ネマチック液晶における prewavy 不安定性

九州大学大学院工学研究院, *九州工業大学情報工学部 日高芳樹 (Yoshiki HIDAKA), YUSRIL Yusuf, *Jong-Hoon HUH, 甲斐昌一 (Shoichi KAI)

Faculty of Engineering, Kyushu University *Faculty of Computer Science and System Engineering, Kyushu Institute of Technology

§1. はじめに

1-1. 液晶におけるストライプ・パターン

液晶の研究は、その発見から現在に至るまで、光学顕微鏡等による直接観察が重要な役割を果たしてきた。例えば「nematic」という言葉の語源はギリシャ語の「糸」 ($v\epsilon\mu\alpha\tau$)であるが、これは nematic 液晶を偏光顕微鏡で観察したときに分子配向場の 線欠陥が絡まった糸のように見えることによる。また「schlieren texture」や「focal conic texture」は、それぞれ nematic 相と smectic 相を特徴付けるパターンとして 相の同定に用いられる [1].

液晶はそれ自体でも物理的に興味深い研究対象であるが、周知の通りディスプレ イとして工学的な応用も盛んになされている。液晶ディスプレイの最も簡単な動作 原理は、nematic 液晶のもつ誘電率の異方性により分子配向が電場によって制御で き、さらにこの配向の変化が屈折率の異方性により液晶中を透過する光の強度を変 えることを利用している。このような電場による分子配向の変化は、次のような自 由エネルギー密度によって議論することができる。

$$f = \frac{1}{2}K_1(\nabla \cdot \mathbf{n})^2 + \frac{1}{2}K_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2}K_3\{\mathbf{n} \times (\nabla \times \mathbf{n})\}^2 - \frac{1}{2}\Delta\varepsilon(\mathbf{n} \cdot \mathbf{E})^2$$
(1)

第一項から第三項は「Frank の自由エネルギー」と呼ばれ, nematic 液晶の配向ベ クトル n が空間的に一様でない場合,基底状態(一様配向状態)に比べて弾性的自由 エネルギーがたくわえられることを表している。第一項は広がり,第二項はねじれ, 第三項は曲がりの歪みに対する自由エネルギーへの寄与を示す。また第四項は電場 E と n の相互作用の自由エネルギー密度を表す。係数 ε_a は誘電率の異方性 (n に平行 な方向の誘電率と垂直な方向の誘電率の差)で,この係数が正(負)の液晶では E に 対してnが平行(垂直)になるとエネルギーは下がる。すなわち電場によるエネルギーの減少分が歪みによる弾性エネルギーの増分に打ち勝つと配向状態が変わる。こ れを Fréedericksz 転移と呼ぶ。

間隔dの平行平板電極の間に,誘電異方性が負の nematic 液晶をnが電極に 対して平行になるように配向 (planar 配向) させて電場を印加すると, E と n が 垂直の状態が最もエネルギーが低いため,この状態は安定に存在できるはずであ る.しかし, nematic 液晶内の不純物イオン伝導に伴う電気流体力学的不安定性 (Electrohydrodynamic instability, EHD) によって,この状態が不安定になること がある.これは、nの揺らぎが不純物イオンの非一様な分布を形成し、それが電場 に引きずられて対流を起こすため、流れによるトルクによってnの揺らぎが増幅さ れる現象である.この増幅機構は特定の波長 λ ($\sim d$)の揺らぎにのみはたらくので、 nの周期的配向構造を導き、それに伴って液晶の光学的異方性によってストライプ・ パターンが観察される.

この現象を物理的に記述するには、(1)式に加えて、粘性トルク、異方的 Navier-Stokes 方程式、電荷保存式、Maxwell 方程式をまとめて解析する必要がある. 実際に、これらの方程式系の線形安定性解析から対流パターンの波数と対流発生分 岐点の印加電圧の周波数依存性を求めることができ [2]、これは実験とよく一致する. つまりストライプ・パターンの形成という観測が容易な対象の測定を通して、これ ら方程式系の実験的な検証がなされたことになる.

その他にも,flexoelectric効果によるもの[3]や大きな弾性異方性をもつ系に磁場を加えた場合[4]など液晶内に macroscopic なストライプ・パターンが形成される現象はいくつかあるが,それぞれの形成メカニズムはすでに明らかになっている.しかしながら本稿で紹介する「prewavy パターン」(図1)はいまだにその形成

メカニズムが明らかになっていない [5, 6]. つまり実験的には nematic 液晶 にかなり普遍的に見られるパターンで あることがわかっているにも関わらず [7],理論的にはこれまで述べてきたよ うな効果を複合的に考慮してもそのよ うなパターン形成を導くことができて いない [8]. これは, nematic 液晶内の 物理に対してわれわれが未認識の要素

図 1: prewavy パターン.

がまだ残っていることを意味し, prewavy パターンの形成メカニズムを解明するこ とにより, さらに深く nematic 液晶の物理が理解されることが期待できる. 以下で は, prewavy パターンの形成メカニズムの解明をめざして行った実験結果を紹介す る. 用いた液晶は, 誘電異方性が負で最も標準的な nematic 液晶として EHD でも 用いられている MBBA である.

1-2. Defect-Free Chevron と prewavy パターン

prewavy パターンの発見は, EHD, 特に「chevron パタ ーン」と密接に関連している。chevron パターンとは図2に 模式的に示すようなパターンで、2重の周期性をもつ。EHD は、印加電圧の周波数fがある臨界値f。以下ではRayleigh-B énard 対流に類似した対流現象を示すが、f.を越えると対流 よりも director の振動が支配的となる。以前は、chevron は f>fcの領域 (誘電領域) で見られるパターンとして知られ ていたが, 最近 f < f. の導電領域でも見られることが明らか になった [9]. また chevron パターンはその形態から、欠 陥列のある「Defect-Mediated Chevron (DMC)」と欠陥の ない「Defect-Free Cevron (DFC)」(図 3)に区別される [9]. DMC は、通常のロール・パターンが印加電圧 Vの上昇に対 して不安定化して欠陥乱流状態になり、さらに電圧を上げる とその欠陥が周期的に配列することによって形成される。こ のパターン形成については, Rossberg らによって, 欠陥密 度場と director 場が一種の「反応拡散系」をなし、Turing 不安定性によって欠陥の周期的な配列と director の周期的 な変調パターンが形成されるというモデルが提案されている [10].

図2: chevron パター ンの模式図. $\lambda_1 \ge \lambda_2$ の2つの周期をもつ.

図 3∶Defect-Free Chevron.

一方のDFCはパターンのない状態から電圧を上げると突然現れる.これは、2 つの並進対称性が同時に破れることを意味し、非常に奇妙な現象であるように見え る.この奇妙なパターン形成は、directorの構造を観測することによって次のよう にして起こることがわかった.液晶系を二枚の直交する偏光板で挟むと、偏光板と directorの間の角度φによって透過光強度が

 $I(\phi) \propto \sin^2(2\phi)$

(2)

と変化する. この方法で液晶系を観察すると, DFC のしきい値よりも下の電圧 V_w で, ストライプ・パターンが見られる. これは, director の方位角が xy 面内で周期的に 変調されていることを意味する. 変調された director 対して Carr-Helfrich 効果が はたらくと,対流パターンの波数ベクトルも xy 面内で変調され, DFC が形成される. この電圧 V_w で現れるストライプ・パターンが prewavy パターンである. すなわち, DFC は prewavy パターンをバックグラウンドして現れるパターンで, DFC の長い 方の波長 λ_2 は prewavy パターンの波長と一致する.

以前の EHD の研究では対流パターンのみが観察され、その背後に隠れた director は静的な場としてしか認識されていなかった。近年、homeotropic 配向系の研究が 進み、それ以降対流モードと director の位相角モードの結合ダイナミクスが重要な 役割を果たしていることが明らかになっている。prewavy パターン自体の発見は 25 年ほど前になされていたが [11]、最近は DFC のバックグラウンド・パターンとして 再び注目されるようになった。

§2. Prewavy パターンの性質

prewavy パターンは、MBBA の planar 配向、homeotropic 配向の両方の系で見 られる [12]. しかし planar 系の場合、上下電極で director の xy 面内での回転が止 められるという境界条件によって、director の位相角方向の回転は z 方向にねじれを 伴うため、正味の回転がない. そのため、液晶を透過する光は director の回転の影 響を受けず、(2) 式は成立しないため、prewavy パターンの観測は困難である. そこ で、以下では homeotropic 系における実験結果を示す. homeotropic 系では、しき い値電圧 V_F で Fréedericksz 転移が起こり、director はある方向に傾く. その傾く 方向を director n の xy 面への射影 C で表す. C の方向は任意となるため z 方向のね じれは存在しないが、急激な Fréedericksz 転移後は C がバラバラな方向を向くため、 prewavy パターンの発生がわかりにくい. そこで Fréedericksz 転移後に充分な時間 をおき、C が弾性相互作用により観測領域内で一方向に揃ってから prewavy パター ンの観測を行う. 以下ではその C が揃った方向を x とする.

測定温度は特に断らない限り T=(30.0±0.1)℃ である. セルの厚さは作製時にバラツキ があり, d=49.0 ~ 54.7[µm] であったが, この範囲であれば厚さによる結果の違いは小さい.

2-1. f- V相図と分岐

図4にf-V平面上の相図を示す。それぞれのfに対して、V上昇に対するしきい値

126

をプロットしている. ▲は EHD のしきい値, ●は prewavy パ ターンのしきい値を示す. $f > f_w$ (~1075Hz)のときに prewavy パ ターンが現れるが,そのしきい値 V_w はfに対して線形で増加する. $f < f_w$ での EHD のしきい値 V_{EHD} は対流ストライプ・パターン (Williams Domain)のしきい値 で,一方 $f > f_w$ では先に prewavy パターンが現れているので, V_{EHD} は DFC のしきい値となる.ただ

し, さらに高い周波数領域 (f> 約 1400Hz) で は DFC は現れず, prewavy パターンは図 5 に示した「wavy パターン」へ変化する.

Cのx軸に対する角度を α とすると, prewavyパターンでは α がx方向に周期的に 変化する.その最大値(振幅) α_{max} は偏光板 を回転させ明るさの変化を見ることにより測 定できる. α_{max} の電圧依存性を測定した結果, prewavyパターンは超臨界分岐で発生し, α_{max} は約45°で飽和することがわかった.

図4:f-V相図. ▲はEHDのしきい値, ●は prewavy パターンのしきい値を示す.

図 5. wavy ハターン、J=1500H2, V 160.23V を印加して約 10 分後.

2-2. 波長のパラメータ依存性

図6に印加電圧の大きさと周波数,温度,磁場に対する波長の変化を示す.それ ぞれ波長は変化するが,液晶中に見られる他のストライプ・パターンに比べて変化 は非常に小さく,ほぼ一定であると言える[6].nematic液晶に対する磁場の影響 は,(1)式に電場と類似の形で入ってくるが,MBBAでは磁化率異方性が正のため directorは磁場に平行になろうとする.したがって充分高い磁場(H>420[Gauss])に 対しては prewavy パターンは消滅する.

2-3. しきい値電圧の温度依存性

しきい値電圧 Vw の温度依存性 (f=1200Hz) を図7に示す. 比較のために VEHD の

図 6: prewavy パターンの波長のパラメータ依存性. (a) 電圧依存性 (*f*=2100[Hz], *T*= 30.0±0.1[°C], *H*=0);(b) 周波数依存性 (*V*=60.10[V], *T*=30.0±0.1[°C], *H*=0);(c) 温度依 存性 (*V*=65.80[V], *f*=5000[Hz], *H*=0);(d) 磁場依存性 (*V*=65.14[V], *f*=2500[Hz], *T*= 30.0±0.1[°C]) を示す.

しきい値電圧 (f=300Hz) もプロットしている. 液晶の粘性率は温度とともに減少する ので V_{EHD} も減少するが、nematic 相から等 方相への転移点 (T_{NI}) 付近で、EHD を起こ すのに不可欠な誘電率の異方性が急激に小 さくなるので、転移点付近で V_{EHD} は上昇に 転ずる.そして、等方相で誘電異方性はゼ ロとなるので、 T_{NI} で発散する.一方 V_w は、 温度上昇とともに線形で減少するが、その ようなふるまいをする理由については未解

図 7: prewavy パターンと EHD のしき い値電圧の温度依存性.

明である。また等方相に入ると prewavy パターンは 消える。図8 にゆっくりとした温度上昇 (0.008°C/s) に対して prewavy パターンが消える途中の様子を示 している。まず初めに一本おきの黒線 (α =0) から等 方相への転移が始まる。これは、prewavy パターン が形成されたことによって電流が非一様に流れ、部 分的に Joule 熱で温度が上昇しているためと考えら れるが、この詳細も不明である。

図 8: nematic 相 か ら 等 方 相への転移の過程における prewavy パターン.

2-4. 流れ

prewavy パターンは EHD のように対流によるもの

ではないが、系内に流れが存在する。液晶系の流れの直接観察は困難なので、液晶 セル内に微粒子を混入してその動きを追う。われわれの実験では微粒子として粒径 3.88µmの「Micropearl」(積水化学)を少量混入した。これは液晶ディスプレイの スペーサーとして作られたものだが、粒径が非常によく揃っているので、どの粒子 を観測しても同じ条件で測定できる。

図9に流速の平均値の電圧依存性を示す。等速直線運動する粒子を1つのサンプ ルとして、各電圧に対して 50 個のサンプルを集めそれを平均した。エラー・バー

は標準偏差を表している. このグラフから 明らかなように, 流れは prewavy パターン のしきい値 (V_w)よりも低い電圧 (V_f)で発生 する. 図 10 に, 50 個のサンプルの速度ベ クトルを (v_x , v_y) 平面にプロットした結果を 示す. 図 10(a) は prewavy パターンのしき い値以下の電圧に対するもので, これは図 11(a) に示したように director とほぼ平行な 方向に流れがあることを示している. 一方 図 10(b) は prewavy パターンが形成されて

図 9:平均流速の印加電圧依存性. f= 1000Hz.

いる場合の結果で、この場合も director とほぼ平行に流れているが、director の向 きがx方向に変調されていることを反映して、図 11(b) に示したように個々の粒子 がジグザグ運動をしていることを表している。このデータから計算した速度ベクトル のx軸に対する角度 β の平均値は、director の角度 α とほぼ一致した。つまり流れは

図 10:速度ベクトルの (v_x, v_y) 平面へのプロット. (a) V = 55.19[V] (=V_f); (b) V = 125.12[V]. β は速度ベクトルの x 軸からの角度を表す.

図 11:速度 profile の典型例の模 式図. (a) V < V_w; (b)V > V_w.

director に沿って起こっている.

図 12 に $V_f \ge V_w$ の温度依存性を示す.上で 示した図 7 と同様に V_w は線形で減少し, T_{NI} で preawavy パターンも消滅する.一方流れのし きい値 V_f も線形で減少するが,こちらは T_{NI} を 越えても存在し,しきい値の線にも全く変化が 見られない.ただし,流れの profile は完全に等 方になっている.つまりこの流れは液晶の異方 性を起源としておらず,通常の電解液体に電場 を印加しても見られる流れで,「Isotropic Flow」 と呼ばれている [13, 14].

§3. まとめ

nematic 液晶中に発生するストライプ・パターンである prewavy パターンの性質 について報告した。われわれは、これまで述べてきた結果からその発生メカニズム の考察を行ったが、いまだ決定的な理解には至っていない[5,6]。2で述べた結果と、 これまでに報告されている比較的高周波の電場に対して起こる他の現象との比較も われわれは 2-4 で述べた Isotropic Flow が, prewavy パターンの発生に重要な役 割を果たしていると考え注目している. EHD では,対流モードと director の回転 モードが相互作用することによってさまざまなパターンが現れることが知られてお り,特に「Abnormal Rolls」では prewavy パターンと類似の director 変調構造が 現れる. prewavy パターンの場合も,しきい値の温度依存性が似たふるまいをする ことや,流れの profile がパターンの有無によって変わることから, Isotropic Flow と director の回転モードとの結合により発生していると考えることもできる.しか しながら,DFC は prewavy パターンの変調構造をバックグラウンドとして EHD が 発生するために現れるパターンであり,もし Isotropic Flow が prewavy パターンの 発生に不可欠なら,全く異なる流れである Isotropic Flow が prewavy パターンの だいることになるという疑問点が現れる.したがって, prewavy パターンは Isotropic Flow と独立に発生し,発生した Isotropic Flow が director の変調構造の影響を受 けて profile を変えていると考えることもできる.いずれにしてもそのメカニズムを 解明するためにはいまだ情報不足であり,さらなる研究の進展が必要である.

参考文献

- P. G. de Gennes and J. Prost: "The Physics of Liquid Crystals, 2nd ed." (Oxford Univ. Press, 1993);
 S. Chandrasekhar: "Liquid Crystals, 2nd ed." (Cambridge Univ. Press, 1992) [木村初男, 山下護 訳: 『液晶の物理学』(吉岡書店, 1995)].
- [2] E. Bodenschatz, W. Zimmermann and L. Kramer: J. de Physique <u>49</u>, 1875 (1988).
- [3] R. B. Meyer: Phys. Rev. Lett. <u>22</u>, 918 (1969).
- [4] F. Lonberg and R. B. Meyer: Phys. Rev. Lett. <u>55</u>, 718 (1985).
- [5] J.-H. Huh, Y. Hidaka, Y. Yusuf, N. Éber, T. Tóth-Katona, , Á. Buka and S. Kai: Mol. Crys. Liq. Crys. <u>364</u>, 111 (2001).
- [6] J.-H. Huh, Y. Yusuf, Y. Hidaka and S. Kai: Phys. Rev. E <u>66</u>, 031705 (2002).
- [7] 他の nematic 液晶(例えば Merck Phase 5) でも見られる.
- [8] W. Pesch: private communication.
- [9] J.-H. Huh, Y. Hidaka, A. G. Rossberg and S. Kai: Phys. Rev. E. <u>61</u>, 2769 (2000).
- [10] A. G. Rossberg and L. Kramer: Physica D, <u>115</u>, 19 (1998).
- [11] K. Hirakawa and S. Kai: Mol. Cryst. Liq. Cryst. <u>40</u>, 261 (1977).
- [12] 森信彰, 日高芳樹, 甲斐昌一:九州大学工学集報, 71, 297 (1998).
- [13] L. M. Blinov: Sci. Prog., Oxf. <u>70</u>, 263 (1986).
- [14] R. Ribotta and G. Durand: J. Phys. (Paris), Collog. <u>C3</u>, 334 (1979).