved Theorem 2.

Theorem 2(Bella-Yaschenko [5]). Let $\mathrm{Y}$ be a Tychonoff space. Then, $\mathrm{Y}$ is
weakly $C$ -embedded in every larger Tychonoff space if and only if $\mathrm{Y}$ is almost
compact or Lindel\"of.

Recently, Arhangel’skii posed in [3, Problem 3.14] the following problem
which motivates us to consider absolute weak $C$-embedding in the realm of
Hausdorff spaces.

Problem (Arhangel’ $\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}[3]$ ). When a Hausdorff (Tychonof) space Y is
weakly $C$ -embedded in every larger Hausdorff space X?

We give asolution to this problem as follows:

Theorem 3(main). Let $\mathrm{Y}$ be a Hausdorff space. Then, $\mathrm{Y}$ is weakly C-
embedded in every larger Hausdorff space if and only if either $\mathrm{Y}$ is compact
or every real-valued continuous function on $\mathrm{Y}$ is constant.

Corresponding to Theorems 2and 3, we have other conclusion as follows:

Theorem 4. Let $\mathrm{Y}$ be a regular space. Then, $\mathrm{Y}$ is weakly $C$ -embedded in
every larger regular space if and only if either $\mathrm{Y}$ is Lindelof or for every two
disjoint zerO-sets of $\mathrm{Y}$ at least one of them is compact.

Theorem 5. Let $\mathrm{Y}$ be a $T_{1}$ space. Then, $\mathrm{Y}$ is weakly $C$ -embedded in every
larger $T_{1}$ -space if and only if every real-valued continuous function on $\mathrm{Y}$ is
constant.

Remarks. (1) Related to absolute $z$-embedding in other classes of spaces, we
easily have: A Hausdorff (resp. regular, $T_{1}$ ) space $\mathrm{Y}$ is $z$ -embedded in every
larger Hausdorff (resp. regular, $T_{1}$ ) space $X$ if and only if every real-valued
continuous function on $\mathrm{Y}$ is constant.
(2) Acardinal generalization of weak $C$-embedding is introduced in [12]: a
subspace $\mathrm{Y}$ of aspace $X$ is said to be weakly $P$-embedded in $X$ if every con-
tinuous pseud0-metric on $\mathrm{Y}$ can be extended to apseud0-metric on $X$ which
is continuous at each point of $\mathrm{Y}\cross \mathrm{Y}$ . Motivated by the result due to Al\‘o-
Shapiro [1, pp183] that a Tychonoff space $\mathrm{Y}$ is $P$ -embedded in every larger
Tychonoff space $X$ if and only if $\mathrm{Y}$ is almost compact which is ageneralize-
tion of Theorem 1, we obtained in [12] the following: A Tychonoff space $\mathrm{Y}$

is weakly $P$ -embedded in every larger Tychonoff space $X$ if and only if $\mathrm{Y}$ is
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almost compact or Lindel\"of, which is ageneralizetion of Theorem 2. Now,
we have similar generalization to Theorems 3, 4and 5as follows:

Let $\mathrm{Y}$ be a Hausdorff space. Then, $\mathrm{Y}$ is weakly $P$ -embedded in every larger
Hausdorff space $X$ if and only if either $\mathrm{Y}$ is compact or every real-valued
continuous function on $\mathrm{Y}$ is constant.

Let $\mathrm{Y}$ be a regular space. Then, $\mathrm{Y}$ is weakly $P$ -embedded in every larger
regular space $X$ if and only if either $\mathrm{Y}$ is Lindel\"of or for every trno disjoint
zerO-sets of $\mathrm{Y}$ at least one of them is compact

Let $\mathrm{Y}$ be a $T_{1}$ space. Then, $\mathrm{Y}$ is weakly $P$ -embedded in every larger $T_{1}$ space
$X$ if and only if every real-valued continuous function on $\mathrm{Y}$ is constant.

(3) In Theorems 1and 2, it is known that “every larger Tychonoff space”
can be replaced by “every larger Tychonoff space containing $\mathrm{Y}$ as aclosed
subspac\"e. Similar replacements are possible for Theorems 3, 4and 5and
all of the related results in this report. For, we have:

Let $i$ be the one of $3_{\frac{1}{2}},3,2,1$ . Then, a $T_{i}$ space $\mathrm{Y}$ is weakly $C$ -embedded in
every larger $T_{\dot{l}}$ -space if and only if $\mathrm{Y}$ is weakly $C$ -embedded in every larger

$T_{\dot{l}}$ -space containing $\mathrm{Y}$ as a closed subspace.

(4) Let $\mathcal{K}$ (resp. $\mathcal{T}_{3\frac{1}{2}}$ ) be the class of spaces consisting all compact Hausdorff
(resp. all Tychonoff) spaces, for example, normal Hausdorff spaces, para-
compact Hausdorff spaces, etc. We have:

$Let\mathrm{C}beaclassofspaceswitth\mathcal{K}\subset weaklyC- embeddedineverylargerspaceXwithX\in \mathrm{C}ifandonlyif\mathrm{Y}\mathrm{C}\subset \mathcal{T}_{3\frac{1}{}}.Then,aTychonoffspace\mathrm{Y}isis$

almost compact or Lindel\"of.
(5) When we use weak $C$-embedding assuming $\mathrm{Y}$ to satisfy some separation
axioms or have some covering properties, many known (or new) results im-
mediately follow from Theorems 2, 3, 4and 5. To show this, recall from
[2, Thorem 11] and [12, Lemma 2.8] (and similar proofs to [14]) that: Let
$i$ be the one of $3 \frac{1}{2},3,2,1$ . For a $\mathrm{Y}_{i}$ space $\mathrm{Y},$

$\mathrm{Y}$ is normal (or equivalently,
strongly normal, internally normal) in $a$ every larger $T_{\dot{l}}$ -space if and only if
$\mathrm{Y}$ is normal, and $\mathrm{Y}$ is weakly $C$ -embedded in every larger $T_{i}$ -space. Hence,
when we use Theorems 2, 3, 4and 5assuming $\mathrm{Y}$ is normal, we have:

A Tychonoff space $\mathrm{Y}$ is strongly normal (equivalently, normal, internally
normal) in every larger Tychonoff space if and only if $\mathrm{Y}$ is normal almost
compact or Lind\"elof (cf. [5], [13]).

A Hausdorff space $\mathrm{Y}$ is strongly normal (equivalently, normal, internally
normal) in every larger Hausdorff space if and only if $\mathrm{Y}$ is compac$t$.
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A regular space $\mathrm{Y}$ is strongly normal (equivalently, normal, internally normal)
in every larger regular space if and only if $\mathrm{Y}$ is normal almost compact or
Lind\"elof (cf. [13]).

A $T_{1}$ space $\mathrm{Y}$ is strongly normal (equivalently, normal, internally normal) in
every larger $T_{1}$ space if and only $if|\mathrm{Y}|\leq 1$ .
Moreover, when we assume $\mathrm{Y}$ to be paracompact, the above facts provide
some known results of Gordienko [10] (see [3, Theorem 7.5]) and [10] (see [2,
Theorems 52 and 53] or [3, Theorem 7.10] $)$ .

Appendix: Alternative proofs of Theorems 1and 2
Blair [6], Blair-Hager [7], Hager-Johnson [11] proved Theorem 1. Their proofs
are obtained through several consequences under their own interests on real-
compactness or rings of continuous functions, which seems to be not elemen-
tary. Bella-Yaschenko [5] proved Theorem 2by the direct construction, but
their proof is complicated. Hoshina and the auther [12] gave another proof
to Theorem 2, but which depends on the technique of reducing this theorem
to Theorem 1.

Now, we introduce alternative (and probably simple) proofs to Theorems
1and 2at atime, which was basically given in [14] only for Theorem 1.

Theorem ([5], [6], [7], [11]). Let $\mathrm{Y}$ be a Tychonoff space. Then, the follow $ing$

statements are equivalent:
(1) $\mathrm{Y}$ is $z$ -embedded in every larger Tychonoff space;
(2) $\mathrm{Y}$ is weakly $C$ -embedded in every larger Tychonoff space;
(3) $\mathrm{Y}$ is almost compact or Lindel\"of.

For the proof, we use the following well-known facts:
(a) ATychonoff space $\mathrm{Y}$ is Lindelof if and only if for every compact subspace
$F$ of $\beta \mathrm{Y}$ with $F\subset\beta \mathrm{Y}-\mathrm{Y}$ there exists azer0-set $Z$ of $\beta \mathrm{Y}$ such that $F\subset$

$Z\subset\beta \mathrm{Y}-\mathrm{Y}$ (see [8, 3.12.25(b)]).

(b) The Tychonoff cube is a $O_{Z}$ space ( $=\mathrm{a}$ perfectly $\kappa$-normal space).

Proof of Theorem. To prove (1) $\Rightarrow(2)$ , recall that $z$-embedding implies weak
$C$-embedding([12]). Indeed, assume that $\mathrm{Y}$ is $z$-embedded in $X$ . Clearly, $\mathrm{Y}$

is $z$-embedded in $X_{Y}$ . On the other hand, $\mathrm{Y}$ is always well-embedded in $X_{\mathrm{Y}}$ .
Hence, $\mathrm{Y}$ is $C$-embedded in $X_{\mathrm{Y}}$ , equivalently, $\mathrm{Y}$ is weakly $C$-embedded in $X$ .
Since $”(3)$ $\Rightarrow(1)$”is easy to see (see [1]), the essential part is $”(2)$ $\Rightarrow(3)"$ .

To prove $”(2)$ $\Rightarrow(3)"$ , assume that $\mathrm{Y}$ is weakly $C$-embedded in every
larger Tychonoff space. Suppose that $\mathrm{Y}$ is not almost compact. We $\mathrm{s}\mathrm{h}\mathrm{a}1$
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show that $\mathrm{Y}$ is Lindel\"of. To use the fact (a) above, let $F$ be acompact
subspace of $\beta \mathrm{Y}$ with $F\subset\beta \mathrm{Y}$ -Y.

Claim. For every $x\in F$ , there exist an open neighborhood $U_{x}$ of $x$ in the
subspace $F$ and a zerO-set $Z_{x}$ of $\beta \mathrm{Y}$ such that $U_{x}\subset Z_{x}\subset\beta \mathrm{Y}-\mathrm{Y}$ .

Proof of Claim. Let $x\in F$ . Since $|\beta \mathrm{Y}-\mathrm{Y}|\geq 2$ , pick up apoint $y\in\beta \mathrm{Y}-\mathrm{Y}$

with $y\neq x$ . Let $f$ : $\beta \mathrm{Y}arrow[0,1]$ be acontinuous function satisfying that
$f(x)=0$ and $f(y)=1$ . Let $Z=\beta \mathrm{Y}/(F\cup\{y\})$ be the quotient space obtained
from $\beta \mathrm{Y}$ by identifying $F\cup\{y\}$ to asingle point and $q$ : $\beta \mathrm{Y}arrow Z$ be the
natural quotient map. Since $Z$ is Tychonoff, embed $Z$ into the Tychonoff
cube $T$ . Since $q(\mathrm{Y})$ is homeomorhic to $\mathrm{Y}$ , $q(\mathrm{Y})$ is weakly $C$-embedded in $T$ .
Hence, $q(f^{-1}([0,1/2))\cap \mathrm{Y})$ and $q(f^{-1}((1/2,1])\cap \mathrm{Y})$ are separated by disjoint
open subsets $U_{0}$ and $U_{1}$ in $T$ , respectively. By the fact (b) above, there
exist disjoint cozer0-sets $V_{0}$ and $V_{1}$ of $T$ such that $U_{i}\subset V_{\dot{1}}$ , $i=0,1$ . Then,
$q(x)\not\in V_{0}$ . Indeed, if $q(x)\in V_{0}$ , then $y\in q^{-1}(V_{0}\cap Z)\cap f^{-1}((1/2,1])\subset\beta \mathrm{Y}-\mathrm{Y}$ ,
acontradiction. Put $U_{x}=f^{-1}([0,1/3))\cap F$ and $Z_{x}=f^{-1}([0,1/3])-q^{-1}(V_{0}\cap$

$Z)$ . These are the required sets. This completes the proof of Claim.

Finally, for some finite points $x_{1}$ , $\ldots$ , $x_{n}\in F$ with $F= \bigcup_{i=1}^{n}U_{x:}$ , put $Z=$

$\bigcup_{\dot{l}=1}^{n}Z_{x}.\cdot$ . Then, $Z$ is azer0-set of $\beta \mathrm{Y}$ and $F\subset Z\subset\beta \mathrm{Y}$ -Y. Hence $\mathrm{Y}$ is
Lindel\"of. This completes the proof. $\square$
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