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Exponential Nonlinearity
and the Method of Symmetrization
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This is a joint work with Takashi Suzuki of Osaka University.

1 Introduction

The Liouville type equation, that is, a semilinear elliptic equation with an
ezponential nonlinearity

—Av =V (z)e’, (1)
appears in various areas of mathematical science in two dimensional spaces
such as the statistical mechanics of point vortices [2, 3, 9], the prescribed
Gaussian curvature problems {7, 4], the Chern-Simons-Higgs gauge theory
[19], the stationary problems of chemotaxis [17], and so on.

The purpose of this note is to explain the outline of a new method of
symmetrization available for the study of the blow-up behaviour in the limit
of solution sequences for the Liouville type equation (1) for V(x) > 0. See
[15] for details.

We developed the method in the study of the Palais-Smale sequence of
the functional

1
I(v) = §(||Vv||2 + al|v||2) — Alog . K(z)e'®@dr for w(z) € H(Q),

where € is a bounded domain in R? with smooth boundary, || - ||, is the
standard LP(2) norm, a is a positive constant, f, = lTlfl Jo» and K(z) is a

positive smooth function on Q.
This functional appears in relation to the free energy functional in a model
of chemotaxis. The Euler-Lagrange equation of Jj(v) is as follows:
MK (z)e?
——— in
fQ K(:L‘)e”dx (2)
Oov

5‘;=0 on Jf.

—-Av+av =



This equation was introduced by Childress and Percus [6] as the equilibrium
state of the Keller-Segel system [8] of chemotaxis.

Definition 1. {(Ax,v)} C R x HY(Q) is a Palais-Smale sequence of Jx(+)
if it satisfies following two properties:

® A\; > 0 and there exists \g € [0,00) such that Ay — Ay as n — oo.

o J5, (vi) — 0 strongly in H'(Q)', where J), (vx) denotes the Fréchet
derivative of Jy,(-) in HY(Q) at vg.

The condition J} (vi) — 0 in H'(Q)’ is equivalent to the existence of
the sequence {w;} C §:e () such that

—A(vg — wi) + a(ve — wg) )\kK(a:)e”k in Q,
fQ T)evtdzx 3)
ga;(vk —wx) =0 ondqQ,
and
- ||wk||H1(Q) —0 as n— oo. (4)
Let up = vy —wy + aA” (v — wg), for example, where —Ap is the Laplace

operator in 2 with the D1r1chlet boundary condition of 9. Then easily we
are able to see that u; satisfies

—Aup =Vee"™ in Q, (5)

where '
MK (z)e“ —aAp} (vi—ws)

Jo K(z)evdz

Accordingly, we are able to reduce the study of the Palais-Smale sequences of
the functional J)(-) to the study of the solution sequences of families of the
Liouville type equations and we are able to use various methods developed
for (5).

The dlfﬁculty in the analysis of the Palais-Smale sequence of J)(:) stems
from the fact that J,(-) is not coercive on H'(Q) in general, that is, we are
not always able to control the behaviour of H(Q2) norm for the Palais-Smale
sequence.

We note that, when A < 47, we are able to see that J,(-) is coercive from
the Chang-Yang inequality [5], which is H(2) counterpart of the Trudinger-
Moser inequality in H}(2) [12]. Indeed, we have '

Vele) =

SIVulz + 47?{2 w— 47rlog]{) e > —C, (6)
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where C > 0 is a constant determined by €. It follows that J)(-) is coercive
when A < 47.

Except for the case A < 47, we must study the behaviour of Palais-Smale

sequence from the only a priori bound on the right-hand side of (3) (or (5))

Vi
T&% (= [ vkewdx) = X = O(1)
Q

and the special characteristics of the ezponential nonlinearity.

Using the result of Brezis and Merle [1] for (1) carefully, we are able to

obtain the following rough estimate:

Theorem 1 (Rough estlmate) Let {()\k, vk)} be a Palais-Smale sequence
of JA(:) and put

MK (z)e

px(dz) = T E@erds ™

Taking a subsequence if necessary, we may assume that

pi(dz) = p(dr) *-weakly in M(Q),

where M () = C(Q)' denotes the space of signed measures on the compact
set Q. Then the following alternative holds:

or

(i)(compactness) there ezists v € H'(Q) and a further subse-
quence of {vx} such that vy, — v strongly in H'(Q) and

AoK(Il?)e

u(dz) fn T)evYdr s

(i) (concentration) there exists a non-empty set S C Q and the
positive number m(zo) for each o € S such that

()

m(z0) > 47 forzo € SNQ,
= Nor for o € SN 01,

and p(dz) = 3, csmM(Z0)0z(dzx). We note that /\0 > 27 and
#S8 < 0o follow in this case. , B

Using the method of symmetrization in this note, we are able to refine the

above theorem as follows:



Theorem 2 (Fine estimate). Let {(\,vx)} be a Palais-Smale sequence of
Ir(+) and let {wr} C H' () be a sequence of functions satisfying (3) and (4).
Moreover, suppose {wy} C WH(Q) and

”’wkllwl,oo(g) —0 as n— oco. (8)

Then m(zo) in the conclusion (ii) of Theorem 1 is improved as

9

m(z) = 8r forzp € SNQ,
7 Yan for zo € SN ON.

Especially, we have A\g € 47N and 2#(S N Q) + #(S NN = A/(47).
Furthermore, we have

V,( (zo)H (z, zo) + Z G(z,zy) +log K(z )) =0 (10)

zp€S\{zo} w=10

for each zy € S, where G(z,y) is the Green function of —A + a with the
Neumann boundary condition and

H(.’L‘ ) — G(QI, y) - %log I.’L’ - yl—l for ye Q,
Y= G(z,y) — Llog|z —y|™! fory € 89.

In (10), V. takes only tangential derivative in the case of zo € 9.

We know similar results to Theorem 2 on the quantization phenomenon
for the blow-up sequences of solutions for (5) [10, 11]. We note that the
assumption (4) is also too naive to apply them to the study of the Palais-
Smale sequences of J, ().

2 The method of symmetrization

We see the idea of the method of symmetrization in the sketch of the proof
of Theorem 2. For simplicity, we assume that

K(z)=1.

2.1 Unfolding the exponential nonlinearity

Let
/\ke""

U = fg iy

(11)
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Then the equation (3) is reduced to

{ —Avg — wg) +a(vg — wg) = ue  in Q,

8 (12)
—6—V(Uk - wk) =0 on 9.

Using (6) for vy € H*(Q), we obtain that

Uk
Vu (z Ace Vvk) =uxVu, € LI(Q) forl1<g¢g<2, (13)
fn evrdr

especially, u, € W(Q) for 1 < g < 2.
Applying the divergence operator V- to both sides of (13), we obtain that

0=V (Vur — uVvr) in D, (14)

Coupling (12) and (14), we obtain the system of equations for u; and vy
instead of the scalar equation (3).

We compare this system of equations with the following stationary Keller-
Segel model of chemotaxis:

0=V-(Vu—-uVv) in Q,

—Av+av=u in Q, (15)
Q’f—@—o n O}
o o~ ° )

For this system of equation, the case u > 0 is important because u mean the
density of cellular slime molds (and v means the concentration of chemical
substances secreted by themselves).

It should be remarked that any non-negative solution u for (15), which is
positive in Q from the maximum principle, satisfies

Ae?
— 16
U= T (16)
where A is a positive constant and v is a solution of
—Av+av = /\i in Q,
@ =0 on 09,
ov

which is (2) for our case K(z) = 1. We are able to see this fact as follows.
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Writing the first equation of (15) as
0=V -uV(logu — v),

we obtain
/ u|V(log u — v)|2dz = 0,
)

that is,
logu—v=C

for some constant C. In terms of A = ||u||;, this relation is transformed as
(16).

From these argument, we may say that the first equation of (15) is folded
in the exponential relation (16). Thus we may say that we unfolded the
exponential nonlinearity of (3) in this subsection.

2.2 Reduction of the system to the scalar equation
Letv (=A + a)y' be the inverse operator of —A + a under the Neumann
boundary condition. Then we are able to write the equation (12) as
vk = (—A + a)j uk + wi.
Thus, from (14), we have the equation of u;
0=V-(Vur — ut V{(-=A + a)y'ux + wi}), (18)

that is, for every test function ¥ € C%(Q) satisfying dv/8v = 0 on 99,

—/ukak-V¢dx =/ukA1/Jdm
Q Q (19)
+ [ | V260, Vola)ur(e)ueu)dzdy,
aJa

where G(z, y) is the Green function for (—A + a)y'.

We obtain Theorem 2 from the study of the limit of (19) as k — oo for
an appropriate test function .

It is well known that

1 |
G(z,y) = 5-log|z - y|™t + H(z,y), (20)

where H(z,y) € C**(Q x Q) for every 0 < 6 < 1. We note that V,G(z,y) is
singular at the diagonal set {(z,y);z =y} of Q2 x Q. '
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From this singularity, we are not able to know the limit of the term

/Q /Q V.G(z,5) - Vib(e)us ()ue(y)dody (21)

in this really style, since u(z)ux(y)dzdy concentrates on the diagonal set of
Qx .

The method of symmetrization is a technique that we use to avoid this
difficulties.

2.3 Symmetrization of the equation

We note that the Green function G(z,y) for the operator (—A + a)y' is
symmetric, that is, '
G(z,y) = G(y, ).

Thus, we have
(21) = [Q /Q V,G(z,y) - Veply)us (z)us (v)dzdy
=3 | [ e vu@utisa, @)

where
py(x,y) = VoG(z,y) - Vy(z) + V,G(z,y) - Vi(y).

This is the idea of symmetrization. Using this expression, we see the sketch

of the proof of Theorem 2 for the case S = {0} C € in the next subsection.
It should be remarked that Senba and Suzuki [18] used this method of

symmetrization in the study of the weak solution of the Nagai model {13]

u=V:-(Vu—uVv) in Qx(0,T),
—Av+av=u in Qx(0,7T), | (23)

Oou Ov o

3 = 30 0 on 09 x (0, [,
which is a time-dependent version of (15) and a simplified version of-the
Keller-Segel model of chemotaxis.

Senba and Suzuki [18] proved that, in spite of the singularity of the Green
function G(z,y), the symmetrized kernel py(z,y) € L=(Q2 x Q) for every ¢ €
C?(Q) satisfying %’ff = 0 on J92. We note that this fact is not enough for our
analysis because u; converges to a sum of Dirac measures in M (Q)(= C(Q))
from Theorem 1. Thus we must choose a more special test function .
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2.4 The good test function and the limit

Here we see the sketch of the proof of Theorem 2 for the case S = {z,} C €,
that is,
)\ke”k

Joevdz

pr(dr) = wdz = dz — m(zg)d,,(dz), € M(Q)

where m(zo) is a constant satisfying m(xy) > 47. Then what we have to
prove is that

T=Z0

m(zo) =8 and V H(z,z)| =0. (24)

We discuss general cases in the next section.
Here we note that, in the course of the proof of Theorem 1, we have

ur — 0 in  LP(Q\B:(zo))

for every 1 < p < 00 and 0 < € <€ 1, which we use in the rigorous treatment
of the following sketch of the proof of Theorem 2.
We divide py(z,y) into two part:

py(z,y) = (I) + (1),

where

() = V(- loglo — ™) - V() + V(- log o — 31™) - Vu(y),
_ 1 (VY(z) - VY(@) - (z - )

2 |z — yl?
(I) = V. H(z,y) - V() + V,H(z,y) - Vii(y).

Now we take

I

¥(z) = |z — al’p(z)
for a € R? and p(z) € CZ(R) satisfying ¢(z) = 1 near 7o € Q. We note that
this 1 satisfies the boundary condition %'g =0.

For this ¢, we have |

Vy=2(z—a) and Ay =4 near z€ (25)
Moreover ;
mo_ 1 {2@z-a)-2(y—a)} - (z—y)
=2 |z — yJ?
_ 1 (z-y)-(z—y)

7r |z — y|?

1
= —— near zx9€ .
T
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Thus we have
2
// (I) ug(z)uk(y)dzdy — ——n}(—:o—)— as k—o00.
aJo

On the other hand, since (II) is continuous near (zo, Zo), we have

// (IT) ug(z)ur(y)dzdy
aJa

—sm(z0)? {V.H (z0, z0) - 2(x0 — a) + VyH(z0, Zo) - 2(z0 — a)}
= 4m(zo)*(zo — a) - V. H(z,z0)|,,, 8 k—> oo
From these calculation, we are able to see the limit of the term (21).
We see the limits of the other terms in the equation (19).
Using (25), we have

- /9 urAYp — —m(z0)Ay(0) = —4m(zo).

On the other hand, as we assumed (8), we have
/ ukak . V’w — 0
Q

since ||ukll; = Ax = O(1).
Combining these calculations, we have the following equation as a limit

of the equation (19):
m(za)2 _
—4m(zo) = —-—(2—7r—°2— + 2m(zo)?(zo — a) - V. H(z, Zo)| (26)

=9

for every a € R2.
Letting a = x4 in (26), we have

m(o)?

—4m(zp) = — o

, thatis, m(zo) =8~

since m(zy) > 47 > 0 from Theorem 1. Then, taking to—a = V. H(z, Zo)|,—,,
in (26), we have
VzH(ZL', .’L‘o)lx=m° = 0.

Thus we obtain (24).



3 Various remarks

3.1 When K(z) #1

Also in this case, we set

MK (z)ev

e = Jo K(z)evrdz

as we did in (11).
We are able to write

AethHos K (@)
T R K(@)ends’
since we assumed K () > 0 in Q. Accordingly, we have
Vug = uV{vx + log K(z)}

instead of (13) and

0=V - [Vur — uV{vg + log K(z)}]
instead of (14).

Thus we need to add
/ﬂ uxVlog K (z) - Vipdz

to the right-hand side of (19) and
2m(zo)(zo — a) - V1og K(z)|z=z,

to the limit equation (26).
Consequently, we have the term log K'(z) in (10).

3.2 When we have many points inS

We fix o € S and assume S\{z,} # 0. Moreover we assume z, € { for
simplicity. ’

Then we are able to choose the test function % in section 2.4 satisfying
that supp ¥ NS = {zo}. Moreover, let £ € CZ(Q) be a cut-off function
around z, satisfying

0<&(z)<1 in Q and &(z)=1 in supp¥.
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We note that
Yp=E&p and Vi =EVih.
We also note that

wdz = &(x)uk(x)dz — m(x0)dy,(dz) * weakly in M(RQ),

(1-&@)uk(z)dz — Y mizy)dsy(de) * weakly in M(Q).
zheS\{zo}

We have
/9 /QV“G(””’ y) - Voo (z)ug (z)ur(y)dzdy
- /,, f,, V2G(z,y) - Vi (2)u(2)u(y)dzdy
B /n /a VoG(z,y) - Vi (z)up()ui(y)dzdy,

- /Q/QV“G (2,9) - Voh(@)ul(z) (1 — £(y))ux(y)dady
=: (III) + (IV). -

For (III), we have the same limit as (21). On the other hand, since G(z, )
is smooth on supp ¥ x supp (1 — &), we have

(IV) —m(=y) Z m(zy) V(xo) - Vo G(z0, 2p)

zHeS\ {20}

2o €5\ {z0}

T=Z9

(28)

Thus we add this limit to the right-hand side of the limit equation (26).
Consequently, we have the term 3. ¢\ (50} m(zy)G(z, xo)l in (10).
=T0

We end this subsection with some remarks on the case zg € 00 bneﬂy In
this case, we may flatten the boundary near z, conformally and extend the
function v; — wy as an even function using the Neumann boundary condition
in (3). Then we are able to consider the concentration point o as an interior
point of an extended domain and the similar argument to this subsection is
applicable. We note that the mass 47 of concentration at boundary is a half
of 87. This comes from the above even extension of vy — wk.

as n —r 00.
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3.3 The symmetrization in other equations

It should be remarked that we know similar method of symmetrization in
the two dimensional Euler equation for incompressible ideal fluid.

Let 2 be a simply connected bounded domain with a smooth boundary.
Then, in terms of the scalar vorticity field w(z,t) and the stream function
Y(z,t), the Euler equations for the incompressible homogeneous ideal fluid
with unit density are written as follows:

wi= V-(-wVty) in Qx(0,7T),
-AYy=w in Qx(0,T), (29)
=0 on 80 x(0,T).

We note that the velocity field u is determined by the stream function as
0 0
S vZ2 YA B A
U—V '¢' (6$21/J, ax1¢) .
We also note that

w = curlu(z, t) (= %uz(z, t) — ;ﬁul(x,t)) = —A.
It seems interesting that the equation (29) resembles the Nagai model
(23). Moreover, we know the similar method of symmetrization for the weak
formulation of the term

V. (~wViy) = V- (~wV(-A)p'w),

where (—A)p! is the inverse operator of —A with the Dirichlet boundary
condition. See [16]. See also [20, 14].

4 Concluding remark

In this note, we see the method of symmetrization through the study of the
behaviour of the Palais-Smale sequence for Jy(-). The key of the idea is
to unfold the exponential nonlinearity, which is also applicable for general
Liouville type equations (1) for V(z) > 0. We are now in preparation for
such generalization and further application of this method.
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