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1. ON QUESTIONS OF ENGELKING

All spaces are assumed to be normal and Hausdorff.

We shall consider the question: What conditions do we need for the
coincidence of ind = Ind?

It is one of the most important and fundamental facts in dimension
theory is the coincidence of the three fundamental dimensions ind, Ind
and dim for separable metrizable spaces. Furthermore, as is well known
that the coincidence of Ind = dim holds for metrizable spaces (Katétov
(1950) and Morita (1954), see [E]). On the other hand, we have the

famous Roy’s example of a completely metrizable space X with ind .

X =0 < Ind X ([R], 1963). Kulesza ([K1], 1990) succeeded to simplify
the example. Recently, Mrowka [Mul], [Mu2] and Kulesza [K2] get
the metrizable spaces X which show the gap of Ind X — ind X can be
arbitrarily high under some set-theoretic assumption. These examples
show that the metrizablity does not work for the conincidence of ind =
Ind. '

On the other hand, it is known that the equality ind = Ind holds
for the following classes of spaces.

e Strongly paracompact, metrizable spaces (Morita, 1950)

e Order totally paracompact, metrizable spaces (Fitzpatrick and
Ford, 1967)

e o-totally paracompact, totally normal spaces (Nagami, 1969)

o Closure totally paracompact totally norma spaces (French, 1976)

e Order totally paracompact, totally normal spaces (Mizokami,
1979)
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e o-totally paracompact, strongly hereditarily normal spaces (En-
gelking, 1995)

Let us recall from [FF] that a space X is called order totally para-
compact (shortly, OTP) if for every open base B of X there exists a
linearly ordered open cover (V, <) of X satisfying:

(1) for every V' € V, there exists U € B such that V . U and
BdV < Bd U, where Bd A denotes the boundary of A4 in X,
and

(2) (W, <) is order locally finite, i. e. for every V € V, {V' € V:
V' < V} is locally finite at each point in V.

We notice the following fact:

(a) The class of order totally paracompact spaces is hereditary with
respect to closed subspaces.

We also recall that a space X is said to be strongly hereditarily normal
([E]) if for every separated sets A and B of X there are disjoint open
sets U and V such that A C U, B C V and both U and V are unions of
point finite families of open F,-sets of X. We notice that every totally
normal space is strongly hereditarily normal, and the countable sum
theorem, locally finite sum theorem and subspace thereom for large
inductive dimension Ind holds for every strongly hereditarily normal
space. In [E, Remark on page 165|, Engelking asked the following
questions:

Question 1. For every order totally paracompact space X, are the
conditions ind X = 1 and Ind X = 1 equivalent?

Question 2. For every order totally paracompact, strongly hereditar-
ily normal space X, does the equality ind X = Ind X hold?

We shall answer the questions positively and we have general results
in this direction.
It is known that

(b) the conditions ind X = 0 and Ind X = 0 are equivalent for every
order totally paracompact space X ([E|, Problem 2.4.D (b)), and

(c) the conditions ind X = 1 and Ind X = 1 are equivalent for o-totally
paracompact space X ([E], Problem 2.4.C (a)).

In the proof of the following main lemma, we use some Mizokami’s
ideas from [M].

Main lemma Let X be an order totally paracompact space and B be
a base of X. Then for every pair A, B of disjoint closed subsets of X
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there exist a partition C between A and B, a locally finite family F of
closed subsets of X which satisfying the following conditions.

(1) C C UF,

(2) For every F € F there exists U € B such that F C BdU

Proof. Consider two pairs (G1,G2) and (Hy, Hp) of disjoint open
subsets of X such that AC Gy € G; C Hy, BC G, C G2 C H, and,
H.NH, =0. We put F; = G, and F; = G,. One can suppose that for
every U € B we have U N Hy=0or UNH,=0. By the definition of
order totally paracompact spaces, there exists a linearly ordered open
cover (V, <) of X satisfying:

(1) for every V € V, there exists U € B such that V C U and
BdV ¢ BdU, and
(2) (V, <) is order locally finite.

Foreach V € V, weput PV)=U{V' € V:V' <V} and W(V) =
V\ P(V) C V. Then, it follows from [M, Lemma 2] that

(*) the family {Bd W (V) : V € V} is locally finite in X,

() X \U{W(V):V € V} c U{BAW(V):V € V}, and

(***) for every V € V we have BAW (V) c (BdV\ P(V))ulU{(BdV')n
V:V' <V} '
Claim 1 For every V € V we have BeW (V) C BdV U|J{BdV'N
BAW(V):V' < V}.

Proof. By use of (***), we get BAW (V) ¢ BAVUU{BdV': V' < V}.
Now it is easy to see that the inclusion BAW(V) c BAVUJ{BdV'n
Bd W(V): V' < V} is also valid.

Claim 2 For every V € V the family {BAV' N BdW (V) : V' <V} is
locally finite in X.

Proof. Consider a point £ € X. There exists V5 € V such that
x € V3. We shall check three cases.
Case 1: We asume that Vp = V. Recall that the system {V' e V.: V' <
V'} is locally finite in V. So there is a nbd Oz of z which meets only
finitely many of sets V' with V' < V. Hence Oz meets only finitely
many of sets Bd V’ with V' < V.
Case 2: We assume that Vo > V. It is clear that {V' : V' < V} C
{V' : V! < V,} and there is a nbd Oz of z which meets only finitely
many of sets Bd V' with V' < V. Hence Oz meets only finitely many
of sets Bd V' with V! < V.
Case 8. Finally we shall consider the case of V; < V. Recall that
z € Vo C P(V)and W(V)NP(V) = 0. Hence Vo N W(V) = 0 and
VoNBAW (V) = 0.
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Now, weput V; ={V e€V:VNH;=0}and Vo =V \ V.

Claim 3 The sets U1 = Gl U U{W(V) Ve Vl} and U2 = G2 U
U{W(V) : V € Va} are disjoint open nbds of A and B respectively.
Moreover, we have C = X \ (U; UU,) C U{BdW (V) :V € V}.

Proof. 1t is clear that A C U; and B C U,. Now we shall check that
Ui N Uz = 0. In fact, we have the following equalities. The first one
is G1 NGz = 0 and it is evident. The second one is Gy N (YW (V) :
V € V2}) = 0 because for every V € V, we have V N H, # 0 hence
VNH; =0 (recall that G, € H;,W(V) C V). The third one is
G N (U{W(V) : V € N1}) = 0 because for every V € V; we have
VNH;=0and W(V) C V, Gy C Hy. The fourth one is (J{W(V) :
Vevhn(UW(V):V e W}) =0. If we consider a pair W(V})
and W(V,), where V; € V; and V; € V, then we have V; < V, or
Vi > Va. Let V; < V. Recall that P(V) NW(V,) = 0, Vi C P(V2) and
W (V1) C Vi. The same with the case V; > V,. It follows from (**)
that the inclusion C C U{Bd W (V) : V € V} is valid.

Now we put the family {BAV'NBAW(V)NC:V' < V,V € V} as
F. Since {Bd W (V) : V € V} is locally finite (see (*)), F is desired
(recall also Claim 2). The Main lemma is proved.

Main lemma motivates the following definition.

Definition 1. A space X is said to have the property (#) if for any
base B of X and any pair A, B of disjoint closed subsets of X there
exist a partition C between A and B in X and a locally finite family F
of closed subsets of X satisfying the condition mentioned in the main
lemma.

Now, we have the following simple facts.
(d) Every normal space X with Ind X = 0 satisfied the condition
(#) and for every space X having (#) the conditions ind X = 0 and
Ind X = 0 are equivalent.
(e) Every order totally paracompact space has the property (#) (see
Main lemma).

Now, we can answer Question 1.

Theorem 1. For every order totally paracompact space X the condi-
tions ind X = 1 and Ind X = 1 are equivalent.

Proof. It suffices to show that if ind X = 1 then Ind X < 1. Consider
a base B such that for every U € B, we have ind BdU < 0. By facts (a)
and (b) we have Ind BAU < 0 for every U € B. By the main lemma
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and locally finite sum theorem for strongly zero-dimensional spaces, we
can show that Ind X < 1.

If for every pair A, B of disjoint closed subsets of a normal space X
there exists a partition C between A and B such that dimC <n — 1,
then dim X < n (cf. [E, Lemma 3.1.27]). Hence, by a similar argument
above, we have the following.

Theorem 2. For every order totally paracompact space X we have
dim X < ind X.

One can show that every closed subspace of a hereditarily normal
space having the property (#) has the property (#). Hence, by the
induction, we can prove the following theorem.

Theorem 3. For every strongly hereditarily normal space X which has
the property (#), we have ind X = Ind X.

Now, by the main lemma, we answer Question 2 as a corollary to
the theroem above.

Corollary 1. For every order totally paracompact, strongly hereditarily
normal space X, we have ind X = Ind X.

2. ON PERFECTLY K-NORMAL SPACES

Recall from Séepin [Scl] that a space X is called perfectly k-normal
if U is a Gs-set in X for every open set U of X.

Recall from Fedorchuk [Fel] that a space X is called hereditarily
perfectly k-normal if every closed Gs-set of X is perfectly xk-normal.

Theorem 4 (Fel). Let X be a completely paracompact hereditarily
perfectly k-normal space. Then ind X = Ind X. :

As a corollary from this fact, Fedorchuk showed that the dimensions
ind and Ind coincide for k-metrizable compact spaces, in particular
for Miljutin spaces and Dugundji spaces (because every k-metrizable
compact space is hereditarily perfectly x-normal [Sépin [Sc2]). Other
examples of hereditarily perfectly x-normal completely paracompact
spaces were found by Shakhmatov [Sh|. He showed that every Lin-
delof X-space, which is a retract of a Gs-set in a topological group, is
hereditarily perfectly x-normal.

Fedorchuk [Fe2] asked about a generalization of the theorem above.

Problem (Fedorchuk). Is the equality ind X = Ind X valid for any
completely paracompact (compact) perfectly xk-normal space?
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We shall propose a generalization of the theorem above in another
direction.

Theorem 5. Let X be an order totally paracompact hereditarily per-
fectly k-normal space. Then ind X = Ind X.

To prove the theorem, we need a dimension functions indg and Indg
introduced by Filippov [Fil].

Definition 2. Let X be a space. By induction one defines IndyX as
follows:

(i) IndoX = —-1iff X =0,

(ii) IndpX < n iff for any two closed disjoint subsets A and B of X
there is a partition C' which is a Gs-set in X and IndoC < n —1,

(iii) IndeX = n iff IndgX < m and the inequality IndeX < n -1
does not hold,

(iv) IndpX = oo iff the inequality IndoX < n does not hold for any
n.
Analogously, one defines the dimension indg. In this case the subset
A is a point.

It is evident that IndgX > indpX, IndeX > Ind X, indeX > ind X
for any space X and IndpX = Ind X, indpX = ind X for any perfectly
normal space X.

It is also clear that the dimension indp is monotone with respect
to arbitrary subsets of X and the dimension Indy is monotone with
respect to closed subsets of X. If X is the free sum &{X, : a € A} of
subspaces X,,a € A, of X, then IndgX < max{IndoX, : o € A}.

At first, we shall consider sum theorems for Ind,.

Ivanov [I] proved the following:

Theorem 6. ([I/) Let X be a space such that X = U2, X;, where X;
18 a closed Gs-set in X with IndyX; < n for every i. Then IndgX < n.

In connection with this theorem, Ivanov asked

Problem ([I}). Is the countable sum theorem for dimension Ind, valid
for arbitrary closed subsets?

He answered the problem negatively as follows.

Example 1. ([I]) There is a hereditarily normal compact space X such
that X = X; U X;, where X; is a closed subset of X with IndpX; =1
for i = 1,2, and Indo X > 2.

We have the following sum theorems:
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Theorem 7. Let X be a perfectly k-normal space such that X =
UL, X;, where X; is a closed subset of X with IndyX; < n for every i,
k> 2. Then IndyX < n.

Theorem 8. Let X be a perfectly k-normal paracompact space and
M = {M, : a € A} be a locally finite closed cover of X such that
IndyM, < n for every o € A. Then IndgX < n.

We also use the following theorem due to Fedorchuk [Fel].

Theorem 9. (Fedorchuk) Let X be a hereditarily perfectly k-normal
space. Then Ind X = IndyX and ind X = indpX.

We continue with the following.

Lemma 1. Let X be a perfectly k-normal space. Then for every open
subset U of X the subspace U is perfectly k-normal.

Proof. Let us observe only that for any open subsets U and V' of X
we have VNU =UNV.

The proof of Theorem 7. Apply induction on the number & of closed
subsets. If k = 2, then let us consider the following open subsets of X.
Namely, Uy = X \ X3, U, = X \ U. It is evident that X = U; U Tk.
Observe that U; is a Gs-set in X and IndoU; < max{IndoX;,Indp X5} <
n for every i. By Theorem 6, we have IndgX < n.

Let now k > 3. Define F} = USlX; B = X, Uy = X\ B,
U = X\ U;. Observe that X = Uy U U, U; C UE1X,, Tz C X;
and U; is a Gs-set in X for every i. By Lemma 1, the subset U
is a perfectly k-normal space in the subspace topology. Hence, by
inductive assumption, we have IndyU; < max{Indo X3, ...,IndgXs_1} <
n. Observe also that IndoU; < IndoXy < n. By Theorem 6, we get
IndpX < n.

The proof of Theorem 8. Let us choose, for every point z € X, anbd U,
such that U, meets (and consequently is covered by) only finite number
of members of the system M. By Theorem 7, we have IndgU; < n. The
cover {U; : ¢ € X} of X has a o-discrete open refinement ¥V = J;2, V;
of X, where V;, i = 1,2, ..., are the discrete subfamilies of V. Define U;
as the union of all elements of subfamily V; for every i. Observe that
U, is a Gs-set of X and IndoU; < n for every i. Moreover X = U2, U..
By Theorem 6, we get IndoX < n.

Remark 1. Observe that if for every open subset U of the space X
from Theorem 7 (Theorem 8) we have the equality IndeU = Ind U
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(for example if the space X is hereditarily perfectly x-normal), then in
the statement of Theorem 7 (Theorem 8) the dimension Indg can be
substituted by dimension Ind.

One can easily check the following two statements.

Lemma 2. Let X be a hereditarily perfectly k-normal space and A
be a closed Gs-set in X. Then the subspace A is hereditarily perfectly
k-normal. In particular, IndyA = Ind A.

Lemma 3. Let X be a space and C be a partition in X with a pair
of open disjoint subsets U,V of X such that X = CUUUV. Then
there exists a partition Cy with a pair of open disjoint subsets Uy, V1 of
X satisfying X = C, UULU Wy such that C; CC, U Cc U,V C Wi and
C; = O N O,, where Oy and O, are open subsets of X.

In particular, Cy is a closed Gs-set in X if O and O, are closed Gs-sets
in X.

Now we are ready to prove the following.

Theorem 10. Let K be a subclass of the class of paracompact spaces
which satisfies the property (#) and hereditary with respect to closed
subspaces and X € K. If X is also a hereditarily perfectly k-normal
space then ind X = Ind X ( = indgX = Indp X ).

Proof. First we show the equality indoX = IndyX. Apply induction
on n = indgX. For n = 0 we have ind X = 0 and so the equality
Ind X = 0 is valid due to (a). It is clear that IndeX = 0.

Let n > 1 and indgX < n. Let us consider a base B of X such that
for every element U € B we have IndgBd U < n — 1 (here we use
Lemma 2, the inductive assumption and the monotonicity of Indg and
the subclass ). By the definition of the property (#), for every pair
A, B of disjoint closed subsets of X there exist a partition C between
A and B in X and a locally finite family F of closed subsets of X
satisfying;

i) C=UF,

(i) for every F € F there exists U € B such that F C BdU.

Observe also that we can suppose that the partition C is a Gs-set of X
(recall that X is perfectly k-normal and apply Lemma 3) and hence the
subspace C is perfectly k-normal. By Theorem 8, we get IndgC < n—1.
Hence IndpX < n. The equality indgX = IndoX is proved. Now let us
recall that by Theorem 9, we have Ind X = IndeX and ind X = indoX.
This completes the proof.
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The proof of Theorem 5. Recall that the class of order totally para-
compact spaces is a subclass of paracompact spaces which has the prop-
erty (#) and is hereditary with respect to closed subspaces. Apply now
Theorem 10.
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