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1 Introduction

e Physical model

In 1935, L.D. Landau and E.M. Lifshitz derived the following equation, the

so called Landau-Lifshitz system, which describes evolution of spin fields in
continuum ferrimagnetism (see [LL]).

O = —anu X (u X Fepp) + agu X Fegy,

where u = (ul,u?,u®) : R™ x R, — S? C R3? is the spin field; “x” denotes
the vector cross product in R?; a; > 0 is a Gilbert damping constant, o, is
a exchange constant, and Fey; is the effective field containing contributions
from exchange interaction crystalline anisotropy, magneto-static self energy,
external magnetic field, etc (see [LN}]).

In particular, taking F.s; = Au, corresponding to the pure isotropic case and
without external magnetic fields, Landau-Lifshitz equation reads

Ou = —ayu X (u X Au) + ogu X Au.

When a; = 0, the system is called the Heisenberg system.

e The equivalent equation

Using the following formula a X (b X ¢) = (a - ¢)b — (a - b)c, and the fact that
|u| = 1 implies uAu = —|Vu|?, we have the following equivalent equation

MO — Au X Qu = Au+ [Vul?’u (z,t) € R™ X R, (1.1)
u(z,0) = up(z), T € R™. '

where \; = W’ 9 = ;,f;;, and |up(z)| = 1,
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e Well known results

— 1-Dimension A lot work contributed to the study of solutions of L-
L system has been made by some physicists and mathematicians such
as H.C.Fogedby [Fo], M.Laksmanan, K. Nakamura [LN], K.Nakamura,
T.Sasada [NS], L.A.Takhtalian [T}, J.Tjon, J.Wright [TW], Y.Zhou, B.Guo
S.Tan [ZGT] and so on.

— 2-Dimension: Singular points in the finite time are finite, because of,
well-known, the conformal in-variation of the energy in the 2-dimension.

— High-Dimension The global existence of weak solutions for the equa-
tion has been established by F.Alouges A.Soyeur [AS](1992) and B.Guo,
M.Hong [GA](1993).

e The problems concerned and their difficulties

— What is the regularity to (1.1)? This is a basic problem to any
nonlinear equations considered in the space of the generalized functions
such as Sobolev space. Furthermore we hope to know the behavior of the
solution at a singular point, that is, one ask what happen at a singular
point?

— The characteristics of the equation (1.1)

* The landau-Lifshitz equation is a parabolic type equation with the
natural increasing term |Vu|2. ‘

* In appearance, (1.1) is similar to the heat flow of harmonic map into
sphere (if @z = 0), however there is an anti-symmetric term u X O;u.
In other words, the Landau-Lifshitz system is a more general system,
which contains in particularly the equations of harmonic map into
sphere and its heat flow. '

— The difficulties in getting regularity The natural increasing term and
the anti-symmetric term are both difficult to regularity (no existence).
The classical methods can’t be used for the first one, and the second
one breaks down the monotone property which is a main tool to deal
with the harmonic maps and its heat flows as known. We can define
the stationary condition in an analogous way as in harmonic maps by
R.Schoen, the so called the variation of domain.

In the case of harmonic map and its heat flow, we have the following fact:

The stationary condition =  monotonicity.

But In our case, the stationary condition does not imply the monotonicity
, we will see it in the following. Maybe this is the crucial reason as which
up to now one could not to get the regularity of Landau-Lifshitz system.

It is well known that the weak harmonic map, without monotone prop-
erty, may be almost discontinuous in three dimension (see T. Riviera).



e Our main results

— Part one: We prove the stationary weak solution is smooth except H7'-
zero set, i.e.,

H,'(Sing(u)) =
The following results largely depend on the regularlty got in the first part.

— Part two: Let u be a sequence of the stationary weak solutions of (1.1)
with the initial data ugg and [pm |Vuge|? < A. For fixed t let ¢ be the
blow up set of the sequence, then we have

1. Xt is rectifiable, i.e., almost C! smooth.

2. ¥t moves by quasi-mean curvature if u; are the strong stationary
weak solutions of (1.1) and A; > 2|Ag|.

— Part three: Let (zo,%) be a singular point of u, by scaling we obtain
the two blow up formulas.

2 Stationary weak solutions

In this section, we introduce the notions of the stationary weak solutions of Landau-
Lifshitz system, and show some generalized monotonicity inequalities.

DEFINITION 2.1 u(z,t) € WY2(R™ x R, S?) is called a stationary weak solution
of (1.1), if it is a weak solution of (1.1) and satisfies the following two assumptions:

/R 2(Aue — A X ug)¢ - Vu — [Vu|’div¢ + 20,ud,ud;C* = 0, (2.1)

- *9d | 2.2
('/R'“th R'"xtl)lvuI o ( )
ta .
= [7 [ 209 + VuViu) — |VuPddads,
t1 R™ . , ‘

where ty > t; > 0, the functions (,Y are smooth, and 9 > 0

buv 18 called a strong stal;iox_lary weak solution if the equality in (2.2) holds.

REMARK 2.1 If a weak solution u of (1.1) satisfies the stabzhty hypothesis defined
by the requirement that, szmzlar to heat flow in [Fe],

/0 /R Ot = dg X )0
+a / / (Va2 dzdt],—o < 0 (2.3)

holds for each famzly 4" of the domain variation defined by 4™ = u(Fr(z,t)), where
=(z+7(,t+ ), ¢, 9 are smooth functions and 9 > 0. Then the assumptions
(2 1) and (2.2) hold ( see Proposition 7 and 8 in [Fe]).

Certainly smooth solution is strong stationary.
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Notations:

e Point Sets and Fundamental Solution
z=(z,t) € R™ x R, 25 = (2o, %0);
B,(wo) ={s € R™: l|oo—g| <7}, Silto) = {(z,t): t=to—r?},
P.(2) = {(m,t) ER™"XR:|t—mzo| <1t —to] < 1'2_},
Ty () = {(m,t) € R™ x R:ty— 4r? <t<t0—r2}.

_ 1 | .'Eol Al

%o = lntto =072 ™ it —1)

is the standard fundamental solution of the backward heat equation 0:G —
AIAG =0;

£ < to,

e Functionals

&,.(R,u) = R? / VUl Grda; Uig(R, 1) = / IVul*G,, dzdt;
Tr(to)
X} fto-R |
O, (R1, Ra,u) = / / ul(ty — t)Gpdzdt;
E — p2—m 2.4,,. I —_ p2—m O, 2d;
() =r [ 1V 5 10, 2) =7 10000
Ey(r,u,2) =1™ /P( ) |Vuldydt; E(r,u,z) = Ep(r,u,z) +r°.

The stationgry condition

4
e Energy inequality
. |
; 2 2
/0 /R _2nuldadt + /R _|VulP(z, T)de
< [ Vuwlds=E. (2.4)

* Generalized monotone inequality I

[ font
to ™ 2(t0 -t) .
—1/2(to — t)(ue — —u x u)]*G,, dzdt

< Qlo (Rz, u) zo (Rl, u) + 6,0 (R1, Rz, u) (25)

The equality holds if and only if u is strong stationary weak solution, i.e. the
equality in (2.2) (or (2.3) )holds.



e Generalized monotone inequality 11
Suppose that I(r,u,z) < Xg%gr“" for 0 < r < 1y, where K > 0,0 < a < 1/2.
Then ¢"(E(r, u, z) + {2-r1~%) is non-deceasing with respect to r, precisely

d(e"(E(r,u,2) + Lrl“"))
dr
> 2e"r? "'/ |8, ul*do + Ke ri-e, (2.6)
4B, l-«

REMARK 2.2 In the heat flow case, ©,,(R;, Ry, u) = 0 since a; = 0. So &,,(R, )
18 increasing with respect to R. , ,

Our idea is to hope that ©,,(R, u) is small whenever R is small, which enables
us to define the following set ¥g. For any fixed 1/2 > o, > 0, and fixed constant
o, we define

lim SupR 0 R (m~2+0) }

Ys=2ze R"x R 2
g { R : Ny anm(z) u?(z,t)drdt =

Sa(u,t) = {x € R™ : limsupr®I(r, z,u) > ¢y > 0} .
r—0
The following lemma is true (see [Liu] [LT]).

LEMMA 2.1
Hy~24P+(5g) = 0,

where H, denotes the parabolic metric Hausdorff measure, and € > 0 is any positive
constant.

If [gm |Byu|? < 00, then for any 0 < o < 1/2, we have

H™2-%(S, (u, t) < o0.

The following lemma enables our idea to become possible, which is the key part
of getting regularity.

LEMMA 2.2 Let 29 ¢ X, i.e. there ezist constants Co(z) and Ro(z9) > 0, such
that whenever Ry > R > 0,

o+ .y w¥(z,8)ds < C
z,t)dr < Cp.
Rm 2+ﬁ BMR(ZO !

Then for any 0 < R < R; < Ry, there ezists a constant C1, depending only on
Co, Eo,m, 8 and a;,i = 1,2, such that

0,,(R, Ri,u) < C,RE.
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REMARK 2.3 If 29 ¢ ¥, then for large \/ty > Ry > Rq the same inequality holds
from energy estimate (2.4).

From the lemma above we have the following estimate for the normalized energy

PROPOSITION 2.1 Let zp ¢ X3, corresponding Cy, Ry > 0, and let Ry < 1/3, and
E(Ra,u, 20) < €1, where €; small enough ( e.g. € < exp(—(80R2)~1),)), then there
ezxists a constant C3, depending on Cy, Fy,m, and B and «;,1 = 1,2, such that for
any 0 < R < Ry, the following inequality

S(Ra U, ZO) < C3| 1Og 6'(122’ u, ZO)Im/zg(R% U, ZO)‘
holds.

REMARK 2.4 Let zy ¢ X3. Then

E(R,u,2z) < Cy(Ry)

3 Partial regularity of the stationary solutions
We have |

THEOREM 3.1 Letu € WH2(R™x R, S?) be a global stationary weak solution of the
Landau-Lifshitz system (1.1) with E(uo) < 0o, where E(up) = [gm |Vuo|?dV. Then
singular set of u, Sing(u), is a closed set with M3 (Sing(u)) = 0. More precisely,
Sing(u) C Tp U {2z : limsup,_ o E(r,u,2) > €} and HP2+P+e(Ts) = 0, H ({2 :
limsup,_,,&(r,u,2) > €}) = 0 for any 1/2 > B,a > 0, where H, denotes the
parabolic metric Hausdorff measure. :

As the usual blow-up argument, the key part to the proof of Theorem 3.1is the
following small energy decay lemma. : :

LEMMA 3.1 There ezist constants 0 < €y, 7 < 1 such that if £(r,u,2) < € < € <
1/2, then :

E(rr,u, 2) < %E(r, u,2) 7 (3)

for any 2 € R™ x R, and z ¢ £5, and 0 < r </t small enough.

The compact Lemma 3.1 can be proved by using Proposition 2.1 and famous
compensated compactness principle [CLMS] and Hélein’s trick.
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4 Analysis of the blow up sets

4.1 Problems

Let ux be a sequence of stationary weak solutions of (1.1) with initial data u(z,0)
and [pm |Vug(z,0)|? < A. By the energy inequality we have
. _
2 2
/0 /R 20 0uddadt + /R _|Vup(z, T)de
< [ IVuk(,0)ds = Buo < A. (4.1)

Therefore we may assume that u; — u weakly in W2(R™ x R, , S?). We set

T = Nrso {x € R™|liminf £(r, ug, z) > eo} )
k—o0 i

t4r2

t ., limsup, o liminfx 0 7oy
Yo=<zx € 2 _ ’
B t—y? fBrl tog r]1/2 (z) |6tuk| = 00

where € >.0 defined in . Theorem 3.1 and 1/2 > 3 > 0 are the fixed constants.
We call the set ©f = X! U L4 the blow up set for the sequence u; at t and
T = Upct<ooX! X {t} the total blow up set for the sequence uy.

The purpose in this part is to analyze the blow up set . In view of the geoinetric
measure theory we first hope to know that-

‘e is T¢ rectifiable?
o Fm'.thér\moré,v one ask how to move Xt with respect to t?

e What happens at a singular point?

4.2 Rectifiable

Define - N | o
) Too = {teR-+|1im§f/Rm Iatuk|2=oo}-

Then we have | —
’HI(TOO) = 0;

If t ¢ Too then for any € > 0, H™~*+A+¢(Lh) = 0.

REMARK 4.1 Here we can not ezpect that 'H'm‘_z(zgol)v = 0, as we do not know if

the sequence {|Vur|?} is of the equivalent continuous in the sense of integration, or
equivalently, strong convergence.
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The small energy regularity and (4.1) imply we may assume that
|Vur?(-, t)dzdt — |Vu|?(-, t)dzdt + vdt,
|Ouk|* (-, t)dxdt — |Owu|*(-, t)dzdt + u,

in the sense of measure as k — oo, where v; is a nonnegative Radon measure in R™
supported in ©*, u is a nonnegative Radon measure in R™ x R, supported in .

We have from the following monotonicity (2.6).

LEMMA 4.1 If liminfx_ o0 I(r, ux, 2) < 7?-:5\3 for 0 < r < 1o, then e"(E(r,u,z) +

2™y (B, (z)) + '11__:) is non-deceasing. Precisely

1

r—a
> .
l—a))— l1-«a

er,,.l-—a

;ic—l;(er(E('r, u, 2) + r* "y (B,(z)) +

Now we present our main theorem in this section.

THEOREM 4.1 Let ux be a strong stationary weak solution of (1.1) with the initial
energy Exo < A. Then for almost every t € R, v; is H™ 2-rectifiable, therefore Lt
is H™ 2 -rectifiable.

We obvious have the following properties for 0(z, t).

LEMMA 4.2 For almost every t, v, = 0(z,t)H™ 2| %, and 0(z,t) is upper semi-
continuous in X'/S,(t) with C(e) < 0(z,t) < C(A) for H™ %-a.e.x € Xt and
therefore 0(x,t) is H™ 2 approzimate continuous for H™ 2 a.e. z € Lt.

4.3 Quasi-mean curvature flow

We know that the blow up sets of the heat flow for harmonic maps move by the
mean curvature (see [LT]). In this section we will calculate the curvature of X* at
the point t ¢ T, and verify X* moves by the quasi-mean curvature. The difference
from the heat flows is that the blow up set X! in Landau-Lifshitz case moves by
the quasi-mean curvature defined in the following, no the mean curvature except
02 =0.

Using the monotonicity inequality (2.6) we can obtain the following important
lemmas. '

LEMMA 4.3 let T € TX!, where TY! is the tangent bundle on L*. Ift ¢ Too, then

we have .
lim lim inf |Vrug|? = 0.
€0 k—oo JB (D)

Here and in the sequel we denote by

B(X) = {z € R™|dist(z, X) < €}.
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LEMMA 4.4

o sl
oy 500" = 5 0O

ﬁ

We also define the induced Radon measures E{, 1—1);k ,and w; = on X* by the following

respectively,

lim /Rm (AM10suk — Aaug X Opug) Vugl

k—o00

— 2/Rm(/\1ut—-/\2uxut)C-Vu+2.étWt(

lim (
k—oo JRm

- /Rm(C-Vu)ut-i-/EtCu—)f

¢- V'U'k)atuk

lim (ug X Opug) (¢ - Vug)

k—o00 JRm™
= /Rm(uxatu)’(C-Vu)+/RmC-1E‘?

where  is a smooth vector field with compact support in R™, and o, = W -, and
every component w}’,i = 1,2 is a nonnegative Radon measure on ¥t. Analogously

for Ef and w;~. It is obvious that
W = Mw) — )\2'7?1-

Then we obtain from the definition of the stationary weak solutions and the two
lemmas above

THEOREM 4.2 Let ¢ be a smooth vector field with compact support in R™. Ift ¢ T,
then

/E divg: Qe + /R IV div¢ — 20;udud;C*
- Z/RM(/\lut ~ dgu X w)C Vu+2'/zt .
We also have the following theorem.

THEOREM 4.3 Suppose that uy, is a stationary weak solution of (1.1). Then for any
J € C(R™, R,), we have

_/;3:» - -/1.2"‘ Mo + (/Iiimxt‘_ -/}‘Z"‘xto)Ivul%9
< 2 /t: fzt()\119u+ Vou')

t
_ 2
2 /to me(,\lutﬂ + VuViu,).

And if uy, is strong stationary weak solution of (1.1). Then the equality above holds.
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We are in the position to introduce the curvature of Xf. Suppose that u; are
the strong stationary weak solutions, and the limiting map u is a strong stationary
weak solution. We then have from Theorem 4.2 that, for any t ¢ 7,

/ dive: (O = 2/ W = —/ ﬁ:(jl/t
st ‘ ot ot
where ﬁt = —2%. Clearly for H™ %-a.e. z € 3¢ |

o B (MOeuk — Agux X Byuk) Vug
H@) = ~2liry lim Ty [V '

Applying Lemma 4.3 we see that
Hi(a) € $*(2). |

Where S = S(z) = T,v;. Thus we obtain the first variation of varifold V,, :
8V, = —u [I_It

And T, is the generalized mean curvature of X! ( see 4.3 in [A]). We define the
total variation ||6V,,|| of V), by the requirement that

16V2 ||(U) = sup{V...(¢) : ¢ € TE", spt¢ C Uand  |¢] < 1}

Then by the representation theorems (see 2.5 in [F])

d||6V,
ﬁt=‘_ lItht”nt, ‘ ‘ (4.2)

where 7;(z) € S™!. We also define the varifolds 6*V,, and §*+V,, respectively by

Val0) = [ 2win,

V() = [, 20wt

Then we have

118°Vaull = 18°1 Ve, (43)

R (4.4)

B = ME - MHE, - (45)
B < On+ D) H]L . (8)

— 4 -
Evidently f-I_f = —2% and fz"_‘? = —24—?12—, and for H™ 2-a.e. z € &f

2 (e) Otk Vu
I_Itt(x) = —2lim lim Jb, (@) Orux £
r—0 k—oo0 fB,-(:z:) |Vuk|2
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H (2)

B @) (U X Bpur) Vi
z) = —2lim lim
=0 k—>00 Js, () Vg2

Applying Lemma 4.3 again we have
B} (@), 7 (@) € S*(z).

I-Ttk is called the quasi-mean curvature of X°.

Now we introduce the Brakke’s quantity B*(v, 9).
DEFINITION 4.1 Let ¥ € C3(R™, R,). Define
. A
B* (s, 9) = —/Rm ?lﬂu??]?ut +/Rm V9. St Hhy,
where S = S(z) = T,v, for H* 2 a.e. z € {9 > 0}.

DEFINITION 4.2 We say {v:}1>0 a generalized Brakke’s motion provided that for
a.e. t >0 and all ¥ € C3(R™, R,),

dj.l/t(’ﬁ) S B*(Vt, 19),

where we denote by

df f = limsup M.
55t s—1

We also say the measure family {11}i>0 (or surface ¢ equivalently ) moving by the
quasi-mean curvature in the case.

We have

THEOREM 4.4 Suppose that uy are the strong stationary weak solutions of (1.1) and

the limiting map u is also a strong stationary weak solution of (1.1), then the blow
up measure {1} is a generalized Brakke’s motion.

The following theorem asserts that the singular set ©* of Landau-Lifshitz system is
a quasi-mean curvature flow.

THEOREM 4.5 Suppose that blow up set X' of Landau-Lifshitz system (1.1) with
A1 2> 2|X;| is a smooth family of sub-manifolds in R™ and assume that it is a
'generalized Brakke’s flow in the sense of Theorem 4.4. Then L' is a quasi-mean
curvature flow.

Proof. We write Xt = F(-,t)(M{*"?), which is a parametric representation of L.
Suppose that .
O0F(z,t) =Y (z,t)
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with Y € TSt By the first variation of a varifold with respect to integrands (see
4.9 in [A] or 2.4 in [I]), we have

8V, (9)(¥) = d /E Oy = /E (—0H, + V9 - 54) - Py, (4.7)

where ﬁt defined in (4.2) is the mean curvature of ¥*. On the other hand, by the
Theorem 4.4, we have '

af [ o< / 19|H 24+ V.St B, (4.8)
Therefore we obtain that from (4.7) (4.8) and (4.5)
[ ST - (7 - -17*) —NHL P, > [, vo- (@ - P

Now since ¥ > 0 is arbitrary and |12I_t I?‘tl < |H |2 and \; > 2|)z|, we have to
have ITI—k Y, which is the desired result. :

4.4 Blow up analysis at a singular point
Let 29 = (o, %) ¢ X be a singular point of u such that
'l,% 5(7‘, U, ZO) > €o

by Theorem 3.1. Set ux(2) = u(zxo + rxx, to + rit) where z € R™ and t € R_, then
uy, satisfies (1.1) and by scaling , for any z € R™ x R_,

Erwz) = [ 1Vl
By Proposition 2.1 we see that for small
\Y% 2 <C R
Jo IV < CCRa).
and from the energy inequality we have |

| < <
[, el sc [ 1Vl < C(R).

Denote , for fixed constant § > 0,

Dy = {z e R™ x R_: Do +nie € Bila), }

to + r,";t € [to — 82, t0 + 6]

then Dy —» R™ x R_ as k — oo, since r — 0. There is therefore a subsequence (still
denoted by 7x) % — 0 such that ux(z,t) — v(z,t) weakly in W2 (R™ x R_, S?),

|Vur (-, t)dzdt — |Vo|2(-, t)dzdt + vdt



|Ocuk | (-, t)dzdt — 0| (-, t)dzdt + p

in the sense of measure as kK — oo, where v; is a nonnegative Radon measure in R™
supported in Xf, 4 is a nonnegative Radon measure in R™ x R_ supported in ¥,
here and in the sequel we use the same notations and results in the sections above.

We have by scaling

/to—(fle)’/ _10u
to—(ri R2)? m ‘/ 0 - t
—1/2(to — t)(Bu — é/\—u X 0yu)|*G, dzdt
1
< @, (riRa, u) — Du (15 Ry, u) + O, (T Ry, Tk R, u).

Since zp ¢ g, we have O, (xR, TeRa,u) < Ci(rxRz)? by Lemma 2.1. Then
zo(rle,rkRQ,u) — 0 as k — oo. Obv1ously, for any R > 0, ®,,(rcR,u) —
AL ™20(z, to) as k — oo. We thus obtain

/ m’ \}‘Eﬂ- v 2(—t)(Opug

2):\ ug X Opuy))? Godzdt — 0

as k — oo. That is,

Ag A17'61'“]:
/\latuk - 2 (uk X atuk) 2(—t) —0 (49)
strongly in L%(R™ x [— Ry, —R,}, R®) as k — oo. Furthermore
Ur X Ogug — U X z Vg -0 (4.10)

2(=1)

strongly in L%(R™ x [~ Ry, —R;), R®). Applying the results in section 4.2 we obtain
the blow up formulas

THEOREM 4.6 If ty ¢ Too, and zp = (zo,t0) & p is a blow up point, then we have
two blow up formulas

/Rm(|Vu|2div(C) — 20,v0,v0;¢*) (4.11)
%2/ (A18ev — Agv X Gv)Vu¢

[ s G = Fo@lan x Galw = [ divan O,
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/t1 /m (ALv20 + VuVidv,)dzdt

+( — )|Vv|219d1:
R™ xt, R™ x
o [ Ol
/19th /M el A
A2 ’
- Tn - Cr— = a ), 4.12
t], Et 2( t)( 2 (x)lx X Cﬁl)ut ( )

where { € C§°(R™, R™) and 9 € C°(R™, R,), y,—,'(:v): denotes the projective vector
of the vector y(z) on the normal plane of Lt at z, and o(z) = £1 is a sign function
determined by some Radon measure.
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