Cardinal invariants associated with some combinatorial statements

Shizuo Kamo (加茂 静夫) 大阪府立大学 総合科学部

Abstract

T. Bartoszyński [1] characterized the uniformity $\mathbf{non}(\mathcal{M})$ of the meager ideal on the real line as the smallest size of a family $X \subset \omega^{\omega}$ such that $\forall y \in \omega^{\omega} \exists x \in X \exists^{\infty} n < \omega y(n) = x(n)$. By replacing ω^{ω} by certain restricted subsets, we can get weaker combinatorial statements and define cardinal invariants. In this talk, we study these cardinal invariants.

0 Introduction

We use standard notion and notations in set theory (see e.g. [3]). Set

 $\mathcal{F} = \{ f \in (\omega \setminus \{ 0 \})^{\omega} \mid f \text{ is non-decreasing and } \lim_{n < \omega} f(n) = \omega \}.$

For each $f \in \mathcal{F}$, define the cardinal θ_f by

$$\theta_f = \min\{ |X| \mid X \subset \prod_{n < \omega} f(n) \text{ and } \forall y \in \prod_{n < \omega} f(n) \exists^{\infty} n < \omega \ y(n) = x(n) \}.$$

By the Bartoszyński's characterization of $\mathbf{non}(\mathcal{M})$, it holds that $\theta_f \leq \mathbf{non}(\mathcal{M})$ for all $f \in \mathcal{F}$. Also, it is easy to see that $\theta_{f_1} \leq \theta_{f_2}$ if f_1 , $f_2 \in \mathcal{F}$ and $f_1 \leq^* f_2$. In the next section, we show that, in a certain generic model which is obtained by adjoining random reals, $\theta_{f_1} < \theta_{f_2}$ holds for some f_1 , $f_2 \in \mathcal{F}$. Put $\theta = \min\{\theta_f \mid f \in \mathcal{F}\}$. Let me introduce another cardinal invariant θ^* which is associated with a weaker combinatorial statement. For this, we need some definitions. Set

 $\mathcal{H} = \{ h \in \omega^{\omega} \mid h \text{ is strictly increasing and } \lim_{n < \omega} h(n+1) - h(n) = \omega \}.$

For each $h \in \mathcal{H}$ and $n < \omega$, a_n^h denotes the interval [h(n), h(n+1)) of ω . Define θ^* by

 $\theta^* = \min\{ |W| \mid W \subset 2^{\omega} \times \mathcal{H} \text{ and } \forall y \in 2^{\omega} \exists (x,h) \in W \exists^{\infty} n < \omega \ y \upharpoonright a_n^h = x \upharpoonright a_n^h \}.$ It is easy to check that $\omega_1 \leq \theta^* \leq \theta$. Furtheremore, we have:

Theorem 0.1 Assume that $cof([\mathbf{d}]^{\omega}, \subset) = \mathbf{d}$. Then, it holds that $\theta^* \leq \mathbf{d}$.

Proof Take a sufficiently large regular cardinal ρ . By using the assumption, take an elementary substructure M of $H(\rho)$ such that

 $M \cap \omega^{\omega}$ is a dominating family and $|M| = \mathbf{d}$ and $M \cap [M]^{\omega}$ is \subset -cofinal in $[M]^{\omega}$. Since $M \cap \omega^{\omega}$ is a dominating family, it holds that

$$(*) \qquad \forall \, h \in \mathcal{H} \,\, \exists \, h' \in M \cap \mathcal{H} \,\, \forall^{\infty} \, n < \omega \,\, \exists \, m < \omega \,\, a_{m}^{h'} \subset a_{n}^{h}.$$

We show that $W = M \cap (2^{\omega} \times \mathcal{H})$ satisfy the definition of θ^* . To get a contradiction, assume that there is $y \in 2^{\omega}$ such that

$$\forall^{\infty} n < \omega \ y \upharpoonright a_n^h \neq x \upharpoonright a_n^h$$
, for all $(x, h) \in W$.

Put $X = 2^{\omega} \cap M$. The next claim is easily verfied by using (*).

Claim 0.2
$$\forall x \in X \ \exists \ k < \omega \ \forall^{\infty} \ m < \omega \ \ y \upharpoonright [m, m+k) \neq x \upharpoonright [m, m+k).$$

By Claim 0.2, define $\varphi: X \to \omega$ by

$$\varphi(x) = \text{ the largest } k < \omega \text{ such that } \exists^{\infty} m < \omega \text{ } x \upharpoonright [m, m + k) \subset y.$$

It is easy to check that $\sup\{\varphi(x)\mid x\in X\}=\omega$. By this, since $[M]^{\omega}\cap M$ is \subset -cofinal in $[M]^{\omega}$, we can take $A=\{a_i\mid i<\omega\}\in M$ such that $\sup\{\varphi(a_i)\mid i<\omega\}=\omega$. Take $\psi:\omega\times\omega\to\omega$ such that, for each $(i,n)\in\omega\times\omega$,

$$i+n+\varphi(a_i)\leq \psi(i,n) \text{ and } \exists\, m\in [n,\psi(i,n)-\varphi(a_i)) \ \ a_i\restriction [m,m+\varphi(a_i))\subset y.$$

Without loss of generality, we may assume that $\psi \in M$. Define $\langle k_i \mid i < \omega \rangle \in M$ by

$$\begin{cases} k_0 = 0 \\ k_{i+1} = \psi(i, k_i), \text{ for } i < \omega \end{cases}$$

and set $x = \bigcup_{i < \omega} a_i \upharpoonright [k_i, k_{i+1}) \in X$. Then, it holds that

$$\forall \, k < \omega \,\, \exists \, m < \omega \,\, x \restriction [m,m+k) \subset y.$$

But this contradicts Claim 0.2

Let C_{ω} be the notion of forcing which adds a Cohen real. Then, it holds that

$$\Vdash_{\mathbf{C}_{\omega}} \ \forall \, y \in 2^{\omega} \ \exists \, x \in 2^{\omega} \cap \mathbf{V} \ \exists^{\infty} \, n < \omega \ x \upharpoonright [n^2, n^2 + n) = y \upharpoonright [n^2, n^2 + n).$$

So, $\theta^* < \mathbf{d}$ holds in a certain Cohen generic model.

It is known that the assumption $cof([\mathbf{d}]^{\omega}, \subset) = \mathbf{d}$ is followed from the non-existence of $0^{\#}$. So, it seems to prove Theorem 0.1 without this assumption. But I failed to find a proof.

Question 0.1 Is $\theta^* \leq d$ proved in ZFC?

In sections 2, 3, 4, we show that the cardinals ω_1 , θ , θ^* can be separated for certain generic models.

1 Generic extensions by random reals

For each infinite cardinal κ , we denote by $\mathbf{B}(\kappa)$ the measure algebra which adds a random function from κ to 2 and by $\mu_{\kappa} : \mathbf{B}(\kappa) \to [0,1]$ the measure function. In this section, we prove the following theorem.

Theorem 1.1 Assume CH. Let $\kappa > \omega_1$ be a regular cardinal. Then, there are $f_1, f_2 \in \mathcal{F}$ such that

$$\Vdash_{\mathbf{B}(\kappa)} \theta_{f_1} = \omega_1 \text{ and } \theta_{f_2} = \kappa.$$

Set $f_2 = \langle 2^n \mid n < \omega \rangle \in \mathcal{F}$. The next well-known lemma guarantees that this f_2 is as required in Theorem 1.1.

Lemma 1.2 (Forklore)
$$\Vdash_{\mathbf{B}(\omega)} \exists y \in \prod_{n < \omega} f_2(n) \ \forall x \in \prod_{n < \omega} f_2(n) \cap \mathbf{V} \ \forall^{\infty} \ n < \omega \ x(n) \neq y(n).$$

Proof Define $k_n < \omega$ (for $n < \omega$) by

$$k_0 = 0$$
 and $k_{n+1} = k_n + n$ for $n < \omega$.

For each $n < \omega$, put $I_n = [k_n, k_{n+1})$ and take a bijections from I_n 2 to $f_2(n)$. Using these bijections, we identify $\prod_{n<\omega} f_2(n)$ with $\prod_{n<\omega} I_n$ 2. Let \dot{g} be the canonical $\mathbf{B}(\omega)$ -name of generic real. Define \dot{g} by

$$\Vdash \dot{y} = \langle \dot{g} \upharpoonright I_n \mid n < \omega \rangle.$$

It holds that, for each $n < \omega$ and $s: I_n \to 2$,

$$\mu_{\omega}(\llbracket s = \dot{g} \upharpoonright I_n \rrbracket) = 2^{-|I_n|} = 2^{-n}.$$

So, $\mu_{\omega}(\|\exists^{\infty} n < \omega \ x \mid I_n = \dot{y}(n)\|) = 0$ for all $x \in 2^{\omega}$. This implies that

$$\Vdash \ \forall^{\infty} \, n < \omega \, \, x(n) \neq \dot{y}(n), \, \text{for all} \, \, x \in \prod_{n < \omega}^{I_n} 2.$$

Lemma 1.3 Let 0 < K, $M < \omega$. Suppose that $\{b_i^m \mid i < K \text{ and } m < M\} \subset \mathbf{B}(\omega)$ and $b \in \mathbf{B}(\omega)$ satisfy

$$b = \sum_{i < K} b_i^m$$
, for all $m < M$.

Then, there is a function $\varphi:M\to K$ such that

$$\mu_{\omega}(\sum_{m \leq M} b_{\varphi(m)}^m) \geq \mu_{\omega}(b) - (\frac{K-1}{K})^M \mu_{\omega}(b).$$

Proof By induction on $M \in [1, \omega)$. The case M = 1 is clear. Let $M = M_0 + 1 > 1$. Using the induction hypothesis, take $\varphi_0 : M_0 \to K$ such that

$$\mu_{\omega}(\sum_{m < M_0} b_{\varphi_0(m)}^m) \ge \mu_{\omega}(b) - (\frac{K-1}{K})^{M_0} \mu_{\omega}(b).$$

Put $c = \sum_{m < M_0} b_{\varphi_0(m)}^m$. Since $b - c = \sum_{i < K} (b_i^{M_0} - c)$, there exists j < K such that $\mu_{\omega}(b_j^{M_0}) \ge \frac{1}{K} \mu_{\omega}(b - c)$. Then, $\varphi = \varphi_0 (j)$ is as required.

For each $n < \omega$, let

$$M_n = \min\{ M < \omega \mid (\frac{n}{n+1})^M < 2^{-n} \}.$$

Define $f_1 \in \mathcal{F}$ by

$$|\{k < \omega \mid f_1(k) = n+1\}| = M_n$$
, for all $n < \omega$.

The next lemma implies that f_1 satisfies the condition in Theorem 1.1.

Lemma 1.4
$$\Vdash_{\mathbf{B}(\omega)} \forall y \in \prod_{k < \omega} f_1(k) \; \exists \; x \in \prod_{k < \omega} f_1(k) \cap \mathbf{V} \; \exists^{\infty} \; k < \omega \; x(k) = y(k).$$

Proof For each $n < \omega$, put $J_n = \{k < \omega \mid f_1(k) = n+1\}$. To show this lemma, let \dot{y} be a $\mathbf{B}(\omega)$ -name such that $\Vdash \dot{y} \in \prod_{k < \omega} f_1(k)$. For each $n < \omega$, using Lemma 1.3, take $s_n \in \prod_{k \in J_n} f_1(k)$ such that

$$\mu_{\omega}(\sum_{k \in J_n} \|s_n(k) = \dot{y}(k)\|) \ge 1 - (\frac{n}{n+1})^{M_n}.$$

Put $x = \bigcup_{n < \omega} s_n$. It is easy to check that

$$\mu_{\omega}(\llbracket \, \forall^{\infty} \, n < \omega \, \exists \, k \in J_n \, \, x(k) = \dot{y}(k) \, \rrbracket) = 0.$$

So, it holds that $\Vdash \exists^{\infty} k < \omega \ x(k) = \dot{y}(k)$.

2 A forcing notion with the ccc which lifts up θ^*

Define the forcing notion (Q, \leq) by

$$Q \subset 2^{<\omega} \times [2^{\omega} \times \mathcal{H}]^{<\omega}$$

and, for any $(s, u) \in 2^{<\omega} \times [2^{\omega} \times \mathcal{H}]^{<\omega}$,

$$(s,u) \in Q$$

if and only if, for all $(x,h) \in u$ and all $k < \omega$,

if $a_k^h \setminus \text{dom}(s) \neq \phi$ then $|a_k^h \setminus \text{dom}(s)| \geq |u|$ or $\exists i \in a_k^h \cap \text{dom}(s) \ x(i) \neq s(i)$, and, for any $(s, u), \ (s', u') \in Q$,

$$(s',u') \leq (s,u)$$

if and only if

 $s'\supset s \text{ and } u'\supset u \text{ and, for all } (x,h)\in u \text{ and all } k<\omega, \text{ if } a_k^h\cap(\operatorname{dom}(s')\setminus\operatorname{dom}(s))\neq\phi \text{ then } |a_k^h\setminus\operatorname{dom}(s')|\geq |u'| \text{ or } \exists\,i\in a_k^h\cap\operatorname{dom}(s')\,x(i)\neq s'(i).$

We show that a finite support iteration by the above forcing notion lifts up the value θ^* . For this, we need several lemmas.

Lemma 2.1 Let $n < \omega$. Then, for every $(s, u) \in Q$, there is $s' \in 2^{<\omega}$ such that $(s', u) \in Q$ and $(s', u) \leq (s, u)$ and $n \in \text{dom}(s)$.

Proof For each $j < \omega$, define $\varphi_j : \mathcal{H} \to \omega$ by

 $\varphi_j(h) = \text{the unique } k < \omega \text{ such that } j \in a_k^h.$

For each $t \in 2^{<\omega}$, define $\psi_t : 2^{\omega} \times \mathcal{H} \to \omega$ by

$$\psi_t(x,h) = \begin{cases} |a_{\varphi_{\mathtt{dom(t)}}(h)}^h \setminus \mathtt{dom}(t)|, & \text{if } t \upharpoonright a_{\varphi_{\mathtt{dom(t)}}(h)}^h \subset x, \\ |a_{\varphi_{\mathtt{dom(t)}}(h)+1}^h|, & \text{otherwise.} \end{cases}$$

To show this lemma, let $n < \omega$ and $(s, u) \in Q$. Put m = dom(s). Take $M < \omega$ such that

$$n, \ m < M \ \text{and} \ |a^h_{\varphi_M(h)} \setminus M| \ge |u|, \text{ for all } (x,h) \in u$$

By induction on $j \in [m, M]$, take $s_j : j \to 2$ as follows:

Put $s_m = s$. Suppose that $j \in [m, M)$ and s_j has been defined. Let l_j be the smallest element of $\{\psi_{s_j}(x,h) \mid (x,h) \in u\}$. Take $(x_j,h_j) \in u$ such that $\psi_{s_j}(x_j,h_j) = l_j$. Set $s_{j+1} = s_j (1-x_j(j))$.

Claim 2.2
$$|\{(x,h) \in u \mid \psi_{s_j}(x,h) < l\}| < l, \text{ for all } 0 < l < \omega \text{ and } j \in [m,M]$$

 $(s,u) \in Q$. The case $j=j_0+1>m$ is followed from the fact $(s,u) \in Q$. The case $j=j_0+1>m$ is followed from the fact $\psi_{s_j}(x_{j_0},h_{j_0}) \geq |u|$. \triangle By Claim 2.2, it holds that $l_j>0$, for all $j\in [m,M)$. So, it holds that $(s_M,u)\in Q$ and $(s_M,u)\leq (s,u)$.

Lemma 2.3 For each
$$(x,h) \in 2^{\omega} \times \mathcal{H}$$
, $\{(s,u) \in Q \mid (x,h) \in u\}$ is dense in Q .

Proof Let $(x,h) \in 2^{\omega} \times \mathcal{H}$ and $(s,u) \in u$. Take $M < \omega$ such that

- $(1) \quad |s| \leq M,$
- (2) if $a_k^{h'} \setminus M \neq \phi$ then $|a_k^{h'} \setminus M| > |u|$, for all $k < \omega$ and $(x', h') \in u$.
- (3) if $a_k^h \setminus M \neq \phi$ then $|a_k^h \setminus M| > |u|$, for all $k < \omega$.

Using Lemma 2.1, take $(t,u) \leq (s,u)$ such that dom(t) = M. Then, it holds that $(t,u \cup \{(x,h)\}) \in Q$ and $(t,u \cup \{(x,h)\}) \leq (s,u)$.

Lemma 2.4 Q satisfies the countable chain condition.

Proof Let W be an uncountable subset of Q. Using Lemma 2.1, replace W by certain stronger conditions if necessary, we may assume that, for all $(s, u) \in W$,

for all
$$(x,h) \in u$$
 and $k < \omega$, if $a_k^h \setminus k \neq \phi$ then $|a_k^h \setminus k| \geq 2|u|$.

Take $s_0 \in 2^{<\omega}$ and $m < \omega$ such that $W' = \{(s, u) \in W \mid s = s_0 \text{ and } |u| = m\}$ is uncountable. Then, every elements in W' are compatible.

Let \dot{G} be the canonical generic Q-name. Define \dot{g} by

$$\Vdash_Q \dot{g} = \bigcup \{ s \mid (s, u) \in \dot{G}, \text{ for some } u \}.$$

Lemma 2.5 $\Vdash_Q \dot{g} \in 2^\omega$ and $\forall x \in 2^\omega \cap \mathbf{V} \ \forall h \in \mathcal{H} \cap \mathbf{V} \ \forall^\infty n < \omega \ \dot{g} \upharpoonright a_n^h \neq x \upharpoonright a_n^h$.

Proof This is directly followed from Lemmas 2.1 and 2.3.

Let κ be a regular uncountable cardinal and P the κ -stage finite support iteration by the above forcing Q. Then, by the above argments, it holds that $\theta^* = \kappa$ in the generic model \mathbf{V}^P . Since P is finite support, it adds cofinally many Cohen reals. So, in \mathbf{V}^P , the covering number $\mathbf{cov}(\mathcal{M})$ of the meager ideal on the real line lifts up to κ . Futhermore, the next lemma shows that the unbounding number \mathbf{b} of ω^ω lifts up to κ , too.

Lemma 2.6 There is a Q-name d such that

$$\Vdash_{Q} \dot{d} \in \omega^{\omega} \ dominates \ \omega^{\omega} \cap \mathbf{V}.$$

Proof For each set X, denote by $\mathbf{0}_X$ the constantly zero function from X to 2.

Claim 2.7 For any $n < \omega$,

$$\{\,(s,u)\in Q\mid \exists\, m<\omega\;(\;\mathbf{0}_{[m,m+n)}\subset s\;)\,\}$$
 is dense in $Q.$

 $(x, u) \in Q$. Take $(t, u) \leq (s, u)$ such that, for all $(x, h) \in u$ and $k < \omega$,

if $a_k^h \setminus \text{dom}(t) \neq \phi$ then $|a_k^h \setminus \text{dom}(t)| \geq |u| + n$.

Define $t': |t| + n \to 2$ by $t \subset t'$ and t'(|t| + j) = 0, for j < n. It is easy to check that $(t', u) \in Q$ and $(t', u) \leq (s, u)$.

By Claim 2.7, it holds that

$$\Vdash_Q \forall n < \omega \ \exists \ m < \omega \ \dot{g} \upharpoonright [m, m+n) = \mathbf{0}_{[m,m+n)}.$$

So, in \mathbf{V}^Q , define $\dot{d} \in \omega^{\omega}$ by

 $\dot{d}(n)=$ the smallest $m<\omega$ such that $n\leq m$ and $\dot{g}\upharpoonright [m,m+2n)=\mathbf{0}_{[m,m+2n)}.$

To show \dot{d} is a required one, let $f \in \omega^{\omega}$ and $(s, u) \in Q$. Without loss of generality, we may assume that f is strictly increasing. Take $h \in \mathcal{H}$ such that

 $|a_k^h| \leq |a_{k+1}^h|$, for all $k < \omega$ and $|\{k < \omega \mid |a_k^h| = n\}| \geq f(n) + 1$, for all $n < \omega$. By Lemma 2.3, take $(t, v) \leq (s, u)$ such that $(\mathbf{0}_{\omega}, h) \in v$. Let k_0 be the smallest $k < \omega$ such that $|t| \geq h(k)$ and set $n_0 = |a_{k_0}^h| + |t|$. The next claim completes the proof of the lemma.

Claim 2.8 $(t,v) \Vdash_{Q} \forall n > n_{0} \ f(n) < \dot{d}(n)$.

In section 4, we give a genric model in which holds $\theta^* = \omega_2$ and $\mathbf{cov}(\mathcal{M}) = \omega_1$. But I do not known whether there is a model which satisfies $\mathbf{b} < \theta^*$.

Question 2.1 Is $b < \theta^*$ consistent with ZFC?

3 A forcing notion which lifts up θ

In this section, we give a forcing notion which gives a generic model of $\theta^* = \omega_1$ and $\theta = \omega_2$. The forcing notion which we give here is constructed by the ω_2 -stage countable support iteration. We begin with the definition of a forcing notion \mathbf{BT}_f for $f \in \mathcal{F}$ which will be used each stage in the iteration.

Let $f \in \mathcal{F}$. For each $n < \omega$, denote $\prod_{m < n} f(m)$ by S_n^f . Put $S^f = \bigcup_{n < \omega} S_n^f$. Note that (S^f, \subset) is a tree. Define the forcing notion (\mathbf{BT}_f, \leq) by

$$q \in \mathbf{BT}_f$$

if and only if

- (1) q is a subtree of S^f .
- (2) there is a function $f' \in \mathcal{F}$ such that $|\operatorname{succ}_q(s)| \geq f'(|s|)$ for every $s \in q$.

 $q' \leq q$ if and only if $q' \subset q$.

For each $q \in \mathbf{BT}_f$, define $\pi_q \in \omega^{\omega}$ by

$$\pi_q(n) = \max \{ \, k < \omega \mid \forall \, n' \geq n \, \forall \, s \in q \cap S_{n'}^f \ |\operatorname{succ}_q(s)| \geq k \, \}.$$

Note that $\pi_q \in \mathcal{F}$ for all $q \in \mathbf{BT}_f$. For each $k < \omega$, define the ordering \leq_k on \mathbf{BT}_f by $q' \leq_k q$ if and only if $q' \leq q$ and $\pi_q \upharpoonright m_k = \pi_{q'} \upharpoonright m_k$,

where m_k denotes the smallest $m < \omega$ such that $\pi_q(m) > k$.

In [2], Bartoszyński, Judah and Shelah have used similar but more complicated forcing notions $\mathbf{Q}_{f,g}$. The proof of the next lemma is similar to, but quite easier than the proof of Claim 2.6 in [2].

Lemma 3.1 Let \dot{e} be a \mathbf{BT}_f -name such that $\Vdash \dot{e} \in \mathbf{V}$. Then, for each $k < \omega$ and $q \in \mathbf{BT}_f$, there are $q' \leq_k q$ and a finite set E such that $q' \Vdash \dot{e} \in E$.

Proof Let \dot{e} , $k < \omega$, $q \in \mathbf{BT}_f$ be as in the lemma. For each $s \in q$, denote by q[s] the condition $\{t \in q \mid s \subset t \text{ or } t \subset s\}$. Take $M < \omega$ such that $\pi_q(M) \geq 2k$. Set

 $T = \{ s \in q \mid |s| \geq M \text{ and } \exists q' \leq_k q[s] \exists E \text{ } (E \text{ is finite and } q' \Vdash \dot{e} \in E) \}.$ Note that, whenever $s \in q \setminus T$ and $|s| \geq M$, $|\operatorname{succ}_q(s) \cap T| < k$.

Claim 3.2 $q \cap S_M^f \subset T$.

 \therefore) To get a contradiction, assume that $s \in q \cap S_M^f \setminus T$. Let $U = \{ t \in q \setminus T \mid s \subset t \}$. Then, it holds that

$$\forall t \in U \ (|\{u \in U \mid t \subset u \text{ and } |u| = |t| + 1 \}| > \pi_q(|u|) - k).$$

This implies that $r = \{s \mid j \mid j < |s|\} \cup U \in \mathbf{BT}_f \text{ and } r \leq_k q[s]$. Take $r' \leq r$ such that r' decides \dot{e} . Take $t \in r'$ such that $\pi_{r'}(|t|) \geq k$. Since $r'[t] \leq_k q[t]$, we have that $t \in T$. This contradicts that $U \cap T = \phi$.

By Claim 3.2, for each $s \in q \cap S_M^f$, take $q_s \leq_k q[s]$ and a finite set E_s such that $q_s \Vdash \dot{e} \in E_s$. Then $q' = \bigcup_{s \in q \cap S_M^f} q_s$ and $E = \bigcup_{s \in q \cap S_M^f} E_s$ satisfy this lemma. \square

Corollary 3.3 $(\mathbf{BT}_f, (\leq_k)_{k<\omega})$ satisfies Axiom A and \mathbf{BT}_f is ω^{ω} -bounding. \square

Let \dot{G} be the canonical generic \mathbf{BT}_f -name. Define \mathbf{BT}_f -name \dot{g} by

$$\Vdash \dot{g} = \bigcup (\bigcap \dot{G}) \in \prod_{n < \omega} f(n).$$

Then, it is easy to check that

$$\Vdash \ orall \, x \in \prod_{n < \omega} f(n) \cap \mathbf{V} \ orall^\infty \, n < \omega \ \ \dot{g}(n)
eq x(n).$$

Now we can describe how to construct a model which satisfies $\theta = \omega_2$ and $\theta^* = \omega_1$. Start with a ground model with CH. Let $\{f_\alpha \mid \alpha < \omega_2\} \subset \mathcal{F}$ be such that

$$\{ \alpha < \omega_2 \mid f_{\alpha} = f \}$$
 is cofinal in ω_2 for each $f \in \mathcal{F}$.

Define the ω_2 -stage countable support iteration P_{α} (for $\alpha \leq \omega_2$), \dot{Q}_{α} (for $\alpha < \omega_2$) by $\Vdash_{\alpha} \dot{Q}_{\alpha} = \mathbf{BT}_{f_{\alpha}}$.

Let $P = P_{\omega_2}$. Then, by the above argments, it holds that, in \mathbf{V}^P , $\theta = \omega_2$ and $\mathbf{d} = \omega_1$. Since $\operatorname{cof}([\omega_1]^{\omega}, \subset) = \omega_1$ does always hold, it holds that, in \mathbf{V}^P , $\theta^* \leq \mathbf{d} = \omega_1$.

4 A generic model of $\theta = \omega_2$ and $\mathbf{cov}(\mathcal{M}) = \omega_1$

In the previous section, we show that \mathbf{BT}_f does not lift up θ^* . But, if we first add a dominating real then we get a certain function $f \in \mathcal{F}$ such that \mathbf{BT}_f lifts up θ^* . In this section, we show that θ^* can be separeted from $\mathbf{cov}(\mathcal{M})$ by using it.

Lemma 4.1 Let V, W be transitive models of ZFC such that $V \subset W$. Assume that $d \in W \cap \omega^{\omega}$ dominates $V \cap \omega^{\omega}$. In W, define $h \in \mathcal{H}$ by

 $|a_k^h| \leq |a_{k+1}^h|, \ \text{for all} \ k < \omega \ \text{ and } |\{\ k < \omega \ | \ |a_k^h| = n\ \}| = d(n) + 1, \ \text{for all} \ n < \omega.$ Then, it holds that $\forall^\infty m < \omega \ \exists \ k < \omega \ a_k^h \subset a_m^{h'} \ \text{for all} \ h' \in \mathbf{V} \cap \mathcal{H}.$

Proof Let $h' \in \mathbf{V} \cap \mathcal{H}$. In \mathbf{V} , define $f_0, f_1 \in \omega^{\omega}$ by

 $f_0(n)=$ the smallest $m<\omega$ such that $\forall\,m'\geq m\ |a_{m'}^{h'}|\geq 2n,$ and $f_1(n)=\max\ a_{f_0(n+1)}^{h'}.$

Since d dominates f_0 , f_1 , there is $n_0 < \omega$ such that $\forall n \geq n_0$ $f_0(n)$, $f_1(n) < d(n)$. Put $k_0 = f_0(n_0)$. To show that $\forall k \geq k_0 \exists j < \omega \ a_j^h \subset a_k^{h'}$, let $k \geq k_0$. Take $n < \omega$ such that $f_0(n) \leq k < f_0(n+1)$. Then, it holds that $|a_k^{h'}| \geq 2n$ and $\max \ a_k^{h'} < \max \ a_{f_0(n+1)}^{h'} = f_1(n) \leq d(n)$. Since [0, d(n)) is covered by $\{a_j^h \mid j < d(n)\}$ and $|a_j^h| \leq n$ for all j < d(n), there is j < d(n) such that $a_j^h \subset a_k^{h'}$.

Lemma 4.2 Let V, W, d and h be as in Lemma 4.1. Working in W. Define $f \in \mathcal{F}$ by

$$f(k) = 2^{|a_k^h|}$$
, for all $k < \omega$.

Then, there is a \mathbf{BT}_f -name \dot{y} such that

 $\Vdash\ \dot{y}\in 2^\omega\ and\ \Vdash\ \forall^\infty\ k<\omega\ \dot{y}\upharpoonright a_k^{h'}\neq x\upharpoonright a_k^{h'},\ for\ all\ x\in 2^\omega\cap \mathbf{V}\ and\ h'\in\mathcal{H}\cap \mathbf{V}.$

Proof Working in **W**. Considering bijections from f(k) to $a_k^h 2$ for $k < \omega$, we may identfy $\prod_{k < \omega} f(k)$ with $\prod_{k < \omega} a_k^h 2$. Let \dot{G} be the canonical generic \mathbf{BT}_f -name. Define \mathbf{BT}_f -names \dot{g} and \dot{y} by

$$\Vdash \, \dot{g} = \bigcup (\bigcap \dot{G}) \text{ and } \dot{y} = \bigcup_{k < \omega} \dot{g}(k).$$

Note that $\Vdash \dot{g} \in \prod_{k < \omega} a_k^h 2$ and $\dot{y} \in 2^{\omega}$. It is easy to check that

$$\Vdash \forall x \in 2^{\omega} \cap \mathbf{W} \ \forall^{\infty} \ k < \omega \ \dot{y} \upharpoonright a_k^h \neq x \upharpoonright a_k^h.$$

To show \dot{y} is as required, let $x \in \mathbf{V} \cap 2^{\omega}$ and $h' \in \mathbf{V} \cap \mathcal{H}$. Since it holds that $x \in \mathbf{W}$ and $\forall^{\infty} m < \omega \, \exists \, k < \omega \, a_k^h \subset a_m^{h'}$, we have that

$$\Vdash \forall^{\infty} \, m < \omega \, \dot{y} \upharpoonright a_m^{h'} \neq x \upharpoonright a_m^{h'}.$$

Corollary 4.3 Assume that CH holds. There are a forcing notion R and R-name \dot{y} such that

- (1) R is proper and does not add a Cohen real and $|R| = \omega_1$.
- $(2) \quad \Vdash_{R} \dot{y} \in 2^{\omega} \ and \ \forall \ x \in 2^{\omega} \cap \mathbf{V} \ \forall \ h \in \mathcal{H} \cap \mathbf{V} \ \forall^{\infty} \ k < \omega \ \dot{y} \mid \ a_{k}^{h} \neq x \mid a_{k}^{h}.$

Using Corollary 4.3, we can construct a generic model which satisfies $\mathbf{cov}(\mathcal{M}) = \omega_1$ and $\theta^* = \omega_2$. Start with a ground model with CH. Take an ω_2 -stage countable support iteration by the forcing notion as in Corollary 4.3. Since the iteration does not add a Cohen real, $\mathbf{cov}(\mathcal{M})$ remains ω_1 . On the other hand, since functions $\dot{y} \in 2^{\omega}$ which satisfy (2) in the corollary is added cofinally, θ^* must be lifted up.

References

- [1] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math., 127, pp. 225-239 (1987)
- [2] T. Bartoszyński, H. Judah and S. Shelah, The Cichoń Diagram, J. Symbolic Logic, 58, pp.401-423 (1993)
- [3] T. Bartoszyński and H. Judah, Set Theory, On the structure of the real line, A.
 K. Peters, Wellesley, Massachusetts (1995)