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1 Introduction
The purpose of the present paper is to study blowup mechanism of asystem
of cross diffusion arising in mathematical biology and statistical mechanics.
That is,

$u_{t}=\nabla\cdot(\nabla u-u\nabla v)\}$ in $\Omega\cross(0,T)$

$0=\Delta v-av+u$

$\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0,T)$

$u|_{t=0}=u_{0}(x)$ on $\Omega$ , (1)

where $\Omega\subset \mathrm{R}^{*}’$ is abounded domain with smooth boundary $\partial\Omega,$ $a>\mathrm{O}$ is a
constant, and $\nu$ is the outer unit vector on an.

In the context of mathematical biology, it was proposed by Nagai [16] as a
simplfied form of the one given by Keller and Segel [15]. Here, $u=u(x,t)$ and
$v=v(x, t)$ stand for the density of cellular slime molds and the concentration
of chemical substances secreted by themselves, respectively, at the position
$x\in\Omega$ and the time $t>0$ .

In this case, the first equation describes the conservation of mass, where
the flux of $u$ is given by $\mathcal{F}=-\nabla u+u\nabla v$ , as

$\frac{d}{dt}\int_{\iota v}u=-\int_{\mathrm{a}_{d}}\mathcal{F}\cdot\nu$

holds for any subdomain $\omega\subset\subset\Omega$ . Therefore, the effect of diffusion $-\nabla u$

and that of chemotaxis $\mathrm{u}\nabla v$ are competing for $u$ to vary. Sometimes it is
replaced by

$u_{\mathrm{t}}=\nabla\cdot(\nabla A(u)-u\nabla\chi(v))+f(u,v)$
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to describe realistic spatial patterns such as the streaming. This case is
referred to as the generalized system, where $\chi=\chi(v)$ acts as asensitivity
function. Among many other works, Harada, Senba, and Suzuki [9] showed
that if $f(u, v)=0,$ $A(u)=au^{2}+u$ with $a>0$ , and $\chi(v)=v$ , then the
solution exists globally in time.

In the original form, the second equation takes

$\tau v_{t}=\Delta v-av+u$ in 0 $\mathrm{x}(0, T)$

and the initial value of $v$ is also prescribed, where $\tau>0$ is aconstant. In
this case, $v$ is subject to the linear diffusion equation, provided with the
dissipative $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}-av$ and also with the growth term proportional to $u$ . Here,
$\tau$ comes from the time scale of $v$ relative to $u$ and it is natural to assume
$0<\tau\ll 1$ . Putting $\tau=0$ gives (1).

In the context of statistical mechanics, typically the bounded domain 0
is replaced by the whole space $\mathrm{R}^{n}$ and the second equation of (1) takes the
form

$v(x,t)= \int K(x,y)u(y,t)dy$ , (2)

where

$K(x,y)=\{$ $\frac{\frac 2\pi 1\mathrm{o}\mathrm{g}\frac 12_{1}|x_{1}-}{4\pi|x-y|}\frac{y11}{|x-y|}$ $(n=2)$
$(n=1)$

$(n=3)$
(3)

denotes (-1) times potential deriven by the gravitational force. It is con-
cerned with the motion of mean field of self-interacting particles, and is de-
rived ffom the Langevin and the Fokker-Planck equations. Therefore, while
the first equation of (1) is concerned with the mass conservation of particles,
the second one replaced by (2) is the description of the total field of gravita-
tional force made by those particles. See Bavaud [3] and Wolansky [36] for
details.

This form of (2) is very close to the second equation of (1), as it is
equivalent to

$v(x,t)= \int_{\Omega}G(x,y)u(y,t)dy$ , (4)

where $G(x, y)$ denotes the Green’s function $\mathrm{f}\mathrm{o}\mathrm{r}-\Delta_{N}+a$. In fact, we have

$G(x,y)=H(x,y)+\{$
$K(x,y)$ $(y\in\Omega)$

$2K(x,y)$ $(y\in\partial\Omega)$
(5)
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with $H\in C^{1,\theta}((\Omega\cross\Omega)\cup(\Omega\cross\partial\Omega)\cup(\partial\Omega\cross\partial\Omega))$ . Namely, the second equa-
tion of (1) is regarded as adescription of the field created by particles.

In mathematical biology, other forms of the second equation are proposed
by J\"ager and Luckhaus [14] and Diaz and Nagai [6]. They are described
totally as

$\tau\frac{dv}{dt}+Av=u$ in $L^{2}(\Omega)$ , (6)

where $A>\mathrm{O}$ is aself-adjoint operator with the compact resolvent. Here, $\tau$

is anon-negative constant. We $\mathrm{c}\mathrm{a}\mathrm{U}(1)$ with the second equation replaced
by (6) with $\tau>0$ the full system. There the additional initial condition
$v|_{t=0}=v_{0}(x)$ is imposed. If $\tau=0$ , the initial value is only taken for $u$ as
in (1). We call this case the simplified systern. Thus, (1) is regarded as a
simplified system of chemotaxis.

As we have seen, the field created by particles is physical in the simplfied
system. In this context, we may say that in the full system it is formed
through achemical process in biological media. There is acase that the
second equation of (1) is replaced by the ordinary differential equation

$\tau\frac{\partial v}{\partial \mathrm{t}}=u$.

It is derived from the statistical model of cellular automaton, where effect of
transmissive action of the control species is restricted to each cell. Therefore,
the field is not formed in the classical sense, but let us call it the biological
field. We do not discuss that last case, the biological field, here. See Othmer
and Stevens [23].

We can summarize that system (1) describes the motion of mean field
of particles whose self-interaction is caused by aphysical field such as the
gravitational force. In the present paper, we study (1) with $n=2$ , although
Herrero, Madina, and Veliquez [10], [11] obtained interesting families of
blowup solutions for $n=3$. In this case of $n=2$, the unique classical
solution exists locally in time if the initial value is smooth. The solution
becomes positive if the initial value is non-negative and not identically zero.
See Yagi [37] and Biler [4].

Let $T_{\max}>0$ be the supremum of the existence time of the solution. The
following theorem is proven by [25], where $\mathcal{M}(\overline{\Omega})$ denotes the set of measures
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on $\overline{\Omega},$ $arrow \mathrm{t}\mathrm{h}\mathrm{e}*$-weak convergence there, and

$m_{*}(x_{0})\equiv\{$

$8\pi$ $(x_{0}\in\Omega)$

$4\pi(x_{0}\in\partial\Omega)$ .

Theorem 1If $T_{\max}<+\infty$ , then there eists a finite set $S \subset\prod$ and $a$

non-negative function $f=f(x) \in L^{1}(\Omega)\cap C(\prod\backslash \mathrm{S}5)$ such that

$u(x, t)dx$ $arrow$

$\sum_{x_{0}\in \mathrm{S}}m(x_{0})\delta_{x_{0}}(dx)+f(x)dx$
in $\mathcal{M}(\prod)$ (7)

with
$m(x_{0})\geq m_{*}(x_{0})$ $(x_{0}\in S)$ . (8)

We have $||u(t)||_{\infty}arrow+\infty$ as $t\uparrow T_{\max}<+\infty$ and $S$ is actually the blowup set
of $u$ . That is, $x_{0}\in S$ if and only if there exist $x_{k}arrow x_{0}$ and $t_{k}\uparrow T_{\max}$ such
that $u(x_{k}, t_{k})arrow+\infty$ . Because

$||u(t)||_{1}=||u_{0}||_{1}$ (9)

holds for $t\in[0,T_{\max})$ , we obtain

2 $\cdot\#(\Omega\cap S)+\#(\partial\Omega\cap S)\leq||u_{0}||_{1}/(4\pi)$ (10)

ffom (7) and (8). Here and henceforth, $||\cdot||_{p}$ denotes the standard $IP$ norm
on $\Omega$ for $p\in[1, \infty]$ . In particular, we get the conclusion that $||u_{0}||_{1}<4\pi$

implies $T_{\max}=+\infty$ .
The last fact is related to the conjecture of Childress and Percus [5]

concerning the threshold in $L^{1}$ norm of the initial value for the blowup of
the solution. There, it was suspected that $||u_{0}||_{1}<8\pi$ implies $T_{\max}=+\infty$ ,
while $T_{\max}<+\infty$ can happen for $||u_{0}||_{1}>8\pi$ . However, the result proven
mathematically is that $||u_{0}||_{1}<4\pi$ implies $T_{\max}<+\infty$ . It was proven
independently by Nagai, Senba, and Yoshida [19], Biler [4], and Gajewski and
Zacharias [7]. Furthermore, the condition $||u_{0}||_{1}<4\pi$ is sharp for $T_{\max}=+\infty$

to hold, which was proven later by Nagai [17] and Senba and Suzuki [26].
Conjecture of [5] was obtained by semi-analysis, derivation of the sta-

tionary problem and numerical study to its bifurcation diagram concerning
radially symmetric solutions. On the other hand, mathematical results are
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based on adelicate use of the best constant for the ]} $\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}$ -Moser inequal-
ity. Finally, relation (7) was conjectured by Nanjundiah [21] and is referred
to as the formation of chemotactic collapses. In fact, each collapse

$m(x_{0})\delta_{x_{0}}(dx)$

stands for aspore made from the slime molds in the context of biology.
Our motivation is to explain those two phenomena, threshold and col-

lapses, uniformly from the blowup mechanism. This project was initiated by
Nagai, Senba, and Suzuki [18]. Actually, inequality (10) indicates that the
phenomenon of threshold in $||u_{0}||_{1}$ concerning the blowup of the solution is
aconsequence of the formation of collapses in the blowup process. It also
indicates that the boundary blowup forms ahalf collapse of the one in the
inner blowup. This explains exactly the discrepancy between the conjecture
and the theorem. Actually, [5] calculated only radially symmetric solutions
!See Senba and Suzuki [24] for detailed studies on stationary solutions.

Now, we can state our problem. In fact, if equality holds in (8), then
it means that the formation of spores occures with the normalized mass.
We call it the quantized blowup mechanism. This case actually holds in the
family of blowup solutions constructed by Herrero and Veliquez [12] by the
method of matched asymptotic expansion. The general case was suggested
by [24] mentioned above.

Up to now, it has been proven that the mass quantization occurs if the
solution is continued after the blowup time ([29]) and if the solution blows-
up in infinite time ([28]). In this connection, it is worth mentioning that
the Fokker-Planck equation admits the weak solution globally in time, pr0-

vided that the initial value has afinite second moment and is bounded and
summable. See Victory, Jr. [34].

Here we note that the Fokker-Planck equation is concerned with the case
that the distribution of particles is thin. Therefore, we can suspect that the
mass quantization to (1) occurs if the concentration speed is appropriately
rapid. Actually, the present paper shows that the mass quantization occurs
if the concentration around the blowup point has aparabolic envelop in $(x, t)$

space.
Is any blowup point provided with such aproperty ? Actually, there is

an evidence for this to be. However, more importantly we can get astory for
the proof of mass quantization from those considerations. In the last part,
we shaU describe it and show atheorem obtained actuaUy along that line.
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2Physical Backgrounds
Parabolic-elliptic systems of cross diffusion are found in several areas. Here,
we mention two of them, semi-conductor device equation and vortex equation
derived from the Navier-Stokes equation. The first system is written as

$p_{t}=\nabla\cdot(\nabla p+p\nabla\varphi)n_{t}=\nabla\cdot(\nabla n-n\nabla\varphi)\}$ in $\Omega\cross(0, T)$

$\Delta\varphi=n-p$

$\frac{\partial n}{\mathrm{g}^{\nu},\partial\nu}-n_{\mathit{9}_{R}^{\nu}}^{\partial}A=0+p_{\overline{\partial}\nu}=0\}$ on $\partial\Omega\cross(0, T)$ ,
$\varphi=0$

where $n=n(x,t)$ and $p=p(x, t)$ are the densities of electron and positron,
respectively, and $\varphi=\varphi(x, t)$ is the electric charge field. The case $p=0$
is easy to handle. Then, we see that the electrons are subject to the self-
repulsive force, which makes the system to be dissipative. See Bank [1] for
more details.

The second system is given by

$\omega_{t}=\nabla\cdot(\nabla\omega-\omega\nabla^{[perp]}\psi)\}$ in $\mathrm{R}^{2}\cross(0,T)$ ,
$-\Delta\psi=\omega$

where
$\nabla^{[perp]}=(-\frac{\frac{\partial}{\partial\partial x_{2}}}{\partial x_{1}})$

for $x=(x_{1}, x_{2})$ . It comes ffom the Navier-Stokes system

$u_{t}-\Delta u+u\cdot\nabla u=\nabla p\nabla\cdot u=0\}$ in $\mathrm{R}^{3}\cross(0,T)$ ,

where

$u=(\begin{array}{l}u_{1}u_{2}u_{3}\end{array})$ and $\nabla=(\frac{\partial}{\frac{\frac\partial\partial x_{1}x\partial^{2}\partial}{\partial x_{3}}})$

denote the velocity and the gradient operator, respectively. If we take the
two dimensional model with $x=(x_{1},x_{2},0)$ and $u_{3}=0$ , then we get

$\nabla\cross u=(\begin{array}{l}00\omega\end{array})$ for $\omega=\omega(x_{1},x_{2})$ .
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This system is also dissipative but some underlying chaotic features are ob-
served.

Directions of self-interacting forces of those systems, chemotaxis, semi-
conductor device, and vortices are different, but some common structures are
noticed. Let us recall that the second law of thermodynamics; the mean field
of many particles is governed by the free energy, decreasing in time. Its local
minimum is an equilibrium state, while transient dynamics are controlled by
the critical points, especially, non-local minima.

We note that free energy is given by total energy minus entropy. If $\rho=$

$\rho(x)\geq 0$ denotes the density of particles, entropy on the domain $\Omega\subset \mathrm{R}^{n}$ is
given as

$- \int_{\Omega}\rho\log\rho$ .

On the other hand, the total energy is composed of kinetic and potential
energies so that is given as

$- \frac{1}{2}\int\int_{\Omega \mathrm{x}\Omega}K(x,y)\rho(x)\rho(y)dxdy+\int_{\Omega}\rho V$,

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}-K(x,y)$ and $V(x)$ denote the potentials of self-interactions and ex-
ternal force, respectively. Note that Newton’s third law implies

$K(x,y)=K(y, x)$ .
Actualy, it is given as (3) if the self-interaction is caused by the gravitational
force. Thus, we get aphysical question. What is the mean field equation of
which free energy is given by

$\mathcal{F}(\rho)=\int_{\Omega}\rho\log\rho-\frac{1}{2}\int\int_{\Omega \mathrm{x}\Omega}K(x, y)\rho(x)\rho(y)dxdy+\int_{\Omega}\rho V$ ?

It has been known that such asystem is realized by introducing ffiction
and fluctuations of particles. Actualy, we have the work by Bavaud [3] and
Wolansky [35], [36].

Recall that the classical theory starts with the Newton equation

$\frac{dx_{\dot{l}}}{dt}=v:$ , $m \frac{dv}{d}i=\nabla_{x}:\{-mV(_{X:})+m^{2}\sum_{j\neq 1}.K(x_{\mathrm{j}}, x:)\}$ (11)

for $1\leq i\leq N$ . Letting $Narrow\infty$ with $M=mN$ preserved, it asserts the
convergence

$\mu^{N}(dx,dv,t)=m\sum\delta_{x(t)}(:dx)$ @ $\delta_{v(t)}(:dv)arrow f(x, v,t)dxdv$
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with $f(x,$v, t) satisfying the kinetic model, referred to as the Jeans-Vlasov
equation. In the normal form, it is given as

$f_{t}=-\nabla_{x}\cdot(vf)+\gamma\nabla_{v}\cdot[f\nabla_{x}(U+V)]$

$U(x,t)=- \int\int K(x,y)f(y, v,t)dvdt$

In the process of $(dv:)/(dt)arrow 0$, the distribution function $f(x, v, t)$ is re-
placed by the Maxwellian $\omega(x, t)\pi^{-n/2}e^{-v^{2}/2}$ . If $n=2$ , then $\omega(x, t)$ is subject
to the vorticity equation derived ffom the Euler equation, that is,

$-\Delta\psi=\omega$ , $\omega_{t}=-\nabla\cdot(\omega\nabla^{[perp]}(\psi+V))$ .

The stationary state of this equation, $\omega=\omega(x)$ is associated with the ellptic
problem

$-\Delta\psi=g(\psi+V)$

with the nonlinearity $g$ unknown. This problem was studied by Turkington
[32], [33].

If the particles are so concentrated as

$\omega(x,t)=\sum\delta_{x_{j}(t)}(dx)$ ,

then the concetration spots are subject $\mathrm{o}\mathrm{t}$ the Hamiltonian system

$\frac{dx_{1}}{dt}$

.
$=\nabla_{x}^{[perp]}.\cdot \mathcal{H}(x_{1},x_{2}, \cdots, x_{N})$ $(i=1,2, \cdots, N)$ , (12)

where
$?t(x_{1}, x_{2}, \cdots,x_{N})=-\sum_{1}$. $V(_{X:})+ \sum_{j\neq 1}.K(_{X:},x_{j})$

.

If $K(x,y)$ is replaced by $G(x,y)$ in (11), then $\frac{1}{2}\Sigma_{:}R(x:)$ is added to the right-
hand side, where $R(x)$ is the regular part of $K(x,y)$ so that $R(x)=H(x, x)$
with $H(x,y)$ defined by (5).

However, the Newton equation is time reversible and this hierarchy of
systems is not subject to the second law of thermodynamics, that is, de
creasing of the free energy. Actually, this hierarchy is governed by three laws
of conservation; mass, momentum, and energy. As aconsequence, it has a
feature of chaotic motion of particles.

The answer that we know to derive systems provided with the free energy
is to replace the Newton equation by the Langevin equation. More precisely,
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this requirement is realized when the particles are subject to the friction and
random fluctuations:

$dx:=v:dt$

$mdv:= \nabla_{x}:(-mV(x:)+m^{2}\sum_{j\neq 1}.K(x_{j},x:))-\beta vdt+(2\beta kT)^{1/2}dWi$

Here, $k,$ $T$ , and $\beta$ are Boltzmann constant, temperature, friction coefficient,
respectively, and (Wi) denotes the white noise. Its kinetic model, referred to
as the Fokker-Planck equation is given as

$f_{t}=-\nabla_{x}\cdot(vf)+\nabla_{v}\cdot[f\nabla_{x}(U+V)]+\beta kT\nabla_{v}\cdot(vf+\Delta_{v}f)$

$U(x,t)=- \int\int K(x,y)f(y,v,t)dydv$ ,

where
$\rho(x,t)=\int f(x,v,t)dv$ and $\lambda=\int\rho(x,t)dx$

stand for the density and the total mass, respectively. Then, in the adiabatic
limit $\betaarrow+\infty$ , we have

$\rho_{t}=\nabla\cdot(\rho\nabla U)+\nabla\cdot(\rho\nabla V)+\Delta\rho$ .

If $V=\mathrm{O}$ and the kernel $K(x,y)$ is replaced by $G(x,y)$ , it is nothing but the
simplified system of chemotaxis.

The semi-conductor device equation is obtained similarly by taking the
opposite sign of the kernel $G(x, y)$ . In those systems of chemotaxis and
semi-conductor device the interaction acts attractively and repulsively, re-
spectively. On the other hand, in the vortex equation, the direction of the
force that the particles receive is perpendicular to the level lines of the field
made by them.

As we shall see, stationary state of the above equation is described by
the elliptic problem with the exponential nonlnearity. Furthermore, the
localized densities are subject to the gradient flow with $\nabla^{[perp]}$ replaced by $\nabla$

in (12). In this connection, it may be worth noting that the critical point
of this $H(x_{1}, x_{2}, \cdots, x_{N})$ controls the location of multi-blowup points in the
stationary problem. See Nagasaki and Suzuki [20] and Baraket and Pacard
[2]. Thus, this hierarchy of equations starts with the ffee energy as the
physical principle. On the other hand, mathematically it is characterized by
the quantization of blowup mechanism as we are now describing.
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3Mathematical Structures
Several mathematical structures are known to (1) and some of them are valid
to the full system. For the moment, we describe them for the full system (1)
with the second equation replaced by

$\tau\frac{\partial v}{\partial \mathrm{t}}=\Delta v-av+u$

but they are valid for the simplified system if the initial value $v_{0}$ is taken as
$(-\Delta_{N}+a)^{-1}u_{0}$ and $\tau$ is put to be zero.

First, the positivity of the solution is preserved so that $u_{0}(x)\geq 0$ and
$u_{0}(x)\not\equiv 0$ imply $u(x, t)>\mathrm{O}$ for $(x, t)\in\overline{\Omega}\cross(0, T_{\max})$ . This gives the total
mass conservation (9) by

$\frac{d}{dt}\int_{\Omega}u=\int_{\Omega}u_{t}=\int_{\Omega}\nabla\cdot(\nabla u-u\nabla v)$

$= \int_{\partial\Omega}(\frac{\partial u}{\partial\nu}-u\frac{\partial v}{\partial\nu})=0$ . (13)

Amore important feature is the existence of the Lyapunov function

$W(u,v)= \int_{\Omega}(u\log u-uv+\frac{1}{2}|\nabla v|^{2}+\frac{a}{2}v^{2})$ .

To see this, let us write the first equation of (1) as

$u_{t}=\nabla\cdot u\nabla(\log u-v)$ .

Then, in use of the boundary conditions we obtain

$\int_{\Omega}u_{t}(\log u-v)=-\int_{\Omega}u|\nabla(\log u-v)|^{2}$ ,

where the left-hand side is equal to

$\frac{d}{dt}\int_{\Omega}(u\log u-uv)-\int_{\Omega}u_{t}+\int_{\Omega}uv_{t}$ .

Here, we have (13) and

$\int_{\Omega}uv_{t}=\int_{\Omega}(\tau v_{t}-\Delta v+av)v_{t}=\tau||v_{t}||_{2}^{2}+\frac{1}{2}\frac{d}{dt}(||\nabla v||_{2}^{2}+a||v||_{2}^{2})$ .
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Therefore,

$\frac{d}{dt}W(u, v)+\tau||v_{t}||_{2}^{2}+\int_{\Omega}u|\nabla(\log u-v)|^{2}=0$ $(t\in[0, T_{\max}))$ (14)

follows. In particular,
$\frac{d}{dt}W(u, v)\leq 0$

and we have
$W(u(t), v(t))\leq W(u_{0},v_{0})$ (15)

for $t\in[0,T_{\max})$ .
In the simplified system, we have

$v(t)=(- \Delta_{N}+a)^{-1}u(t)=\int_{\Omega}G(\cdot,y)u(y,t)dy$

and the Lyapunov function $W(u, v)$ is reduced to

$\mathcal{F}(u)=\int_{\Omega}u\log u-\frac{1}{2}\int\int_{\Omega \mathrm{x}\Omega}G(x,y)u\otimes udxdy$ , (16)

which is nothing but the free energy described in the previous section. In this
way, relations (13) and (15), that is, total mass conservation and decreasing
of the free energy are obtained.

The first term of $W(u, v)$ , that is $\int_{\Omega}$ ulog $u$ , is related to the Zygmund
norm. Actually, the Orlicz space $L\log L(\Omega)$ is provided with the norm

$[w]_{L\log L}= \int_{\Omega}|w|\log(e+\frac{|w|}{||w||_{1}})$ .

See Iwaniec and Verde [13]. We note that $L\log L(\Omega)$ and $\mathrm{E}\mathrm{x}\mathrm{p}(\Omega)$ form a
duality, which is regarded as alocal version of that between the Hardy space
$H^{1}$ and the BMO. We can regard the second term of $W(u,v),$ $\int_{\Omega}uv$ , as a
paring of this duality. In fact, the third term of $W(u,v)$ , that is $\frac{1}{2}||\nabla v||_{2}^{2}+$

$\frac{a}{2}||v||_{2}^{2}$ , becomes the square of the $H^{1}$ norm and we have the inclusion $H^{1}\subset$

$BMO$ in the case of two space dimensions. Those observations are useful,
especially, in the study of stability of staionary solutions to the full system.
See [31] and [29].

Relation (14) is also useful to formulate the stationary problem, where
$u=u(x)$ and $v=v(x)$ are inedpendent of $t$ . Actually, in this case we have

$\int_{\Omega}u|\nabla(\log u-v)|^{2}=0$ .
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Because we are interested in the non-trivial case $u(x)>0$ , it gives that
$\log u-v=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ on $\overline{\Omega}$ . We prescribe this unknown constant by $||u||_{1}=\lambda$ ,
taking regards to (9). Consequently, the relation

$u= \lambda e^{v}/\int_{\Omega}e^{v}$

is obtained, and thus the stationary problem of (1) arises ffom the second
equation as

$- \Delta v+av=\lambda e^{v}/\int_{\Omega}e^{v}$ in $\Omega$ , $\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega$ , (17)

where $\lambda=||u_{0}||_{1}$ . This is actually the statinary problem of (1) formulated
by Childress and Percus [5].

Problem (17) has several relatives such as the mean field equation of vor-
tex points, the prescribed Gaussian curvature equation on compact Rieman-
nian manifolds, the multi-vortex equation of the Chern-Simons-Higgs gauge
theory, and so forth. See [30], [22], and the references therein for details.

Stationary problem (17) has avariational structure. Namely, $v=v(x)$ is
asolution if and only if it is acritical point of

$J_{\lambda}(v)= \frac{1}{2}(||\nabla v||_{2}^{2}+a||v||_{2}^{2})-\lambda\log(\int_{\Omega}e^{v})$ $(v\in H^{1}(\Omega))$ ,

where the Trudinger-Moser inequality takes afundamental role. Further-
more, the linearized operator around the stationary solution $v=v(x)$ is
associated with the $\mathrm{b}\mathrm{i}$-linear form

$A( \varphi, \varphi)=\int_{\Omega}(|\nabla\varphi|^{2}+a\varphi^{2}-p\varphi^{2})+\frac{1}{\lambda}\{\int_{\Omega}p\varphi\}^{2}$ $(\varphi\in H^{1}(\Omega))$ ,

where $p= \lambda e^{v}/\int_{\Omega}e^{v}$ . In this way, methods developed by [30], use of the com-
plex variables, spectral analysis combined with the isoperimetric inequalities
on surfaces, control of Palais-Smale sequences by Struwe’s argument, and so
on, are applicable to (17). See [24] and [22] concerning the structure of the
solution set obtained in those ways.

While (17) is the stationary problem described in $v$ , that in $u$ is expressed
as

$\log u-A^{-1}u=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ and $||u||_{1}=\lambda$ .
It is equivalent for $u$ to be asatationary point of $\mathcal{F}(u)$ defined by (16) on
$||u||_{1}=\lambda$ . In [29], it is shown that those variational structures are equivalent
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up to the Morse indices. Here we just mention key .identities for this fact to
hold:

$W( \lambda e^{v}/\int_{\Omega}e^{v},v)=J_{\lambda}(v)+\lambda\log\lambda$ and $W(u,$ $A^{-1}u)=\mathcal{F}(u)$ .

Simplified system (1) has one more remarkable structure, which may be
referred to as the compensated compactness via the symrnetrization. In fact,
taking $\psi\in C^{2}(\mathrm{D})$ in $\Phi|_{\partial\Omega}\partial\nu=0$ as the test function and in use of (4) for the
second equation, we get the weak formulation,

$\frac{d}{dt}\int_{\Omega}\psi(x)u(x,t)dx-\int_{\Omega}\Delta\psi(x)u(x,t)dx$

$= \int_{\Omega}u(x,t)\nabla v(x,t)\cdot\nabla\psi(x)dx$

$= \int\int_{\Omega \mathrm{x}\Omega}\nabla\psi(x)\cdot\nabla_{x}G(x,y)u(x,t)u(y,t)dxdy$

$= \frac{1}{2}\int\int_{\Omega \mathrm{x}\Omega}\rho_{\psi}(x,y)u(x,t)u(y,t)dxdy$,

where
$\rho_{\psi}(x,y)=\nabla\psi(x)\cdot\nabla_{x}G(x,y)+\nabla\psi(y)\cdot\nabla_{y}G(x,y)$ .

If we apply
$G(x,y)= \frac{1}{2\pi}\log\frac{1}{|x-y|}+H(x,y)$

with $H\in C^{1,\theta}(\Omega\cross\Omega)$ , we know that

$\rho_{\psi}(x,y)=-\frac{(\nabla\psi(x)-\nabla\psi(y))\cdot(x-y)}{2\pi|x-y|^{2}}+C^{\theta}(\Omega\cross\Omega)$,

where the first term of the right-hand side is in $L^{\infty}$ in $\Omega\cross\Omega$ although it is not
continuous. More delicate analysis is necessary near $\partial\Omega$ , but an important
consequence of the above expression is that the local $L^{1}$ norm of $u$ has a
bounded variation in $t\in[0,T_{\max})$ . This fact implies the finiteness of blowup
points in the simplfied system. See [25] for details.
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4Parabolic Blowup Point
We come back to the problem of mass quantization, $m(x_{0})=m_{*}(x_{0})$ in (7).
Let $\varphi\in C_{0}^{\infty}(\mathrm{R}^{2})$ be in

$0\leq\varphi\leq 1$ , $\varphi(x)=\{$
1 $(|x|<1/2)$

0 $(|x|>1)$

and set $\psi=\varphi^{4}$ . Given $x_{0}\in S$ , we set $\psi_{R,x_{0}}(x)=\psi(\frac{x-}{R}x\Delta)$ and

$M_{R,x_{0}}(t)= \int_{\Omega}\psi_{R,x_{0}}(x)u(x,t)dx$ .

Then, relation (7) gives that

$\lim$ hm $M_{R,x_{0}}(t)=m(x_{0})$ .
$R\downarrow 0t\uparrow T_{\mathrm{m}\cdot \mathrm{x}}$

We say that $x_{0}\in S$ is parabolic if

hm $M_{R_{b}(t),x_{0}}(t)=m(x_{0})$ (18)
$t\uparrow T_{\mathrm{m}\cdot \mathrm{x}}$

holds for any $b>\mathrm{O}$ sufficiently small, where $R_{b}(t)=b(T_{\max}-t)^{1/2}$ . Under
this notation, our theorem is stated as follows.

Theorem 2If $x_{0}\in S$ is parabolic, then it holds that $m(x_{0})=m_{*}(x_{0})$ .

Note that $y=(x-x_{0})/R_{b}(t)$ is the standard backward self-similar transfor-
mation. It always holds that

Jim $\sup M_{R_{b}(t),x_{0}}(t)\leq m(x_{0})$

$t\uparrow T_{\mathrm{m}\mathrm{R}}$

and hence (18) is equivalent to

$\lim\inf M_{R_{b}(t),x_{0}}(t)\geq m(x_{0})$ .
$t\uparrow T_{\mathrm{m}\mathrm{R}}$

Relation (18) indicates that the concentration of (7) is enveloped in the
parabolic region associated with that transformation. This is not the case
for sub-critical nonlinearity as Giga and Kohn [8] shows. In fact, the blowup
mechanism of the parabolic equation

$u_{t}-\Delta u=u^{\mathrm{p}}$ , $u\geq 0$ in $\Omega\cross(0,T)$
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with $u|_{\partial\Omega}=\mathrm{O}$ is controlled by the ODE part $\dot{u}=u^{p}$ if the nonlinearity is
sub-critical as $p \in(1, \frac{n+2}{n-2})$ , where $\Omega\subset \mathrm{R}^{n}$ is abounded convex domain.
Namely, if $x_{0}$ is ablowup point, then

$u(x,t)=(T-t)^{-\frac{1}{p-1}}( \frac{1}{p-1})^{\frac{1}{\mathrm{p}-1}}\{1+o(1)\}$

holds as $t\uparrow T=T_{\max}$ uniformly in $|x-x_{0}|\leq C(T-t)^{1/2}$ . In this case,
the concentration is so slow that $u(x, t)$ becomes flat in any parabolic region.
That is, the total blowup mechanism is not enveloped there.

On the other hand, it has been observed that the blowup rate in (1) is
super-critical. This will assure the concentration envelope included in the
parabolic region. Namely, the concentration must be so rapid as the solution
rescalled in the parabolic region will form the collapse again. In fact, the
radialy symmetric solution constructed by Herrero and Vel&quez [12] has
the form

$u(x,t)= \frac{1}{r(t)^{2}}\overline{u}(\frac{x}{r(t)})\{1+o(1)\}$

$+O( \frac{e^{-\sqrt{2}|1\mathrm{o}\mathrm{g}(T-t)|^{1/2}}}{|x|^{2}}\cdot 1_{\{|x|\geq \mathrm{r}(t)\}})$ (19)

as $t\uparrow T=T_{\max}$ uniformly in $|x|\leq C(T-t)^{1/2}$ , where
$r(t)=C(T-t)^{1/2}\cdot e^{-\sqrt{2}/2|\log(T-t)|^{1/2}}$

. $| \log(T-t)|^{\frac{1}{4}\log^{-1/2}}(\tau-t)-\frac{1}{4}(1+o(1))$

and $\overline{u}(y)=8\cdot(1+|y|^{2})^{-2}$ . We have $0<r(t)<<R_{b}(t)$ and (19) implies (18).
In this case the origin 1s actually aparabohc blowup point.

Now, we shall give the proof of Theorem 2. Let us recal that $\lambda=||u_{0}||_{1}$ .
In the following, C.$\cdot$ $(i=1,2)$ indicate positive constants determined by O.
It is known that

$| \frac{d}{dt}\int_{\Omega}\xi(x)u(x,t)dx|\leq C_{1}(\lambda+\lambda^{2})||\xi||_{C^{2}(\overline{\Omega})}$ (20)

holds for $\xi\in C^{2}(\mathrm{D})$ in $\overline{\partial}\nu\partial 4|_{\partial\Omega}=0$ . Recall, also, $\psi_{R,x_{0}}(x)=\psi((x-x_{0})/R)$

for $\psi=\varphi^{4}$ , and introduce the second moment

$I_{R,x_{0}}(t)= \int_{\Omega}|x-x_{0}|^{2}\psi_{R,x_{0}}(x)u(x,t)dx$ .
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Henceforth, we shall write $\psi_{R}(x)=\psi_{R,x_{0}}(x),$ $M_{R}(t)=M_{R,x_{0}}(t),$ $I_{R}(t)=$

$I_{R,x_{0}}(t)$ , and $R(t)=R_{b}(t)$ for simplicity.
Without loss of generality, we take the case $x_{0}\in\Omega$ . Similarly to Lemma

2.1 of [27], we have for

$M_{R}(t)= \int_{\Omega}\psi_{R}(x)u(x, t)dx$

that
$\frac{dI_{R}}{dt}\leq 4M_{R}-\frac{M_{R}^{2}}{2\pi}+C_{2}R^{-1}(\lambda^{3/2}+\lambda^{1/2})I_{3R}^{1/2}$ .

Here, we have

$I_{3R}(t)$ $=I_{R}(t)+ \int_{\Omega}|x-x_{0}|^{2}(\psi_{3R}(x)-\psi_{R}(x))u(x,t)dx$

$\leq I_{R}(t)+9R^{2}\int_{\Omega}(\psi_{3R}(x)-\psi_{R}(x))u(x,t)dx$

and hence

$\frac{dI_{R}}{dt}\leq 4M_{R}-\frac{M_{R}^{2}}{2\pi}+C_{2}R^{-1}(\lambda^{3/2}+\lambda^{1/2})I_{R}^{1/2}$

$+3C_{2}( \lambda^{3/2}+\lambda^{1/2})\{\int_{\Omega}(\psi_{3R}(x)-\psi_{R}(x))u(x, t)dx\}^{1/2}$

follows. We have from (20) that

$\frac{dI_{R}}{dt}\leq 4M_{R}(0)-\frac{M_{R}(0)^{2}}{2\pi}+C_{2}R^{-1}(\lambda^{3/2}+\lambda^{1/2})I_{R}^{1/2}$

$+3C_{2}( \lambda^{2/3}+\lambda^{1/2})\{\int_{\Omega}(\psi_{3R}(x)-\psi_{R}(x))u_{0}(x)dx\}^{1/2}$

$+C_{3}(\lambda+\lambda^{5/2})(R^{-2}t+R^{-1}t^{1/2})$ .

We also have

$\int_{\Omega}(\psi_{3R}(x)-\psi_{R}(x))u_{0}(x)dx\leq$ $\int_{B(x_{0\prime}3R)\backslash B(x_{0\prime}R/2)}u_{0}(x)dx$

$\leq$ $4R^{-2}I_{3R}(0)$ .

Writing $B=C_{2}(\lambda^{3/2}+\lambda^{1/2}),$ $a(s)=C_{3}(\lambda+\lambda^{5/2})(s^{2}+s)$ , and

$J_{R}(t)=4M_{R}(t)- \frac{M_{R}(t)^{2}}{2\pi}+6BR^{-1}I_{3R}(t)^{1/2}$ ,
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we obtain
$\frac{dI_{R}}{dt}\leq J_{R}(0)+a(R^{-1}t^{1/2})+BR^{-1}I_{R}(t)^{1/2}$ . (21)

First, we take the case that $J_{R}(0)=-A<\mathrm{O}$ and $T\equiv a^{-1}(A/4)^{2}\cdot R^{2}<$

$T_{\max}$ . Then, we have

$a^{-1}(R^{-1}t^{1/2})\leq a^{-1}(R^{-1}T^{1/2})=A/4$

and hence
$\frac{dJ_{R}}{dt}\leq-\frac{A}{4}+BR^{-1}I_{R}^{1/2}$

holds for $t\in[0,T]$ . Therefore,

$\frac{1}{R^{2}}I_{R}(0)<(\frac{A}{24B})^{2}$ and $I_{R}(0)< \frac{A}{6}\cdot T=\frac{R^{2}}{6}a^{-1}(\frac{A}{4})^{2}$

imply

$\frac{dI_{R}}{dt}|_{t=0}\leq-\frac{A}{6}$

and hence
$\frac{1}{R^{2}}I_{R}(t)<(\frac{A}{24B})^{2}$ and $\frac{dI_{R}}{dt}\leq-\frac{A}{6}$

follow for $t\in[0, T)$ . Therefore, we get

$I_{R}(t) \leq I_{R}(0)-\frac{A}{6}\cdot T<0$ ,

acontradiction. In other words,

$\frac{1}{R^{2}}I_{R}(0)\geq \mathrm{m}.\mathrm{n}\{\frac{1}{6}a^{-1}(\frac{A}{4})^{2},$ $( \frac{A}{24B})^{2}\}$

holds in this case.
The other case is indicated as $J_{R}(0)\geq 0$ or

$-J_{R}(0) \geq 4\cdot a(\frac{T_{\max}^{1/2}}{R})$ (22)

In any case, we have we have either (22) or

$\frac{1}{R^{2}}I_{R}(0)\geq\dot{\mathrm{m}}\mathrm{n}\{\frac{1}{6}a^{-1}(\min(0,$ $- \frac{J_{R}(0)}{4})),\min(0,$ $\frac{-J_{R}(0)}{24B})^{2}\}$ .
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Because system (1) is autonomous in t, the following alternatives hold for
each R $>\mathrm{O}$ and t $\in[0, T_{\max})$ :

(i) $-J_{R}(t) \geq 4\cdot a(\frac{(T_{\max}-t)^{1/2}}{R})$

(ii) $\frac{1}{R^{2}}I_{R}(t)\geq\min\{6a^{-1}(\min(0,$ $\frac{-J_{R}(t)}{4})),$ $\min(0,$ $\frac{-J_{R}(t)}{24B})^{2}\}$

Now, we show the following.

Lemma 3If $x_{0}\in S$ is parabolic, then it holds that

$\lim_{t\uparrow T_{\mathrm{m}*\mathrm{x}}}\frac{1}{R(t)^{2}}I_{R(t)}(t)=0$ .

Proof: From the assumption we have

$\lim_{t\uparrow T_{\mathrm{m}*\mathrm{x}}}\{M_{R(t)}(t)-M_{\epsilon R(t)}(t)\}=0$

for any $\epsilon\in(0,1)$ . Here, we have

$\frac{1}{R(t)^{2}}I_{R(t)}(t)=\frac{1}{R(t)^{2}}\int_{\Omega}|x-x_{0}|^{2}\psi_{R(t)}(x)u(x,t)dx$

$= \frac{1}{R(t)^{2}}\int_{\Omega}|x-x_{0}|^{2}(\psi_{R(t)}(x)-\psi_{eR(t)}(x))u(x,t)dx$

$+ \frac{1}{R(t)^{2}}\int_{\Omega}|x-x_{0}|^{2}\psi_{\epsilon R(t)}(x)u(x,t)dx$

$= \frac{1}{R(t)^{2}}\int_{|x-x_{0}|\leq R(t)}|x-x_{0}|^{2}(\psi_{R(t)}(x)-\psi_{\epsilon R(t)}(x))u(x,t)dx$

$+ \frac{1}{R(t)^{2}}\int_{\Omega}|x-x_{0}|^{2}\psi_{eR(t)}(x)u(x,t)dx$

$\leq\int_{\Omega}(\psi_{R(t)}(x)-\psi_{eR(t)}(x))u(x,t)dx+\epsilon^{2}\lambda$

$=\{M_{R(t)}(t)-M_{eR(t)}(t)\}+\epsilon^{2}\lambda$ .
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Making $t\uparrow T_{\max}$ and then $\epsilon\downarrow 0$ , we obtain the conclusion.

Let us complete the proof of Theorem 2. In fact, we have $M_{R(t)}(t)arrow$

$m(x_{0})$ for $R(t)=b(T_{\max}-t)^{1/2}$ and hence

$J_{R(t)}(t)$ $arrow$
$4m(x_{0})- \frac{m(x_{0})^{2}}{2\pi}$

becau $\mathrm{e}$

$\lim_{t\uparrow T_{\mathrm{m}\infty}}\frac{1}{R(t)}I_{3R(t)}(t)=0$

holds similarly to Lemma 3. Applying the alternatives (i) and (ii) with
$R=R(t)$ , we get

$4m(x_{0})- \frac{m(x_{0})^{2}}{2\pi}\{$

$\mathrm{o}\mathrm{r}\leq-4a(b^{-1})$

$\geq 0$ .

The first alternative is impossible if $b>\mathrm{O}$ is small. Therefore, the second
alternative follows and hence $m(x_{0})\leq 8\pi$ is proven.

5Concluding Remarks
Above considerations lead to the idea that the standard raecaUing makes the
blowup mechanism clearer. In fact, if $T=T_{\max}<+\infty,$ $y=x/R_{b}(t)$ , and
$e^{-}’=T-t$ , then $z(y, s)=(T-t)u(x, t)$ satisfies asimilar system to (1).
Because $\{z(s)\}$ is aglobal orbit, we can argue as in [28]. It says that if $u(x, t)$

is asolution to (1) globally in time, then any $t_{n}\uparrow+\infty$ admits $\{t_{n}’\}\subset\{t_{n}\}$

and $0\leq f\in L^{1}(\Omega)$ such that

$u(x, t_{n}’)dx arrow\sum_{x_{0}\in B(\{t_{\acute{n}}\})}m_{*}(x_{0})\delta_{x_{0}}(dx)+f(x)dx$
, (23)

where $B(\{t_{n}’\})$ denotes the set of exausted blowup points so that $x_{0}$ belongs
to it if and only if there is $\{x_{n}’\}\subset\prod$ such that $u(x_{n}’,t_{n}’)arrow+\infty$ .

What we conjecture now is that in the rescaled system the same thing
occurs with $f=0$ . Coming back to the original system, this implies that
$M_{R_{b}(t)}(t)/m_{*}$ accumulates to $\{0, 1, \cdots\}$ as $t\uparrow T_{\max}$ . However, this can con-
trol outside the parabolic region thanks to (20), and $m(x_{0})/m_{*}(x_{0})\in N=$

$\{1,2, \cdots\}$ follows in (7).
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It may not be surprising if the multi-quantization $m(x_{0})=n\cdot m_{*}(x_{0})$

occurs with $n=2,3,$ $\cdots$ in spite that in the rescalled space-time system they
are separated as (23). In other words, only large parabolic region can contain
the full blowup mechanism and smaller one may lose multi-collapses. This
gives us another conjecture about the concentration speed although details
are not described here.
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