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Abstract: This paper investigates afacility location model with $n$ weighted
demand points on aline segment and aplane under acompetitive environment.
Customers at ademand point patronize one facility according to the attractiveness
and the transportation cost. The smaller the difference of the location of the
facilities, the less the customers distinguish the facilities. Two companies, the
leader and the follower establish their facilities by turns in this market to get as
much buying power as possible. We formulate the problems to find the optimal
location for the follower and for the leader, as amedianoid problem and acentroid
problem respectively, and propose asolution procedure to solve them.

Keywords: continuous location, noncooperative games

1Introduction

Competitive facility location problem was introduced by H.Hotelling [1], who studied the Nash
equilibrium problem of two sellers on a linear market. S.L.Hakimi considered the Stackelberg
equilibrium problem on anetwork [2], that is, two companies “leader” and “follower” establish
their facilities on nodes in order to capture as much buying power as possible. He showed
that the problem is $\mathrm{N}\mathrm{P}$-hard. Z.Drezner studied the same kind of acompetitive problem on
aplane [3].

This paper investigates an alternative game by two players on alinear market and on a
plane. The leader company Alocate his facility on the market first, and then the follower
company $\mathrm{B}$ locate his facility. The aim of each player is to maximize their gain, i.e., to
capture as much buying power as possible.

Various models has been proposed in this field [4], considering how demands are allocated,
how is the customer’s preference in facilities. Most commonly used assumption is that cus-
tomers utilize only the nearest facility. This is expected to derive aproper approximation for
fast food restaurants, coffee chain stores, video rental shops, etc. However, in this assump-
tion, when two facilities are mutually located in near, the property which cannot necessarily
be referred to as realistic will appear. We describe the details of this aspect below.

On asimple and typical case, the optimal strategy for $\mathrm{B}$ is locating adjacent to $\mathrm{A}$ , since $\mathrm{B}$

can expand his domain of influence by approaching to A. Suppose the demands are distributed
continuously on alinear market, and the amount of demand at $x$ is given by anon-negative
integrable function $f(x)$ . For the sake of simplicity, we assume that the gain of each player is
equal to the amount of the capturing demand. In this case when Aexists at $a$ , the gain of $\mathrm{B}$ at
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$b$ is represented by $G(b|a)= \int^{\frac{a+b}{-\infty 2}}f(x)dx$ in the case where $b<a$ , and $G(b|a)= \int_{\frac{\alpha+b\infty}{2}}f(x)dx$

in the case where $a<b$ . It is natural to assume that $G(b|a)= \frac{1}{2}\int_{-\infty}^{\infty}f(x)dx$ in the case
where $b=a$ . Since $f(x)$ is non-negative, $G(b|a)$ becomes greater as $\mathrm{b}$ approaches to $\mathrm{a}$ , so
the optimal strategy for $\mathrm{B}$ is locating his facility adjacent to A. This property holds not only

continuous model but also discrete model. But the undesirable part of this model is that

generally $G(b|a)$ is “too sensitive” around $b=a$ . For example, if the demands are uniformly
distributed on the interval $[0, 1]$ and the leader $x$ exists at $\frac{1}{3}$ , then the left-hand limit of $G(b|a)$

as $b$ approaches $a$ is equal to $\frac{1}{3}$ , while the right-hand limit of $G(b|a)$ as $b$ approaches $a$ is equal
to $\frac{2}{3}$ . This means that the location of $\mathrm{B}$ exerts an influence on his gain too sensitively on
the neighborhood of A. It must be noted that $\mathrm{B}$ gets or loses double gain by moving slightly
around Awith this case.

Similar sensitivity arises in the case where $n$ competitive facilities exist on aplane. When
acertain facility approaches to the neighborhood facility and pass through it to the other
side, the Voronoi regions of them change places, which leads to the change of the amount
of the capturing demand discontinuously at the point where the two facilities meet. These
hypersensitive properties described above is not so realistic, so we propose an improved model
based on two types of preferences for more reality.

It may be worth mentioning, in passing, that $\mathrm{B}$ ’s adjacency strategy is not optimal on
the condition that Acan locate his second facility in the same market [5]. In such acase, if
$\mathrm{B}$ locate his facility close to A’s first facility, then Alocate the second one so as to narrow
$\mathrm{B}$ ’s Voronoi region from both side, which results in making the gain of $\mathrm{B}$ close to 0.

2Our Model

We consider continuous facility location problem with discrete demand. Two companies, A
and $\mathrm{B}$ , establish their facilities by turns in the same market to get as much weight of demand
point as possible. In the later part, we formulate the problems to find the optimal location for
the follower and for the leader, as amedianoid problem and acentroid problem respectively,
and propose asolution procedure to solve them.

$p_{i}$ location of demand point $P_{i}(i=1\cdots n)$

$w_{i}$ weight of $P_{i}(W= \sum_{i}w_{i})$

$a$ location of the leader A
$b$ location of the follower $\mathrm{B}$

$\alpha$ , $\beta$ weight of $\mathrm{A},\mathrm{B}$

$d(a, b)$ Euclidean distance between Aand $\mathrm{B}$

$G_{A}$ , $G_{B}$ gain of $\mathrm{A},\mathrm{B}$

We introduce two types of preferences for customers to choose the facility. It will be

appropriate to consider that attractiveness of the facility affects acustomer’s preference. So
we define preference type 1as follows.

Preference Type 1:Customers choose one facility not only by the distance to them

but also by the weight (attractiveness) of them. $\mathrm{B}$ ’s domain of influence is defined by

$D_{B}=\{p=(x, y)|\alpha d(b,p)\leq\beta d(a,p)\}$

According to this preference, customers in domain $D_{B}$ choose facility $\mathrm{B}$ , shown in figure

1. A’s domain of influence $D_{A}$ can be defined by complementary set of $D_{B}$ . These forms
weighted Voronoi regions
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Figure 1: Proportional distribution model using distance and weight

$D_{B}$ is abounded set where $\alpha>\beta$ . Obviously, in the case where $\alpha\leq\beta$ , $\mathrm{B}$ can make the
area of $D_{A}$ close to 0by approaching $\mathrm{A}$ , consequently the optimal strategy for $\mathrm{B}$ is always
adjacent to A. So we consider only the case where $\alpha>\beta$ in the following part of this paper.
Note that the area of $D_{B}$ becomes larger as $\mathrm{B}$ go away from $\mathrm{A}$ , but at the same time $D_{B}$

becomes out of the convex hull of demand points and $\mathrm{B}$ loses weights of demand point, so
differentiation strategy is not always advantageous to B.

This preference avoids the hypersensitive properties mentioned in the introduction, but
new problem arises. Even in the case where $\mathrm{B}$ is only slightly inferior to $\mathrm{A}$ , $G_{B}$ becomes 0at
the same location as the competitor, because the area of $D_{B}$ becomes 0at that point. This
property cannot be always acceptable, so we introduce following preference to avoid this.

Preference Type 2:Not all customers are so sensitive about the difference of the
distance between Aand B. Let Adenotes the ratio of the customers who cannot ignore the
magnitude of the distance between Aand B. We define Aas follows.

$\mathrm{A}=\{$

0, $0\leq d(a, b)\leq d_{1}$

1, $d_{2}\leq d(a, b)$

$\frac{1}{d_{2}-d_{1}}(d(a, b)-d_{1})$ otherwise

$d_{1}$ and $d_{2}$ are given constants. Since Ais afunction of $d(a, b)$ , we use the notation A $(d(a, b))$

1n some cases.

Figure 2: Ratio of the customers who cannot ignore the distance between Aand $\mathrm{B}$

If Aand $\mathrm{B}$ are close to each other, no customers mind the difference of their location,
which means that the influence of weighted Voronoi region is reduced close to zero. We call
such Voronoi regions as the degressive weighted Voronoi regions.

The customers of the rate Aof the whole market distinguish the distance between Aand
$\mathrm{B}$ , on the other hand the customers of the rate 1–Ado not distinguish the distance but
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utilize afacility in proportion to the attractiveness of the facility. So we define $G_{B}$ at location
b with given a as follows.

$G_{B}(b|a)$ $=$ $(1- \mathrm{A})\frac{\beta}{\alpha+\beta}W+\mathrm{A}.\sum_{p.\in D_{B}}w_{i}$

provided that $D_{B}=\{p=(x, y)|\alpha d(b,p)\leq\beta d(a,p)\}$

Since $D_{B}$ is determined by the location of $a$ and 6, we use the notation $D_{B}(a, b)$ in some
cases. The first term represents the amount of weight which is obtained from the customers
who feel the distance to each facility is same and utilize it according to the attractiveness. The
second term represents the amount of weight which is gained from the customers who cannot
ignore the distance between Aand $\mathrm{B}$ , and utilize afacility according to the distance and the
attractiveness. The ratio of these customer segments change with the distance between A
and B.

In this model, $G_{B}$ becomes continuous function and has no hypersensitive properties,
whereas $G(b|a)$ in the introduction is not continuous and too sensitive around $b=a$ .

The medianoid problem is the problem to find the optimal location for the follower $\mathrm{B}$

which maximizes

$\mathrm{M}\mathrm{P}$ : $\max_{b}G_{B}(b|a)$ .

Let $b^{*}(a)$ denote the solution for MP with given $a$ . The centroid problem is the problem

to find the optimal location for the leader Awhich maximizes

CP : $\max_{a}G_{A}(b^{*}(a)|a)$ .

This can be transformed into

$\mathrm{C}\mathrm{P}$ : $\min_{a}G_{B}(b^{*}(a)|a)$

by using $G_{A}=W-G_{B}$ .
In general, solving centroid problems are much harder than the case of medianoid prob-

lems since the leader must take it into account that the follower locate his facility afterward
with the aim of maximization of his own profit.

If $\mathrm{B}$ establish his facility at the location where $d(a, b)\leq d_{1}$ , then $G_{B}$ takes the constant
value $\mathit{4}\alpha+\overline{\beta}W$ irrespective of the distribution of demand points, so we can use this value as
the lower bound $LB$ in searching for the optimal solution for medianoid problem.

3Linear Market

In this section, we consider the case where demands are distributed discretely on the interval
$[0, 1]$ . At first, we consider MP with given location $a$ of A.

Let $D_{P_{i}}$ denote the existence region of $\mathrm{B}$ where $\mathrm{B}$ can include $P_{i}$ in his domain of influence
$D_{B}$ . This domain is determined by the location $a$ , so it is represented by

$D_{P_{i}}(a)=[ \frac{\alpha-\beta}{\alpha}p_{\dot{1}}$ $+ \frac{\beta}{\alpha}a$ , $\frac{\alpha+\beta}{\alpha}p_{i}-\frac{\beta}{\alpha}a]$
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It is equivalent that $P_{i}$ is under the influence of $\mathrm{B}$ , and $\mathrm{B}$ is inside $D_{P_{i}}$ . So the next duality
relation holds.

$p_{i}\in D_{B}(a, b)\Leftrightarrow b\in D_{P_{i}}(a)$

When the set of demand points and $\alpha$ , ! are given, $D_{P_{i}}(a)$ of all demand points are fixed
with arbitrary $a$ . So we can draw adiagram with $a$ as horizontal axis and the extreme points
of $D_{P_{i}}(a)$ as vertical axis. An example with five demand points are shown in figure 3.

Figure 3: Diagram with 5demand points (Shading region represents $D_{P_{2}}$ )

In this diagram, $D_{P_{i}}$ is the domain that lies between the two lines passing through the
point $P_{i}=(pi,p_{i})$ with slopes of $\mathrm{g}\alpha$ and $-\mathrm{f}1\alpha$ . Let $\ell_{i}^{+},l_{i}^{-}$ denote these two lines respectively.
For the later part, we separate $D_{P_{i}}$ into the left side and the right side of 1, with labels of
$D_{P_{i}}^{-}$ and $D_{P_{i}}^{+}$ respectively.

When Ais at acertain point $a_{0}$ , $D_{P}.\cdot(ao)$ becomes the interval which is the intersection
of the line $a=a_{0}$ and $D_{P}.\cdot$ . The values of the extreme points of $D_{P_{i}}(a_{0})$ are read from the
vertical axis; from the example, if Alocates his facility at $a=0.4$ , $\mathrm{B}$ can take $P_{2}$ in his
domain of influence locating at $b\in D_{P_{2}}(0.4)\approx[0.42,0.44]$ .

Suppose $D_{P_{i}}(a\circ)$ and $D_{P_{f}}(a_{0})$ have an common interval and $b$ exists on the interval, and
$b\not\in D_{P_{k}}(a\mathrm{o})$ for all $k(k\neq i,j)$ , rearranging terms with $G_{B}$ yields

$G_{B}(b|a_{0})=(1- \mathrm{A})\frac{\beta}{\alpha+\beta}W+\mathrm{A}(w_{i}+w_{j})=LB\mathit{4}$ $\mathrm{A}(w_{i}+w_{j}-LB)$

Since $LB$ is aconstant and Ais an increasing function in the wider sense with $d(a\circ, b)$ , there
is advantage to $\mathrm{B}$ in going away from Ain the case where $wi+wj>LB$ , meanwhile there is
advantage to $\mathrm{B}$ in approaching Ain the case where $wj+w_{j}<LB$ .

Let $R_{x}$ denote apiece of region on aline $a=a_{0}$ divided by the boundaries of $D_{P_{j}}(\mathrm{a})$ As
long as $\mathrm{B}$ is in acertain $R_{x}$ , wherever $\mathrm{B}$ moves, the member of the capturing demand points
remains unchanged. So in general, next property holds.

Property 1With $b\in R_{x}$ , if $\sum_{pj}\in D_{B}wi>LB$ then $G_{B}$ increases in the wider sense as
$B$ goes away from $A$ , else if $\sum_{p.\in D_{B}i}.w<LB$ then $G_{B}$ increases in the wider sense as $B$

approaches to $A$ .

Therefore in either case the candidate solutions for MP with given $a_{0}$ are obtained by
enumerating the extreme points of $R_{x}$ , such points are easily calculated as the intersection
points of line $a=a_{0}$ and lines $\ell_{i’ i}^{+\ell-}$ . The optimal solution $b^{*}$ for MP can be searched linearly
in the order of $O(n)$ among the candidate solutions, for the point which maximizes $G_{B}$ .
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CP is the problem to find the location of $a$ which minimizes $G_{B}(b^{*}(a)|a)$ . At first, we
consider the example in figure 3. The interval between two thin broken lines is the region
where no pairing of $D_{P_{i}}$ has an intersection. In such aregion, no $D_{P_{i}}$ overlaps with each
other, which means that if Alocates his facility in this region then $\mathrm{B}$ cannot take more than
1demand point in $\mathrm{B}’ \mathrm{s}$ domain of influence. For details, if all $w_{i}$ are less than $LB$ then the
optimal location for $\mathrm{B}$ is the point which satisfies $d(a, b)\leq d_{1}$ and $\max G_{B}$ becomes $LB$ . If
$w_{m}$ which has the maximum value among $w_{i}$ is greater than $LB$ then the optimal location for
$\mathrm{B}$ is the farthest point from Ain the range of $D_{P_{m}}(a)$ and $\max G_{B}$ becomes $LB+\mathrm{A}(w_{m}-LB)$ .

But this example is aspecial case, since such an interval of $a$ as no $Dpx$ overlaps with each
other does not always exist. Let $a^{-}(k)$ , $a^{+}(k)$ denote the maximum and minimum value of
$a$-coordinate where $k$ domains of $D_{P}^{-}.\cdot$ and $D_{P_{j}}^{+}$ overlap each other. For example, in figure 3,
$a$-coordinate values of thin broken lines are $a^{-}(2)$ , $a^{+}(2)$ from left to right. If $a^{-}(2)>a^{+}(2)$

then there is no interval of $a$ where less than or equal to two $D_{P}.\cdot$ overlap with each other.
Let $k^{*}$ denote minimum $k$ which satisfied $a^{-}(k)$ $<a^{+}(k)$ . The solution for CP exists in

the interval $[a^{-}(k^{*}), a^{+}(k^{*})]$ , since Acan reduce $\sum_{p\in D_{B}}iw_{i}$ as small as possible by locating
his facility in this interval. Simultaneously Amust reduce the maximum value of Awith
$b^{*}$ , by minimizing the maximum distance from $a$ to the extreme points of $D_{P}.\cdot(a)(pi\in$

$[a^{-}(k^{*}), a^{+}(k^{*})])$ . Such apoint $a^{*}$ is calculated by

$a^{*}$ $=$ $\frac{1}{2}((\frac{\alpha+\beta}{\alpha}p_{i}-\frac{\beta}{\alpha}a^{+}(k^{*}))+(\frac{\alpha+\beta}{\alpha}p_{j}-\frac{\beta}{\alpha}a^{-}(k^{*})))$

$=$ $( \frac{\alpha+\beta}{2\alpha})(p_{i}+p_{j})-\frac{\beta}{2\alpha}(a^{+}(k^{*})+a^{-}(k^{*}))$

where $p_{i},pj\in[a^{-}(k^{*}), a^{+}(k^{*})]$ are the nearest demand points to $a^{-}(k^{*})$ , $a^{+}(k^{*})$ respectively.
Then $a^{*}$ is the solution for $\mathrm{C}\mathrm{P}$ .

Now we must search for $k^{*}$ and the interval $[a^{-}(k^{*}), a^{+}(k^{*})]$ . The candidate solutions for
$a^{-}(k^{*})$ , $a^{+}(k^{*})$ are the points where the number of the overlap of $D_{P}.\cdot$ changes, i.e., the lattice
points composed by $\ell_{i}^{+}$ and $l_{i}^{-}$ . Let $P_{i,j}^{+}$ denote the intersection of $l_{i}^{+}$ and $\ell_{j}^{-}$ where $i<j$ , $P_{\dot{1},j}^{-}$

denote the intersection of $l_{i}^{-}$ and $\ell_{j}^{+}$ . Then $a^{+}(k)$ is the point which has the minimum value
of $a$-coordinate among $P_{i,i+k-1}^{+}$ , $a^{-}(k)$ is the maximum $a$-coordinate point among $P_{i,i+k-1}^{-}$ .

When searching for $a^{+}(k)$ , we can utilize the following property. If inequality

$a_{i+k}-a_{i+k-1}< \frac{\alpha-\beta}{\alpha+\beta}(a_{i+1}-a_{i})$

holds then $a$-coordinate value of $P_{i,i+k-1}^{+}$ is greater than that of $P_{i+1,i+k}^{+}$ . We omit the similar
inequality for $a^{-}(k)$ . If $a^{-}(k)<a^{+}(k)$ then $k$ , $a^{-}(k)$ , $a^{+}(k)$ are the candidate solutions. When
searching for $k^{*}$ , binary search is available. This method changes the value of $k$ from 1to

$n-1,2$ , $n-2,3$ , $\cdots$ , $\frac{n}{2}$ to find smallest $k$ which satisfies $a^{-}(k)<a^{+}(k)$ . By this means we
can find $k^{*}$ , $a^{-}(k^{*})$ , $a^{+}(k^{*})$ and $a^{*}$ which minimizes $\max G_{B}$ as the solution for $\mathrm{C}\mathrm{P}$ .

4Plane Market

This section considers MP on aplane. We use following notations for two dimensional model.

$p_{i}=$ ($p_{i1}$ ,pi2) location of demand point $P_{i}(i=1\cdots n)$

$a=$ ( $a_{1}$ , a2) location of A
$b=(b_{1}, b_{2})$ location of $\mathrm{B}$

The other notations are same as previous section

167



The shape of B’s domain of influence $D_{B}$ becomes acircle represented by

$D_{B}$ $=$ $\{(x, y)|(x-\frac{b_{1}-k^{2}a_{1}}{1-k^{2}})^{2}+(y-\frac{b_{2}-k^{2}a_{2}}{1-k^{2}})^{2}\leq\frac{k^{2}}{(1-k^{2})^{2}}((a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2})\}$

provided that $k= \frac{\beta}{\alpha}$ .

Using similar way of thinking in the previous section, we start with formulating the domain
$D_{P_{i}}$ , which represent the existence region of $\mathrm{B}$ where $\mathrm{B}$ can include $P_{i}$ in his domain of
influence $D_{B}$ .

Let $O$ denote the center of $D_{B}$ , $r$ denote the radius of $D_{B}$ . Calculating the length of $\overline{AO}$

and $r$ , we obtain the relation
$r= \frac{\beta}{\alpha}\overline{AO}$ .

If we draw two tangent lines to the circles $D_{B}$ through $\mathrm{A}$ , then the angle between the
lines which contain $D_{A}$ remains constant wherever $\mathrm{B}$ moves. Let $\theta$ denote the angle, then we
obtain

$\mathrm{s}.\mathrm{n}\frac{\theta}{2}=\frac{\beta}{\alpha}$

Since the radius of $D_{B}$ is in proportion to the distance between Aand 0, and the included
angle of two tangent lines is constant, it is natural to use polar coordinate in this part.
Without loss of generality, Ais assumed to be given at origin $(0,0)$ . We use polar coordinate
$b=(\gamma, d)$ , $p_{i}=(\delta_{i},l_{i})$ , provided that $d=d(a, b)$ and 7, $\delta_{i},l_{i}$ satisfy the relations $(b_{1}, b_{2})=$

$(d\cos\gamma, d\sin\gamma)$ , ($p_{i_{1}}$ ,Pi2) $=(l_{i}\cos\delta_{i}, l_{i}\sin\delta_{i})$ , $0\leq\gamma$ , $\delta_{i}<2\pi$ .
When $P_{i}$ is on the boundary of $D_{B}$ , using cosine theorem, the following equation is derived

on condition that $\delta_{i}-\frac{\theta}{2}\leq\gamma\leq\delta_{i}+\frac{\theta}{2}$.

2 $d^{2}+$ $(1 \% \cos\theta)l_{i}^{2}-4dl_{i}\cos(\delta_{i}-\gamma)=0$

Conversely if this relation is satisfied, then $P_{i}$ is on the boundary of $D_{B}$ . Eliminating 0by
using $\sin\frac{\theta}{2}=\mathrm{g}=k\alpha$ ’this equation becomes

$d^{2}+(1-k^{2})l_{i}^{2}-2dl_{i}\cos(\delta_{i}-\gamma)=0$ .

When $\alpha$ , ! and $P_{i}$ are given, we can think left side member of this equation as an implicit
function $h(\gamma, d)$ . Now $D_{P_{i}}$ can be formulated as $D_{P_{i}}=\{(\gamma, d)|h(\gamma, d)\leq 0\}$ . If $B$ is in this
domain, then $P_{i}$ is in $\mathrm{B}$ ’s domain of influence as follows.

$b\in D_{P_{i}}\Leftrightarrow p_{i}\in D_{B}$

Let $B_{P_{j}}$ denote the boundary of $D_{P_{i}}$ , then $B_{P_{i}}$ is formulated as $B_{P}.\cdot=\{(7, d)|\{(7, d)=0\}$

which shape of the graph becomes ovaloid shape illustrated in figure 4.
If $D_{P}.\cdot\cap D_{P_{J}}\neq\phi$ and $b\in D_{P_{j}}\cap D_{P_{f}}.$ , then $\mathrm{B}$ can get at least $\max\{\mathrm{A}(w_{i}+w_{j}-\mathrm{L}\mathrm{B}), LB\}$ .

So if we can omit the value of Aand $w_{i}$ , the candidate solution for MP is $b^{0}$ corresponding to
$D_{B}$ which covers the maximum number of $P_{i}$ . Such $b^{0}$ is on the intersection region of $D_{P_{i}}$ ,
which includes the intersection points of $B_{P}.\cdot$ . For the first step to find the solution for $\mathrm{M}\mathrm{P}$ ,
we start to examine the intersection points of $B_{P_{i}}$ , which are potential candidate solutions.

When searching for the intersection with acertain $B_{P_{i}}$ , we can obviously exclude $B_{P_{J}}$

which satisfies $|\delta_{i}-\delta j|>\theta$ or $l_{j}(1-k)>l_{i}(1+k)$ or $l_{j}(1+k)<l_{i}(1-k)$ . The existence
region of demand points which boundary intersects $B_{P_{i}}$ is expressed by $\{(x, y)|(x-1B\mathrm{i}1_{7}^{2}-k+$
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Figure 4: Boundary of existence region of $\mathrm{B}$ which satisfies $pi\in D_{B}$

( $y-1B1 \mathrm{z}_{\tau)^{2}}-k\leq\frac{(2-k^{2})k^{2}}{(1-k^{2})^{2}}(p_{i1}^{2}+p_{i2}^{2})\}$ . If $P_{j}$ is not in this region, then $B_{P_{j}}$ does not intersect $B_{P}.\cdot$ .
The boundary is constrained in shape, two of them intersect at most 2times each other, and

one never enclosed by the other.
We can calculate the coordinates of intersection points between $B_{P_{i}}$ and $B_{P_{j}}$ , but the

result becomes very complicated expression either in polar coordinates and in orthogonal
coordinates. It becomes alittle simpler in orthogonal coordinates, so we use orthogonal
coordinates in this part. Solving the following simultaneous equations,

$\{$

$(x- \frac{p_{i1}}{1-k^{2}})^{2}+(y-\frac{p_{i2}}{1-k^{2}})^{2}=\frac{k^{2}}{(1-k^{2})^{2}}(p_{i1}^{2}+p_{i2}^{2})$

$(x- \frac{p_{j1}}{1-k^{2}})^{2}+(y-\frac{p_{j2}}{1-k^{2}})^{2}=\frac{k^{2}}{(1-k^{2})^{2}}(p_{j1}^{2}+p_{j2}^{2})$

we obtain the intersection points between $B_{P_{i}}$ and $Bpj$ as follows.

$x= \frac{-2p_{i2}UV+2p_{i1}V^{2}+RU(US+VT)\pm\sqrt{Z}}{2R(U^{2}+V^{2})}$

$y= \frac{V(2p_{i2}U^{2}+V(-2p_{i1}U+RUS+RVT))\mp U\sqrt{Z}}{2RV(U^{2}+V^{2})}$

provided that

$Z=(2V(p_{i1}V-p_{i2}U)+RU(US+VT))^{2}$

$-R(U^{2}+V^{2})(R(US+VT)^{2}+4V(p_{i1}^{2}V+p_{i2}^{2}V-7\mathrm{i}2(US+VT)))$

$S=p_{i1}+p_{j1}$ , $T=p_{i2}+p_{j2}$ , $U=p_{i1}-p_{j1}$ , $V=p_{i2}-p_{j2}$ .

These solutions can be translated into polar coordinates as $d=\sqrt{x^{2}+y^{2}}$ , $\gamma=\arccos(y/d)$

where $y\geq 0$ , $\gamma=2\pi$ $-\arccos(y/d)$ where $y<0$ .
Let $R_{x}$ denote apiece of region on j-d plane divided by $B_{P_{j}}$ . Then the same property

discussed in the previous section holds, i.e., as long as $b$ remains in afixed region $R_{x}$ , if
$\sum_{pi}\in D_{B}w_{i}>LB$ then $G_{B}$ is expected to increase as $\mathrm{B}$ goes away from $\mathrm{A}$ , else if $\sum_{p:\in D_{B}}w_{i}<$

$LB$ then $G_{B}$ is expected to increase as $\mathrm{B}$ approaches to A. So the candidate solution for MP
is the farthest or nearest point from Ain the region of $R_{x}$ .

The shading $\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{i}\mathrm{o}\grave{\mathrm{n}}$ in figure 5shows an example of the region of $DP.\cdot\cap\overline{DP_{\mathrm{j}}}\cap DP_{k}\cap\overline{D_{P_{\ell}}}$ .
As long as $b$ is included in this region, the member of demand points covered by $D_{B}$ is fixed
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Figure 5: Labels for the extreme points of divided regions

In order to treat the extreme point of divided region $R_{x}$ , we label each intersection of
$B_{P_{j}}$ as shown in figure 5. When $\delta_{i}<\delta_{j}$ , we can uniquely label the intersection of $B_{P}$. and
$B_{P_{f}}$ as $I_{ij}^{+}$ and $I_{i\mathrm{j}}^{-}$ , according to the descending order of the value of $\mathrm{d}$-coordinate $(I_{ij}^{+}=I_{ij}^{-}$

when touching). The points where $B_{P_{i}}$ attains maximum and minimum $d$-coordinates value
must be taken into consideration. These points are labeled $E_{i}^{+}$ and $E_{i}^{-}$ respectively, which
coordinates are $(\delta_{i}, (1+k)l_{i})$ and $(\delta_{i}, (1-k)l_{i})$ .

In general, tree algorithm is useful for searching for this kind of intersections, but what we
want is the maximum value of $G_{B}$ in the region, so we must calculate it with Aand compare
with the other candidate solution, so tree algorithm is not appropriate in this case.

On $R_{x}$ in figure 5, $E_{i}^{+}$ is the farthest point from $\mathrm{A}$ , and $I_{jk}^{+}$ is the nearest. Therefore $E_{i}^{+}$

and $I_{jk}^{+}$ are listed as the temporary candidate solutions with $R_{x}$ . Comparing $G_{B}(E_{i}^{+})$ and
$G_{B}(I_{jk}^{+})$ , the greater one is the candidate solution. Note that strictly $I_{j\ell}^{+}$ is not contained in
$R_{x}$ in this figure, but it is the extreme point of the other region, so it will be listed as an
candidate solution in the other scan. In the same way, $I_{it}^{+},I_{j\ell}^{+},I_{ij}^{+},\cdots$ will be also scanned in
our algorithm.

Our algorithm for solving $M_{P}$ is shown below.

Step 1. Sort $P_{i}$ by ascending order of $\delta_{i}$ , and save the original order to $S_{k}$ .
Step 2. $u\in-1$

Step 3. $G_{B}arrow LB$ , $varrow u+1$ , $Larrow\phi$

Step 4. If $\delta_{v}-\delta_{u}>\theta$ then go to step 6.
Check whether $B_{P_{u}}$ and $B_{P_{v}}$ intersect each other. If intersection exists, calc the points
$I_{uv}^{+}$ and $I_{uv}^{-}$ . $Larrow L+\{I_{uv}^{+}, I_{uv}^{-}\}$ .

Step 5. $varrow$ $v+1$ . Go to step 4.
Step 6. $Larrow L+\{E^{+}, E^{-}\}$ . Sort elements of $L$ by ascending order of the clockwise angles

between the element and $\overline{P_{u}T}$. ($T$ is acontact point between $B_{P_{u}}$ and the line
$\gamma=\delta_{u}-\frac{\theta}{2})$

Step 7. $G_{u}arrow 0$ , $B_{u}arrow(0,0)$ , $tarrow 1$ , $Varrow\{\mathrm{S}\mathrm{m}\}$

Step 8. Choose $t$-th element of $L$ as $L_{t}$ . If $d(a, L_{t})\leq d_{1}$ then $G_{u}=LB$ and go to step 10.
If $L_{t}=I_{um}^{+}$ then $Varrow V\cup\{S_{m}\}$ and $V_{t}arrow V$ . If $L_{t}=I_{um}^{-}$ then $V_{t}arrow V$ and
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$Varrow V\backslash \{S_{m}\}$ .
If $L_{t}=E^{+}$ or $L_{t}=E^{-}$ then $V_{t}arrow V$ .

$|\mathrm{t}|\mathrm{e}\mathrm{p}9$ . $m arrow(1-\mathrm{A}(L_{t}))LB+\mathrm{A}(L_{t})\sum_{i\in V_{\mathrm{t}}}w_{i}$
. If $m> \max\{G_{u}, LB\}$ then $G_{u}arrow m$ and $B_{u}arrow L_{t}$ .

ep 10. If $t<\mathrm{t}\mathrm{h}\mathrm{e}$ number of element of $L$ then $tarrow t+1$ and go to step 8.

ep 11. If $G_{u}>G_{B}$ then $G_{B}arrow G_{u}$ and $barrow B_{u}$ . If $u\geq n-1$ then stop else $uarrow u+1$ .
go to step 3.

Basic idea is selecting one candidate solution for one corresponding region. $S_{k}$ holds the
original index $i$ of $P_{k}$ and $\delta_{k}$ . $L$ holds the position of the temporary candidate solutions on
$B_{P_{u}}$ . For example, sorted $L$ becomes $\{I_{ik}^{+}, E_{i}^{+}, I_{il}^{+}, I_{ij}^{+}, I_{ik}^{-}, I_{il}^{-}, E_{i}^{-}, I_{ij}^{-}\}$ with $u=i$ in figure 5.
$V$ holds aset of indices of demand points which are in $\mathrm{B}$ ’s domain of influence when $\mathrm{B}$ is at
$L_{t}$ . If $u=i$ and $L_{t}=I_{ij}^{+}$ then $V=\{i, k,l, j\}$ in figure 5. When algorithm stops, the solution
for MP is 6, with the maximum value of $G_{B}$ .

On this algorithm, step 45 takes $O(n-1)$ times, step 6takes $O$ ($2(n-1)$ l0g2(n-1)) times,

step 8-10 takes $O(2(n-1))$ times, step 3-11 takes $O(n)$ times , so the total computational
complexity becomes $O(n^{2}\log n)$ .

5Conclusion and Further Research

We considered acompetitive facility location problem on alinear and aplane market intr0-
ducing two types of preferences to avoid hypersensitive property. One of the preferences is

amodel for akind of psychological distance. We formulated the alternative game by two

players and proposed amethod to find the optimal location for the follower and the leader
on alinear market. The solution procedure for the follower on aplane was also shown.

Our further research will be on finding the optimal location for the leader on aplane
market. We used Euclidean distance in this paper, but weight proportional distribution
model with $l_{1}$ -distance seems to be another interesting problem. But it is conjectured much
more difficult, since $\mathrm{B}$ ’s domain of influence generally becomes non-convex domain.
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