obobooooooo 13040 20030 78-87

Cardinal invariants associated with some
combinatorial statements
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Abstract

T. Bartoszynski [1] characterized the uniformity non(M) of the meager ideal
on the real line as the smallest size of a family X C w* such that Vy € w¥ 3z €
X 3°n < wy(n) = z(n). By replacing w* by certain restricted subsets, we can
get weaker combinatorial statements and define cardinal invariants. In this talk,

we study these cardinal invariants.

0 Introduction

We use standard notion and notations in set theory (see e.g. [3]). Set
F={fe€w\{0})¥] f is non-decreasing and lim,, f(n) =w}.
For each f € F, define the cardinal 6; by
0; =min{|X|| X C Hf(n) and Vy € Hf(n) I°n <wy(n)=2z(n)}.

n<w C nkw

By the Bartoszynski’s characterization of non(M), it holds that §; < non(M) for
all f € F. Also, it is easy to see that 8y < 0y, if f;, fo € F and f; <* f5. In the
next section, we show that, in a certain generic model which is obtained by adjoining
random reals, 8;, < 8;, holds for some f,, f, € F. Put § = min{0; | f € F}. Let me

introduce another cardinal invariant * which is associated with a weaker combinatorial

‘statement. For this, we need some definitions. Set
H = {h € w¥ | h is strictly increasing and lim,<, h(n + 1) — h(n) =w}.
For each h € H and n < w, a denotes the interval [h(n),h(n + 1)) of w. Define §* by
0* = min{ [W| | W C2¥ xH and Vy € 23 (z,h) e WI®n <w ylal =z lal}.
It is easy to check that w, < 6* < 6. Furtheremore, we have:

Theorem 0.1 Assume that cof([d]“, C) = d. Then, it holds that 6* < d.
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Proof Take a sufficiently large regular cardinal p. By using the assumption, take
an elementary substructure M of H(p) such that

M Nw* is a dominating family and |M| = d and M N [M]“ is C-cofinal in [M]“.
Since M Nw* is a dominating family, it holds that
*) VREHIN EMNHY*°n<wIm<w a* Cak.
We show that W = M N (2 x H) satisfy the definition of §*. To get a contradiction,
assume that there is y € 2“ such that

Von<w ylat#z[ahl, forall (z,h) e W.
Put X =2“N M. The next claim is easily verfied by using (*).

Claim 0.2 VzeX3Jk<wV°m<w y|[mm+k)#cz][[mm+k). A

By Claim 0.2, define ¢ : X — w by
¢(z) = the largest k < w such that 3°m <w z [ [m,m+k) Cy.
It is easy to check that sup{¢(z) | ¢ € X } = w. By this, since [M]* N M is C-cofinal
in [M]“, we can take A = {a; |1 <w} € M such that sup{¢(a;) | i <w} = w. Take
¥ : w X w — w such that, for each (i,n) € w x w, ,
i+ n+¢(a;) <Y(i,n) and Im € [n,9¥(z,n) — ¢(a;)) a; [ [m,m+ ¢p(a;)) Cy.
Without loss of generality, we may assume that ¢ € M. Define (k; |i <w) € M by

{ kk =0
kivi =v(i, ki), fori <w
and set = J; . a; [ [ki, kiy1) € X. Then, it holds that
VE<wdIm<wez|[[mm+k)Cy.
But this contradicts Claim 0.2 a
Let C, be the notion of forcing which adds a Cohen real. Then, it holds that
Fc, Vy€2“3z€2NVI®°n<w z [ [n?,n?+n)=y[[n%n?+n).
So, §* < d holds in a certain Cohen generic model.
It is known that the assumption cof([d]“, C) = d is followed from the non-existence

of 0¥. So, it seems to prove Theorem 0.1 without this assumption. But I failed to find

a proof.
Question 0.1  Is * < d proved in ZFC?

In sections 2, 3, 4, we show that the cardinals w;, 8, 6* can be separated for certain

generic models.



1 Generic extensions by random reals

For each infinite cardinal «, we denote by B(k) the measure algebra which adds a
random function from & to 2 and by g, : B(x) — [0,1] the measure function. In this

section, we prove the following theorem.

Theorem 1.1 Assume CH. Let kK > w; be a reqular cardinal. Then, there are
fi, f2 € F such that
IFB(x) 05, =wy and Oy, = k.

Set f=(2"|n< w) € F. The next well-known lemma guarantees that this f; is

as required in Theorem 1.1.

Lemma 1.2 (Forklore) IFp() Jy € H fa(n)Vz € H fa(r) NV ¥V*° n < w z(n) # y(n).

n<w n<w

Proof Define k, < w (for n < w) by

ko =0 and k) =k, +n for n < w.
For each n < w, put I, = [kn,kn41) and take a bijections from 2 to f,(n). Using
these bijections, we identify [],.. fo(n) with []..., 2. Let g be the canonical B(w)-
name of generic real. Define y by

Fy=(gl1L|n<w).
It holds that, for each n < w and s : I, = 2,

po(ls =g [ L) =27 =27,
So, po(|3*n<wz [ I, =y(n)|) =0 for all x € 2“. This implies that

IF V°n < wz(n) #y(n), for all z € H I, | 0
n<w
Lemma 1.3 Let 0 < K, M < w. Suppose that {b]" | 1 < K and m < M } C B(w)
and b € B(w) satisfy

b= b, forallm < M.
i<K
Then, there is a function p : M — K such that
m K-1
Bl Blmy) 2 10l8) — (Cr M B):
m<M
Proof By induction on M € [1,w). The case M =1 is clear. Let M = My+1 > 1.
Using the induction hypothesis, take ¢ : My — K such that
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Bl S W) 2 11aD) = (o )

m< Mg

Put c =) b7, (m)- Since b—c¢ = EKK(b;M0 — ¢), there exists j < K such that

po(B°) > ., (b— c). Then, ¢ = g\ j) is as required. 0

For each n < w, let
—mi __E;__Al -n
Mn—mm{M<w|(n+1) <2}

Define f, € F by
Hk<w]| filk)=n+1}=M,, foraln<w.

The next lemma implies that f; satisfies the condition in Theorem 1.1.

Lemma 1.4 Ik, Vy € [] fi(k) 3z € [ A(k) NV 3°k < w (k) = y(k).
k<w k<w
Proof Foreach n <w, put J, = {k <w]| fi(k) =n+1}. To show this lemma, let
y be a B(w)-name such that I+ y € [],., fi(k). For each n < w, using Lemma 1.3,
take s, € [[zcs. f1(k) such that
s D lsn(k) = g(R)]) > 1= (

k€Jn

Put 2 =J,,
po([V°n < w3k € J, z(k) = y(k)|) = 0.

So, it holds that IF 3*° k < w z(k) = y(k). o

n

n+1

.

Sn. It is easy to check that

2 A forcing notion with the ccc which lifts up 6*

Define the forcing notion (@, <) by
Q C 2<¥ x [2% x H]<¥
and, for any (s,u) € 2<¥ x [2¥ x H]<¥,
(s,u) € Q
if and only if, for all (z,h) € u and all k < w,
if a} \ dom(s) # ¢ then |a? \ dom(s)| > |u| or 3i € a} N dom(s) z(z) # s(3),
and, for any (s,u), (s',v') € @,
() < (5,)
if and only if
s’ D s and w D u and, for all (z,h) € u and all k < w, if a} N (dom(s') \
dom(s)) # ¢ then |a} \ dom(s')| > |u/| or Ji € a} N dom(s’) z(3) # s(3).



We show that a finite support iteration by the above forcing notion lifts up the

value 6*. For this, we need several lemmas.

Lemma 2.1 Let n < w. Then, for every (s,u) € Q, there is s’ € 2<¥ such that
(s',u) € Q and (s',u) < (s,u) and n € dom(s).

Proof For each j < w, define p; : H = w by
@;(h) = the unique k < w such that j € af.
For each t € 2<%, define v¥; : 2 x H — w by

h : A
(2, h) = { lafdm(t)(h) \dom(t)], iftTap,, ,mC2

O gomiey (B +1 l, otherwise.

To show this lemma, let n < w and (s,u) € Q. Put m = dom(s). Take M < w such
that
n, m < M and Ia’;M(h) \ M| > |ul, for all (z,h) € u
By induction on j € [m, M], take s; : j — 2 as follows:
Put s,, = s. Suppose that j € [m, M) and s; has been defined. Let [; be
the smallest element of {¢,,(z,h) | (z,h) € u}. Take (zj,h;) € u such that

bs, (25, h) = ;. Set sjp1 = ;{1 —zi(4)).
Claim 2.2 |{(z,kh) € u | ¥, (z,h) <1} <, for all0 <l < w and j € [m, M]

") By induction on j € [m,M]. The case j = m is followed from the fact
(s,u) € Q. The case j = jo + 1 > m is followed from the fact ¥,,(zj,, hjp) > [ul. A
By Claim 2.2, it holds that I; > 0, for all j € [m, M). So, it holds that (sp,u) € Q
and (spr,u) < (s,u). ]

Lemma 2.3 For each (z,h) € 2¥ x H,
{(s,u) € Q| (z,h) € u} is dense in Q.

Proof Let (z,h) € 2 x H and (s,u) € u. Take M < w such that

(1) sl< M,

(2) if @b’ \ M # ¢ then |a}' \ M| > |u|, for all k¥ < w and (z',R’) € u.

(3) ifa} \ M # ¢ then |a} \ M| > |u|, for all k < w.

Using Lemma 2.1, take (¢t,u) < (s,u) such that dom(t) = M. Then, it holds that
(t,uU{(z,h)}) € Q and (t,uU {(z,h) }) < (s,u). O

Lemma 2.4 @ satisfies the countable chain condition.
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Proof Let W be an uncountable subset of (). Using Lemma 2.1, replace W by
certain stronger conditions if necessary, we may assume that, for all (s,u) € W,

for all (z,h) € u and k < w, if a? \ k # ¢ then |a} \ k| > 2|u|.
Take sg € 2<“ and m < w such that W = {(s,u) € W | s = spand |u| = m} is

uncountable. Then, every elements in W’ are compatible. a

Let G be the canonical generic Q-name. Define § by
kg ¢=U{s|(s,u) € G, for some u}.

Lemma 2.5 Itg §€2¥ andVz €2NVVAEHNVV®n<w g|at £z ]ak

Proof This is directly followed from Lemmas 2.1 and 2.3. a

Let k be a regular uncountalbe cardinal and P the k-stage finite support iteration
by the above forcing Q. Then, by the above argments, it holds that * = « in the
generic model V7. Since P is finite support, it adds cofinally many Cohen reals. So,
in V¥, the covering number cov(M) of the meager ideal on the real line lifts up to .

Futhermore, the next lemma shows that the unbounding number b of w* lifts up to

K, too.

Lemma 2.6 There is a Q-name d such that

IFo d € w* dominates w* N'V.
Proof For each set X, denote by Ox the constantly zero function from X to 2.

Claim 2.7 Foranyn < w,
{(s,u) €Q|IMm < w ( Opm,mtn) C s )} is dense in Q.

) Let n < wand (s,u) € Q. Take (t,u) < (s,u) such that, for all (z,h) € u and
k<w, |

if a} \ dom(t) # ¢ then |a} \ dom(¢)| > |u| + n.
Define t' : |t| + n — 2 by t C ¢’ and #(|t| + j) = 0, for j < n. It is easy to check that
(t',u) € @ and (¢,u) < (s,u). ' A

By Claim 2.7, it holds that

kg VR <wdm<w g[[m,m+n)=0pmin)-
So, in V9, define d € w* by

d(n) = the smallest m < w such that n < m and § [ [m,m + 2n) = Opn mi2n).
To show d is a required one, let f € w¥ and (s,u) € Q. Without loss of generaﬁty, we
may assume that f is strictly increasing. Take h € H such that



laf| < laf,,|, forall k <wand {k<w]||a}|=n}| > f(n) +1,foralln <w.
By Lemma 2.3, take (¢,v) < (s,u) such that (0,,h) € v. Let ko be the smallest k < w
such that [t| > (k) and set no = |a} | + [t|. The next claim completes the proof of

the lemma.
Claim 2.8 (t,v) IFg Vn > no f(n) < d(n).

") To get a contradiction, assume that there are (#,v’) < (t,v) and n > ng such
that (¢/,v’) kg d(n) < f(n). Replace (#',v") by a stronger condition if necessary, we
may assume that (#/,v’) decides the value of d(n). Let m < w be such that (#,v') IFg
d(n) = m. Without loss of generality, we may assume that m+2n C dom(#). Let k be
the unique k < w such that m € a. By the choise of &, it holds that [a}|, |a?,,| < n.

ap,, C [m,m+2n). Since (t',v') Ikg g | [m,m + 2n) = Opn m42q), it holds that

t'lak, = 0, . This contradicts the facts that (t',v') < (t,v) and (0,,k) € v and

dom(t) N [m,m + 2n) = ¢. o

In section 4, we give a genric model in which holds 8* = w, and cov(M) = w,. But

I do not known whether there is a model which satisfies b < 8*.

Question 2.1 Is b < 6* consistent with ZFC?

3 A forcing notion which lifts up 6

In this section, we give a forcing notion which gives a generic model of 6* = w,
and § = w;. The forcing notion which we give here is constructed by the w;-stage
countable support iteration. We begin with the definition of a forcing notion BT for
f € F which will be used each stage in the iteration.

Let f € F. For each n < w, denote [].._, f(m) by S{. Put S/ =
that (57, C) is a tree. Define the forcing notion (BT}, <) by

q € BT;
if and only if
(1) ¢ is a subtree of S/.
(2) there is a function f' € F such that |succ,(s)] > f'(|s|) for every
s € q.
¢ <gqifandonlyif ¢ Cq.
For each q € BTy, define 7, € w¥ by

Sf. Note

m<n n<w

me(n) = max{k <w |Vn'>nVs € qnS., |succ,(s)| > k}.
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Note that 7, € F for all ¢ € BT;. For each k < w, define the ordering <; on BT by
q¢ <t gif and only if ¢ < g and m, | my = 7y [ my,
where m;, denotes the smallest m < w such that m,(m) > k.
In [2], Bartoszyriski, Judah and Shelah have used similar but more complicated
forcing notions Qy 4. The proof of the next lemma is similar to, but quite easier than

the proof of Claim 2.6 in [2].

Lemma 3.1 Let é be a BT ;-name such that |- é € V. Then, for each k < w and
q € BTy, there are ¢’ < q and a finite set E such that ¢’ I é € E.

Proof Let é, k <w, q € BT} be as in the lemma. For each s € g, denote by q[s]
the condition {t € ¢| s Ctort C s}. Take M < w such that m,(M) > 2k. Set

T={s€q||s|]>Mand3Iqg <iq[s]IE ( E is finite and ¢’ I €€ E ) }.
Note that, whenever s € ¢\ T and |s| > M, [succ,(s) NT| < k.

Claim 3.2 ¢nSi, cT.

") To get a contradiction, assume that s € gN S{,,\T. Let U={teq\T|sCt}.
Then, it holds that

VteU(|[{ueU|tCuand Jul=|t|+ 1} > m,(u]) — k).
This implies that r = {s [ j | 7 < [s|} UU € BTy and r < g[s]. Take r’ < r such
that r’ decides é. Take t € r’ such that . (|t|) > k. Since r'[t] <) q[t], we have that
t € T. This contradicts that U N T = ¢. A

By Claim 3.2, for each s € ¢N SJ{,,, take q, <; q[s] and a finite set E, such that
gs IF é € E,. Then ¢ = Useqns{, g; and E = Usean,{, E, satisfy this lemma. 0

Corollary 3.3 (BTy, (<k)i<w) satisfies Aziom A and BT, is w*”-bounding. ]

Let G be the canonical generic BT f-name. Define BT f-name g by

F =N €[] f).

nlw

Then, it is easy to check that
IF Vz € H f(r)NVVY®n <w g(n)# z(n).
) n<w
Now we can describe how to construct a model which satisfies § = w, and * = w;.

Start with a ground model with CH. Let { f, | @« < w; } C F be such that
{a <ws | fa = f} is cofinal in w, for each f € F.



Define the w;-stage countable support iteration P, (for o < w,), Qa (for a < wy) by
IFo Qo =BTy,.

Let P = P,,. Then, by the above argments, it holds that, in V7, 6 = w, and d = w,.

Since cof([w;]¥, C) = w; does always hold, it holds that, in VP, §* < d = w;.

4 A generic model of § = wy and cov(M) = w;

In the previous section, we show that BT does not lift up *. But, if we first add
a dominating real then we get a certain function f € F such that BT/ lifts up 6*. In

this section, we show that * can be separeted from cov(M) by using it.

Lemma 4.1 Let V, W be transitive models of ZFC such that V. C W. Assume
that d € W Nw* dominates VNw*. In W, define h € H by
| lak| < |ak,,|, for allk <w and {k <w||af| =n} =d(n)+1, for alln < w.

Then, it holds that V°m <wIk <w a} Ca’, forallh' € VOH.

Pf-oof Let ' € VNH. In V, define fy, fi € w* by

fo(n) = the smallest m < w such that Ym' >m |at,| > 2n, and

fi(n) = max a’};(nﬂ).
Since d dominates fy, fi, there is ng < w such that Vn > ng fo(n), fi(n) < d(n). Put
ko = fo(no). To show that Vk > kodj < w a;? C afc", let k > ko. Take n < w such that
fo(n) <k < fo(n +1). Then, it holds that la?'| > 2n and max @} < max a’};(,ﬁ_l) =
fi(n) < d(n). Since [0,d(n)) is covered by {a? | j < d(n)} and |a}| < n for all

j < d(n), there is j < d(n) such that a? C a". m]

Lemma 4.2 Let V, W, d and h be as in Lemma 4.1. Working in W. Define
f € F by

f(k) = 2151 for all k < w.
Then, there is a BT j-name y such that

IFye2vandlF Vok<wylal £z al, forallz€2°NV and K € HNV.

Proof Working in W. Considering bijections from f(k) to *2 for k < w, we may
identfy [], ., f(k) with [T, .., 222. Let G be the canonical generic BT s-name. Define
BT -names g and y by

Fg=J(& andy =] k).

k<w
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Note that I ¢ € [],.., %2 and y € 2¢. It is easy to check that
IFVze2*NWV°k<w yla} #z|al

To show y is as required, let € VN2 and A’ € VN H. Since it holdds that z € W

and V°m < w3k < w a? C al, we have that

FV°m<wyla £z ]ak. a

m

Corollary 4.3 Assume that CH holds. There are a forcing notion R and R-name
y such that
(1) R is proper and does not add a Cohen real and |R| = w,.

(2) IFr g€2andVz €2*NVVYReHNVVY®k<wy|al#z]abl. 0

Using Corollary 4.3, we can construct a generic model which satisfies cov(M) = w,
and 6* = w,. Start with a ground model with CH. Take an w,-stage countable support

iteration by the forcing notion as in Corollary 4.3. Since the iteration does not add
a Cohen real, cov(M) remains w;. On the other hand, since functions y € 2 which

satisfy (2) in the corollary is added cofinally, §* must be lifted up.
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