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On positive solutions
to some semilinear elliptic equations
with nonnegative forcing terms

(i T (ﬁitk—?k%l‘mﬂ%ﬁﬁ )
Tokushi Sato (Tohoku University)

§1. Introduction.

In this paper we assume n > 2 and consider positive solutions to the semilinear
elliptic equation involving a forcing term

{ —Au+u=g(u)+«f, in D'(R"),

P
(B u>0 ae onR" wu(x)—0 asl|z|— oo

0 \2 . .
with a positive parameter «. Here A= Z ( ) is the Laplacian on R", f, is a given

Ox;
nonnegative forcing term and the nonllnearxty function ¢ is given by
(1.1) ‘ gls) =s¥ TorseR withp>1.

We assume that f, > 0 ir D/(R"™), and hence f, is a measure on R", in geueral
Though we do not have to take the nonlinearity function exactly in the form (1.1
our main results, we only treat the case (1.1) in the following, for simplicity.

Then we can observe that, in a suitable situation, problem (P), has a solution for
small x, while (P), has no solution for large . Indeed, the following facts are known.
Here, p* =n/(n—2), p* = (n+2)/(n —2) and ‘

(1.2) k* = sup{ k > 0 | problem (P), has a solution }.
(We agree that 1/0 = 00.)

Fact. (I) (Deng-Li[1],[2]) Let n >3 and f, € H~!(R") be a non-zero nonnegative
function on R™ satisfying |z|*~2f, € L°(R™). Then the following properties hold:

(i) If p> 1, then it holds 0 < K* < oo. o »

(if) If 1 < p < p*, then problem (P),. has a unique solutwn

(iii) If 1 <p<p* with3<n<5 orl<p<p* with n> 6, then problem (P), has
at least two solutions for any k € (0,k*). ‘
(iv) If p=p* with n > 6, then a solution to (P), is umque for small k, under some
symmetry condition on f,.

(Here, a solution to (P), is in the sense that w € H!(R™). Also we say that a distribution
f on R" is non-zero if f is not identically zero on R™.)

(1) (Sato [9]) Let n > 2 and f, be a non-zero nonnegative finite Radon measure
on R™ with a compact support. If 1 < p < p*, then the conclusion of (i)-(iii) above
holds true.

(We describe the precise definition of solutions later.)

Our main purpose is to discuss the property (ii) above under weaker restriction on
p and f,, including the case where p is supercritical, i.e., p > p*. Here, we assume that
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f, has a compact support. In the following, we explain the results containing that of

(In).
We denote the norm of LY(R™) by || - ||, for 1 < g < oo, and the norm of HY(RM)

by |[vll12 = (Vo2 + vl|)/? for ve H'(R™). We also denote
LI(R") = {v e LYR™) | suppv is compact } (1< g < o0),
{ Co(R") ={veCR") | v(x) =0 as|z| = o0}, BC(R")=(CNL7)(R").
For a fixed non-zero nonnegative finite Radon measure f, on R?, we set

(13) ¢* = El*f*a
where E| is the (canonical) fundamental solution for ~A + I on R". Note that E, €
C*(R"\ {0}) is radial and satisfies

OF

E, >0, El <0 onR*\{0}, —AE,+E, =48, in D'(R").
(1.4) ezl
E,(z) ~ E(z) asz —0, El(z)rvc(n)w as |z| — oo

(see e.g. [3, Appendix C]). Here, C(n) 1S & positive constant and FE is the fundamental
solution for —A on R", that is,

1 1
——  for x ¢ R"\{0} if n2>3,
n — 2 n-—-2 oY
o log |_37|— for r € R2\ {0} if n = 2.

(We denote the open ball of radius R centered at the origin in R® by By, and m is the
Lebesgue measure on R".) Particularly, E, € LI(R") for 1 < q < p*, and it holds
|E;ll; = 1. Hence, we have that ¢, € LI(R") for 1 < q < p*, in general.

In the following. we assume that B

(Ay) ¢, € Lo(R*)\{0}, f.>0 inD'(R"), suppf, C By,
for some g, > max{p,n(p—1)/2} and R, € (0,00). Note that, if u € LP (R™) satisfies
(1.6) —Au+u=g(u) +£f, in D'(R"), '

then we can see that u € C?*(R™ \ supp f,) with the aid of the elliptic regularity
argument. So, we define a solution to (P), as follows.

Definition 1.1. Under aésumption (Ay), for kK > 0, we call u a solution to problem
(P), if

(1.7) u € (L& + CO)(R”), u>0 ae onR"
and u satisfies (1.6).
In order to describe our results precisely, we prepare the proposition below.

Proposition 1.1. Let u and % be non-zero functions on R™ satisfying (1.7). Then
the following properties hold:
(i) There exists a minimizer o' € H'(R™)\ {0} of the minimizing problem

|Vul|2 + ||v)|2 < HiR
e, | v € H R0}

M{u] = inf { ‘
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Particularly, M [u] € (0,00).
(ii) The least eigenvalue of the linearized eigenvalue problem

(L) ~Ap+yp=Xg(u)p inD' R,
s
0#0 onR" p(z) >0 as|z|— o0
is given by M[u], which is a simple eigenvalue. Moreover, the minimizer @' is an
eigenfunction corresponding to eigenvalue X'[u] satisfying o' € Cy(R™) and ¢! > 0
on R™ (or ¢! <0 on R").
(iii) If (L;u)* has a positive solution ¢ € H'(R™)\ {0}, then it holds A = A'[u].
(iv) If u <% and u # % a.e. on R™, then it holds A [u] > A\[z)].

Remark 1.1. (i) For a solution u to problem (P),,, the invertibilty of the linearized
operator (in a suitable sense) is broken when A\ = 1 is an eigenvalue of the linearized
eigcnvalue problem above. However, if A = | is the least eigenvalue, then the linearized
operator is invertible in the ‘orthoganal’ of ¢*. On the other hand, when A [u] € (1, 00),
we can see that A = 1 is not an eigenvalue, and hence the linearized operator is invertible

(cf. 84).
(ii) The definitin of X[u] implies the linearization inequality
(1.8) N [ullg’' (@)l < 1Voll3 + [[vll3 = [lvllfy for ve H'(R™).

Now we set p* = (n%2—8n + 4+ 8(n — 1)1/2)/((n -~ 2)(n - 10), ) and

p ' if 1< p< P*,
n p*+ 1 ’ . ) B
max { o (p— 1), if p* <p < min{2,p*},
(1.9) q.(p) = { 2 (p - (2 _p)/(p')1/2) } s
n (p*+1)p _ )
max _(p - 1), -—*_—————— lf max{p*, 2} S p < p*,
{ 2 P+ 1/(pr)1/2 } £ »

where ¢’ is the conjugate exponent of ¢, i.e. 1/g+ 1/¢' =1 for q € [1,00]. Note that
p* >p* if n >3, and q,(p) > max{p,n(p — 1)/2}. Then we can state our results.

Theorem 1.1. Assume (A.) with g, € (g,(p),o0) and 1 < p <p*. Then the following
properties hold: :

(i) It holds 0 < K* < o0.

(ii) Problem (P),.. has a unique solution u*, and u* satisfies A [u*] = 1.

(iii) If problem (P), has a solution u satisfying M [u] = 1, then it holds k = k*.

(iv) For any k € (0,x*), problem (P), has a solution u, satisfying A[u,] € (1,00).
Moreover, a solution u to (P), satisfying A'[u] € (1,00) is unique.

Theorem 1.2. Assume (A,) with g, € (¢,(p),00) and 1 < p < p*. Then, for any
k € (0,k*), problem (P), has a solution u,, satisfying u,— u, € Co(R"), Tg—u, >0
on R" and M[g,] € (0,1).

Remark 1.2. (i) If p* < p < p*, then it holds ¢,(p) = n(p —1)/2.

(ii) If 1 < p < p*, then it holds q,(p) < p+ 1 < p*+ 1. So, our integrability condition
is satisfied in the case f, € H~'(R") with n > 3, because ¢, € H'(R") C LP"*}(R").
(iii) The mapping p — q,(p) is not continuous at p = p*.



§2. Outline of the proof of Theorem 1.1.

In this section we describe the outline of the proof of Theorem 1.1 (i)—(iii). We use
the continuation method which is essentially due to Keener—Keller [6]. We introduce a
new parameter 7 € [0, 1] and consider the problem

{ —Au+u = g(u) - (1 - 7)g(ke,) +&f, in D'(R"),

P
(Pr)x u> ko, ae onR? wu(r)—0 as|z|— o0

for k > 0. Here, the definition of a solution is given in the sense of Definition 1.1.
When u is a solution to (P,),, we call u a strictly minimal solution, a turning solution
or a nonminimal solution to (P,), if A[u] > 1, M[u] = 1 or Afu] < 1, respectively.
(Formally, we define M[0] = co and call = 0 also a strictly minimal solution to
(Pr)o)
Remark 2.1. (i) Problems (P), and (P,), are equivalent for x > 0.
(ii) For T € [0,1], u = 0 is a solution to (P;),.
(iii) For k > 0, u = k¢, Is a solution to (Pp),-

For the proof of Theorem 1.1 it is significant to find a turning solution to (P), for
some k, which is equivalent to find a solution to (Q,)* in the sense below.

Definition 2.1. For 7 € [0,1], we call (u,p; k) a solution to (Q,)* if u is a solution
to (P,), and ¢ is a positive solution to (1., u)'. Then we set

(2.1) T* = {7 €[0,1] | probiem {Q,)* has a solution }.

Remark 2.2. If there exists x such that problem (P.), has a solution u satisfying
M[u] = 1, then it holds T € T*. Indeed, we can easily see that (u, o'; k) is a solution to
(Q,)*, where ¢! is a positive solution to (L; u)’\1 [ = (L;u)! obtained by Proposition
1.1.

Theorem 1.1 (i)-(iii) is obtained by two propositions below.
Proposition 2.1. Under assumption (A.), if problem (Q,)* has a solution (u, ¢; k),
then the following properties hold:
(i) A solution to problem (P,), is unique.

(ii) Problem (P,); has no solution for E > k, provided that T € (0,1]. Particularly,
x = sup{ K > 0 | problem (P,); has a solution }.

Proposition 2.2. Under assumption (A,) with g5 € (g.(p), 00), it holds T* = [0, 1].
The proof of Proposition 2.2 consists of three steps below:

Step 1. T* is non-empty.
Step 2. T™* is open in [0,1].
Step 3. T™* is closed in [0,1].

Now we give the proof of Step 1.

Lemma 2.1. Under assumption (A.), it holds 0 € T*, and hence T* is non-empty.

Proof. Note that k¢, is a solution to (Fy), for any x > 0. Then we see from
Proposition 1.1 that
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Vo)l + llvll3
g (ke )v°lly

1 . Vol|2 + ||lv||2 1
= = mf{ ”“p;';_%“ZHM | vE Hl(R")\{O}} = — Mg,] for k> 0.
* 1

0 < N[ko,] = inf{ \ v € HY(R™)\ {0} }

By choosing k% = Al[#,]/®=1D we have that M [k%4,] = 1, and the assertion follows
from Remark 2.2. q.e.d.

Other steps will be proved in the following sections.

§3. Minimal solutions.

In this section we explain the construction of a solution to problem (P, ), by using
the supersolution—subsolution method. We introduce the notation below:

uk —zk;¢j (k>0), ¢° =ko,, ¢, = Ex -1 (g>1)
K =0 K = ’ K * 9 T,K 1 g‘rn )
g‘?‘ﬂ = Tg("‘"‘b*)a 9715,‘ = g(uk ) - g(uk_l (k 2 1)'

Roughly speaking, if the sequence {uT < hZ, converges to a function u in a smtabls
sense, then u is a solution to (P,) :

(3.1)

Remark 3.1. (i) It holds ¢f;, = 0 (k > 0), which corresponds to that u = 0 is 2
solution to (P,),.
(ii) It holds qb’(i,\. = 0 (k > 1), which corresponds to that u = k¢, is a solution to

(PO)IC'
By choosing ¢y > ¢,(p) small if neccesary, we rxiay assumethat 1/q, _; > 0> 1/q;,
for some k, € N, where

11 | 2 p-1
—=——a*k'(k>0) and ay, = — — 2

7] 9 T (4 o -
Then the boot-strap argument works, and we can show that ¢/(uf,) € L%/(P—1)(R")

(k > 0) and the following propertles inductively, because 0 < gfm <gd (uf,,c)ddfn a.e.
on R" (k> 0). o o

(€ (0,1)).

Lemma 3.1. Under assumption (A,), the following properties hold
(i) ¢k € (L'NLA)(RY) (0<k< ke 1),
(i) k. (L'NG)RY) (k> k).
(i) 0<¢f, 5¢§E a.e. onR" forr<7, k<K (k >0).
Now we put u = u + w. Then we can show the following lemma.

Lemma 3.2. Under assumption (A,), © = u * + w is a solution to (P,), if and only
if we Cy(R™) and :

(3.2) w= El*[g(uﬁ;+ w) — g(u; ’”* -~} >0 onR".

So, we define a supersolution to (P,),, as follows. Note that a solution to (P,), is
also a supersolution to (P,),.



Definition 3.1. We call & = u** + @ a supersolution to problem (P,), if W € Co(R")
and

(3.3) w > El*[g(uf.j;c-{— w) — g(uf.,*,;1 ]>0 onR™

k ;
If problem (P,), has a supersolution % = u’ﬁy"n+ @, then we have that 0 < Y ¢,
N j:k*+1 ’
<@ on R™ (k > k«+ 1), inductively. Moreover, we have the proposition below.

Proposition 3.1. Under assumption (A.), suppose that problem (P,), has a super-
o0 .
solution u = uf.;-i— @w. Then w= 3  ¢], converges uniformly on R". Moreover,
j=ket1
u = vk + w is a solution to (P,), satisfying

(3.4) C 0<w< @, (kp, <)uf <u<T ae onR™

We call u, obtained by the proposition above, a minimal solution to (P,),.

Remark 3.2. (i) In the proposition above, u7 is a subsolution to (P,),.

(ii) A strictly minimal solution to (P.), is a minimal solution to (P,),. (We can prove
this fact by using Proposition 4.1.)

(iii) If @ = uf_}c+ @ is a solution to (P,);, then & = u¥, + W is a supersolution to
(P,), for any k < K. Particularly, if (P,),. has a solution, then (P,), also has a minimal
solution. Moreover, Theorem 1.1 (ii) implies Theorem 1.1 (iv) by virtue of Proposition
1.1 (iv).

§4. Invertibility of linearized operators.

In this section, by using the compactness of supp f,, we describe the invertibility of
the linearized operators of a given solutioin to problem (P,), in a precise sense. This
property is useful for the proof of Step 2 and related properties (cf. §5). Now we
introduce a radial function e, € C*°(R") satisfying '
1 for0<|z| <1, Ode

(4.1) e, (z) .—.{ Ei@) forle] > 1. 51 <0 onR"\{0}.

Since supp f, C Bp,, we can show the decay properties of solutions below.

Lemma 4.1. Under assumption (A.,), the following properties hold:

(i) It holds ¢f /e, € L°°(R"\B—R‘) (k > 0). Particularly, ¥, /e, € BC(R™) (k > ki).
(i) If uw = vk +w is a non-zero solution to (P,), and ¢ is a solution to (L; u)* with
some A € (0,00), then w/e;,p/e; € BC(R").

For a non-zero solution u to (P,), we define
1
(4.2) olult = —Eyxlg/(u)ée,] for § € BOR™),
1

and consider the invertibility of the operator I —A®[u] in BC(R") or its closed subspace.
The following lemma is the key point of the argument in this section, which can be
proved by the similar way to [8, Proposition 4.1].
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Lemma 4.2. Assume (A,), v € (0,1) and g € ((¢o/(p—1))’,00). If u is a solution to
(P.),, then the operator ¥, [u] : G(R") — Li(R™) is compact, where

(4.3) Y, [u]y = ﬂEl*[g'(u)ell_”w] for 1 € LI(R™).
€1

Now we denote
6= {aplac R} and [gly = {we L/ (R | / Yodm =0} for ¢ € LIR).
R" o
With the aid of Fredholm’s alternative, we can see the lemma below.

Lemma 4.3. Assume (A, ) v € (0,1) and g € ((go/(p— 1))’ o0). Let u be a non-
zero solution to (P,), and @' be a positive solution to (L; u))‘ (I, Then the following
properties hold:

(i) There hold |

Ker (I - M[u]@ [u]) = [,] and (I - N[u]¥ [u))(LIRY) = ],
where ¢, = ¢'/el™ € LI(R™) and 9, = g(u)<,0 el™ € LT (R™). Particularly,
operator ®}[u] = (I — \[u]¥, [uDl: o [z/z,, [1[1,,]_, is invertible. '
(ii) If Al[u] € (1,00). then operator I ¥, [u] : LI(R™) — LI(R™) is also invertible.

Note that 1/c > (go/(p—1))’. Now we assume v € (0,min{1.p—1}),3 € (1/a., )
and define

(4.4) | Jl[u]n = ;i;@,l[u]—l(ei’n) forn € Al[lzl,
where
(4.5) A'fu] = {n € BO®RM| / welnedm =0}.

(Since e}y € [IZ:]? for n € Al[u], operator J'[u] is well-defined.) We also define
a Tl = ol ~BpI 7 e1e) for €€ BORY,
provided that A'[u] € (1,00). With the aid of Lemma 4.3 and the estimate

(1) 5Bl el < ualilivly for v L3R,

we can show the following proposition.

Proposition 4.1. Assume (A,), v € (0,min{l,p — 1}) and g € (l/a*,oo) Let u
be a non-zero solution to (P,), and @' be a positive solution to (L; u)™, Then the
following properties hold:

(i) Operator ®[u] : BC(R"™) — BC(R™) is bounded.

(ii) There hold

1 ‘ ‘
Ker (I — M [u]®[u]) = [eﬁl] and (I — Nu]®[u])(BC(R™) C A'[u).

Moreover, J'[u] is a bounded right inverse operator of (I — X [u]®[u])|1[y : Allu] —
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(iii) If Al[u] > 1, then J[u] is a bounded right inverse operator of I —®[u] : BC(R") —
BC(R™M).

For the proof of (ii), we set
(48) F'luln = —Bys[g/(u)(/ [uln)e] for n € A'fu]
1

By virtue of (4.7) and the boundedness of }[u]~! on [1;:]37, we can see that &'[u] :
A'[u] — BC(R") is bounded. Then we have that J'[u] = I| g1+ A! [u]#'[u] and J'[u]
is also bounded in A![u]. So, there hold &![u] = ®[u]J [u] and (I — N [u]®[u])J [u] =
I| p1py)- Similarly, we can prove assertion (iii).

We can prove Step 2 by using the proposition above, which will be shown in the
next section. Now we give the proof of Proposition 2.1.

Proof of Proposition 2.1. (i) Suppose that @ is another solution to (P,),, and put
€ = (—u)/e;. Then it holds £ € BC(R™) and, from the convexity of g, we have that

(I — Blu])€ = éEl*[g<a> — g(u) — ¢'(u)(T—w)] >0 on R".

On the other hand, Proposition 4.1 (ii) implies that (I — ®[u])¢ € A'[u], and it follows
u=u o R".

(ii) Suppose that 7 € (0,1] and problem (P,); has a solution & = u,’é‘,—c+w for some
K > ~. Then 7 = ub + @ is a supersolution to (P,), by virtue of Remark 3.2 (iii), and
we have that u < % a.e. on R"® with the aid of (i) and Proposition 3.1. By putting
€ = (u—wu)/eq, it holds € € BC(R™) and, by virtue of (3.2) and the convexity of g, we
have that

(1= )€ > - Eyeld (w(@hi- 65:)] >0 on R

This contradicts that (I —®[u])¢ € Al[u]. q.ed.

85. Openness of T*.

In this section we give the sketch of the proof of Step 2 and construct strictly minimal
solutions near a given one along the parameters x and 7. Note that, if problem (Q,)*
has a solution, then it is unique up to constant multiplication of ¢!. So we denote a
solution to (Q,)* by (u},pr;k}) for 7 € T, and set w} = u} — uf,*n;. Then it holds
from Proposition 2.1 that

(6.1) ky =sup{ k > 0 | problem(P,), has a,soltition} for 7 € T*\{0}."

When (P;), has a solution, we denote the minimal solution to (P.), by u,,, and set
Wy = Uy — ukj . Moreover, we denote Are = AMug,] and a positive solution to
(L; um)’\m by ¢, provided that x > 0.

First we show the openness. of T* in [0,1]. That is, for any given 7 € T*, we
construct a solution to (Q,,.)* for || < 1. By using Proposition 4.1 (ii), we can show
the proposition below, which implies Step 2. Here, we omit the precise proof. Note
that uj = ky¢, and wg = 0 for the case 7 = 0.
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Proposition 5.1. Under assumption (A,), the following properties hold:
(i) There exists a positive constant g, such that €2 € T* for € € [0,g,]. Moreover, a
solution to (Q.2)* is expressed by

(€575 596, p§) € A'[ug]* x (0,00)%.
(ii) If 7 € T*\{0,1}, then there exists a positive constant ¢, such that 7 +¢ € T* for
€ € [—¢;,€,]. Moreover, a solution to (Q,,.)* is expressed by

(5.2) { (wg2, pra s Kez) = (e(o )1/2 o+ e%E5er, po+ enger s ko — €p5),

(5 3) { (w:+€1 ()0;+e ) H:.+5) = (w*+ 6(0'6‘p;+ &76'61) (P‘r+ 67’761 K Ep'r)

(65,75 1 0%, p5) € A a2 x (R (0,00)).
If 1 € T*, then the same statement holds with 7 = 1 and [—¢,,0] instead of [—¢,,€,].

Moreover, we can show the lemma below, by using Proposition 4.1 (ii)—(iii).

Lemma 5.1. Assume (A,) and that (P,), has a strictly minimal solution u.,. Then
the following properties hold: '
(i) If K > 0, then there exists a positive constant ., such that problem (P,), . has
a strictly minimal solution u, . for € € [-&, ., &, ].

(ii) If 7 € (0,1), then there exists a positive constant g, such that problem (P, ),
has a strictly minimal solution u, ., fore € [-&,,,E..]. If T=0 or 7 =1, then the
same statement holds with [0, &, n] or [-&,,,0] instead of [— sT w1 Ericls respe('twelv

Remark 5.1. Also in the case k = 0, we can coustruct a Stnctly m1mma] solution
Uy to (P;), for 0 < e < 1 near the solution u,q =0 to (P,)o.

86. A priori estimate.

Next we show.the closedness of T*. In this section we give the a priori estimate for
solutions to {(Q,)*}, ¢+ under assumption (A,) with go > ¢,(p). Since 1 < p < p*,
we have that ¢,(p) < G, (p) and we may assume that ¢, € (¢.(p),@.(p)), where

p* if 1< p <ph
(6.1) 2.(p) = _pr+1
1-1/(p))'/?

Our purpose in this section is the following.

if p*<p<p*

Proposition 6.1. Assume (A,) with g, € (q,(p),d.(p)). Then {w}},cp+ is uniformly
bounded and equi-continuous on R™.

We denote the translation operator by 7, for z € R", that is,
T,0(z) =v(z — 2) for x € R".

By using the elliptic regularity argument 31m11arly in Lemma 3.1, we can show the
lemma below.

Lemma 6.1. Under assumption (A.), if {w;"rz et} rers . eﬁn is bounded in Li(R™) for
some q € [gy,00) and sufficiently small v € (0,1), then {w}}, o« is uniformly bounded
and equi-continuous on R". :
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By using Proposition 4.1 (ii), we can obtain the a priori estimate for {xk%} ...

Lemma 6.2. Under assumption (A,), if 7,7 € T* and T < T, then it holds K} > K%
Particularly,
(6.2) 0< Ky <Ky forTteT".

Combining with Lemma 3.1 (iii) we have that {uf*h*l}TeT* and {¢m, }rep+ are
bounded in L% (R") and L>(R"), respectively. Note that, for 7 € T*, there holds

63 { —wl+w! = g(ur) —g(ufyy") in D'(RY),
wf = Eylg(ut) - g(@553)] > 0 on R?

and (1.8) implies that

(6.4) llg' (up)o®lly < [IV0llF + ||v||z = |lvllf, forve H'(R™),

because Al[u}] = 1. Now we show the assumption of Lemma 6.1. We devide into two
cases.

Case 1. 1<p<p"
Since gy < p*, there exists a positive constant ¢, such that

(6.5) I(Exv)nlelllg, < @ llvrlef]ll, for v e L'(R™).

Proof of Proposition 6.1 (i). The casc 1 <p < p*.
We multiply the first expression of (6.3) by 7,[¢{] and integrate over R". By using
integration by part and Young’s inequality, we see that ‘

(o) - g(ubz Nrmletlly = / vk - <ffim < o lui il
1 1 /1yp
—(ewr)P +

|G ey + G )

for any € > 0. Cofnbining with (6.2) and Lemma 3.1 (iii) we have that

I 2 ‘ ke—1 Cy v
(1= 22 lgtus)mleth < Ngtesdsg Dl + et

On the other hand, we see from (6.3) and (6.5) that
lwrr.lerllg, < IExlg(ur)lrlerllly, < Cllg(ur)nlef]ll, for all 7€ T%, z € R,

<ec —Epllg(uT)T et llli+ =57 lled il

and hence {w;7,[e]} cpx,cge is bounded in L% (R") by choosing & > 0 small. Then
the assertion follows from Lemma 6.1. q.e.d.

Case 2. p* <p<p"

We are going to obtain the boundedness of {(w[e{])"}, cqv cqe in H (R™) for
some 1 € [ry,00) by multiplying the first expression of (6.3) by p(w?)* ~'7,[e?"] and
integrating over R", where 15 = ¢o/(p*+ 1). Once we obtain such estimate, Sobolev’s
inequality implies that {wrT,[e{]}, e ,ern is bounded in LE+DT(R) with (p*+1)r €
[g9, 00), and the assertion follows from Lemma 6.1.

First we observe the inequalities below, which are concerned with the nonlinearity
function g. We use these inequalities with s = u];*;:;l(w) and t = [w; + ¢,’::jc;](m) for

- T,
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Lemma 6.3. (i) It holds
plg(s +1) —g(s)) < g (s + )t + (¢ (s +t) — g'(s))s fors,t>0.
(i) When p < 2, it holds
(¢'(s+1) — ¢'(s))s < pstP™ for s,t > 0.
(iii) When p > 2, for any € > 0, there exists a positive constant C(e) such that
(d(s+t)—g(s)s<eg'(s+t)t+ C(e)s” fors,t >0.
By using (ii)—(iii) of the lemma above, (6.4), Sobolev’s inequality. Holder’s inequal-
ity and Young’s inequality, we can show the estimate below.

Lemma 6.4. Assume (A,), p > p* and that r € [ry, o) satisfies

1 1 1 1 D .
6.6 — > — —(p*—1 if 2, —>——(p*—=1) ifp>2.
66)  Lzg (T -0-D) fp<2 Sz -0-1) ifp2
Then, for any € > 0, there exists a positive constant C; .(¢) such that
(6.7) 9" (W) (wi)* ' 7™y < ell(winled]) 112 + Co (o),
(6:8)  ll(g(up) — glubre sz (w)* ' r el ™) < ell(winled ) IIEy + Gl

forallTeT*, € R".

By making use of the estimate above, we can show the following lemma.

Lemma 6.5. Assume (A,), p > p* and that r € [r,, o0) satisfies (6.6) and

(6.9) p(—i— - %) > 1.

Then {(w}T,[e}])"} -gr» 18 bounded in H LRn), provided that v € (0,1} is suffi-
ciently small. ' '
Proof. We multiply the first expression of (6.3) by p(w})* ~!r,[e?"] and integrate
over R". Then we can see from (6.4), Lemmas 6.3 and Lemma 6.4 that

2 1 * * * *\2r—
P(; —T - cvz) (w2, eI 22 < p/Rn(—-AwT-f— wr) (w7, (e )dm

=pll(g(u}) — glurz ) (@) 'z el
< llg' (up) (wr [ D> 11+ llg' (u) Bes (w))* ~ 7, eIy
+lg(ur) — gl upi ' (wr) eIl
< (1 +2)||(wirlef])) |12, +2C; () forallTeT* zeR*.
Because of (6.9), {(wiT,[e{])"} cp+,cpe is bounded in H'(R™) by choosing v and ¢
small. g.e.d.

TeET 2

Note that (6.9) is equivalent to that (p*+ 1)r < g,(p). Moreover, if p* < p < p*
and gy € (¢.(P),3.(p)), then there exists r € [ry, 00) satisfying (6.6) and (6.9), and the
assumption of Lemma 6.1 holds. Therefore, Proposition 6.1 has proved. -
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§7. Plane reflection method.

In this section we explain the plane reflection method, which is useful for the con-
trol of the behavior of solutions at infinity. Here, we use the compactness of supp f,
essentially. Step 3 can be proved by using the argument below, together with the a
priori estimate obtained in the previous section.

Definition 7.1. Let w € S™~! and a € (0,0).
(i) We set

H*={zeR"|zw<a} and z“*=z+2(a—zw)w forzecR".
(ii) We say that a function v on R™ satisfies condition (H)* if

v(z) > v(z“?*) for a.e. x € H*C.

Remark 7.1. (i) Note that z*»* is the reflection point of x about the hyperplane
OH“* and hence (z*®)“® = .

(ii) If supp f, C By, then ¢, satisfies condition (H)"® for any w € S"~1! and a > R,.
(This fact can be proved by the similar way to Lemma 7.1 (i).)

The next lemma is the kev point of the argument in this section.

Lemma 7.1. Assume (A,) and that ¢, satisfies condition (H)“® for fixed w € S™ !
and a > 0. Then the following properties hold:

‘i) For any T € [0,1] and k> 0, ¢F satisfies condition (H)** (k > 0).

(ii) If (P,), has a solution, then u, ., and w,, also satisfy condition (H)“*.

Proof. (i) Let k > 0 and suppose that ¢2,,¢;,, ...,d)f,n satisfy condition (H)“.
Then we can see that gf,,\. = g(uk,) — g(uk3!) also satisfies condition (H)“ by virtue
of the convexity of g. Since

|z — y2] = |z =y,
|z —y| < |z“¢—y| for z,y € H*?,

z—y| = |z*—y¥?| for z,y € R®
(7.1) yl =1 Y| y ,

we can obtain

Frl (@) — ¢rk! (@99) = Eyxgra(2) — Eyegry (%)

= | (Br(@ =) = By (2%~ 9))gr(y)dm(y)
o e B = 57 = Ey(a = ) gk (y)m(y)

- /HW,(El (@ —m) = By (2™~ M) (ghx(n) — gre(n™?))dm(n)
>0 for é.e.‘ T € Hve,

by using (3.1) and the chénge of variables n = y*¢ for y € R*\ H*¢, Therefore, 1’?:1
also satisfies condition (H)“». '
(ii) It is trivial from Proposition 3.1. ' q.e.d.

moreover, we can show the lemma below.

Lemma 7.2. Assume (A,) and that a function v on R" satisfies condition (H)“* for
any w € S"! and a € [R,,00). Then the following properties hold:
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(i) v(z) >v(z+tw) if z€ R*\H> we ™1 t>0. 4
(i) wv(z) > v(y) if [yl > 4lz|+3(2+ V2)R,, |z| > V2R,.
(ili) There exists a limit vy, = lim S[v](r) = lim v(z) € [-00,00) and there holds
v > vy, on R", where e el
(7.2) Spl(r) = an%é—l_)— /S  w(rw)do(w) forr >0
and do is the surface element of S™!,
Proof. (i) It is trivial from the definition.
(ii) We fix w € S™! and r > V2R, arbitrarily. For any @ € S"! satisfying
w-w = 0 we can show that
(7.3) v(rw) > v(aw + pw) for (o, B) € K(r; R,)

by using (i), where

[ k(sm) =U {(@.0) € Rx10.29) | (0 o= (cos 332 10},
L(r;R) = %r L(riR) =r+R, Lr;R)=vZr+(1+ VIR,
| L(riR)=2r+(3+V2)R, Ij(r;R) =2V2r +3(1 + V2)R.
Since
(74)  R"\B,_y0.va)r, C U 1{chrﬂwe R" | (o, ) € K(r;R,) },
wesn—
w-w=0

the assertion follows.
(iii) We see from (i) that v is nonincreasing in the radial direction in R™\Bg , and

hence S[v] is also nonincreasing in [R,,00). So, there exists a limit v, = Jim S[v](r)
and it holds S[v] > v, on [R,,00). We can also see from (ii) that v > v, on R",

and it follows lim v(z) = vy. ' q.e.d.
|| —o0 :

§8. Closedness of T*.

In this this section we prove the closedness of T* by using the argument in §6 and
§7.
Proposition 8.1. Assume (A,) with q,(p) < g5 < G.(p) and 1 < p < p*. Then T* is
closed in [0,1]. '
Proof. Suppose that {r;},% € T* and 7; - 7 as i — co. We have to show that
T € T*, and we may assume that 0 ¢ {7;},%, U {7} by virtue of Step 1. Then, for
i € N, u7, is a minimal solution to (P,),. satisfying Mur] = 1. So the following

properties hold from (6.4) and Lemma 7.1 (ii):
(a), w}, = Epxg(u) - glukzh)] > 0 on BY,
(b); g’ (uz )v? [l < IVollF + |lvll§ for all v € H'(R™),



(c); w} satisfies condition (H)** for any w € S*~! and a € [R,, ).

Because of Lemma 6.2 and Proposition 6.1 we can apply the Ascoli-Arzeld theorem
to {w;, },2 on any compact subset of R™. So, by choosing a subsequence, we may
assume that

Ky, — Kk and w; — w locally uniformly on R* as i — oo

for some k > 0 and w € BC(R"). With the aid of the dominated convergence theorem
we can show the properties below by letting i — oo in (a);, (b);, (c);:

(a) w = Eyx[g(v) — g(uf7)] 20 on R?,
(b) lg’ (@)?lly < 1Voll3 + Jlo]l3 for all v € H'(R™),
(c) w satisfies condition (H)“ for any w € S"~! and a € [R,, ),

where u = u,’,‘:fn + w.
(i) We see from (c) and Lemma 7.2 that there exists a limit w,, = Tlir{.lo Slw](r)

= lllm w(z) and it holds w > w,, on R™. From (a) we have that
xIr|—00

1
nm(B,) Jsn-!
and hence it follows either w,, = 0 or wy, = 1. If w, =1, then ¢'(u) > ¢'(w) >
¢ (wy) =p on R™ and (b) implies that

(= DIl < llg' (el = wllF < IVl1F for all v € H'(RY).

Slw](r) = E\+[g(u) = g(upi D(rw)do(w) — g(wee) = wl, as T — oo,

This means that Poincaré’s inequality on R™ holds, which is a contradiction. So, we
have that w,, = 0 and u is a solution to (P,),.

(i) We have from (b) that Alfu] € [1,00). Now we suppose that A [u] € (1, 0]
Then u is a strictly minimal solution to (P, ), and there exists & > x such that (P,): also
has a strictly minimal solution by virtue of Lemma 5.1 (i) and Remark 5.1. By using
Lemma 5.1 (ii) there exists & > 0 such that (P, +E) z has a strictly minimal solution for
le] < & So, for sufficiently large ¢, we have that x7, <% and |1;— 7| <, so that (P,)z
has a solution, which contradicts (5.1). Therefore we obtain Al[u] =1 and 7 € T*.

q.ed.

Thus we have proved Step 3 and Theorem 1.1 holds true.

8§9. Existence of nonminimal solutions.

In the final section we assume 1 < p < p* and find a nonminimal solution %, , to
(P;), when a strictly minimal solution u,, exists. We are going to find a solution @ in
the form @ = u +v with v > 0 on R", when u is a strictly minimal solution. So we
have to find a positive solution v to

(9.1) —Av+v=g(u+v)—g(u) in D'(R").

This problem is equivalent to find a nontrivial critical point of the functional

1 . ‘
(9-2) Ifu)(v) = S (IVoll3 + olls) = 1T v)lly - for ve H'(R®),
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(9.3) I'(s,t) = G(s + t,) — G(s) — g(s)t;, 7(s,t) = g(s +t,) —g(s) fors>0,teR
and

(9.4) G(s) = ‘gt)dtz——l——sPJrl for s € R.
0 p+1°F

Here, we call v a critical point of I[u] if I[u]'(v) = 0, where I[u]’ is the Fréchet derivative
of I[u].

Proposition 9.1. Assume 1 < p < p* and that u satisfies (1.7) and M[u] € (1, 00].
Then functional Ifu] : H'(R") — R has a (nontrivial) critical point v € H'(R™)\ {0}.

This proposition is proved by using the mountain pass theorem with the aid of
the concentration compactness argument. Here, we only describe the key point of the
proof. Note that I[0] is the functional corresponding to the problem at infinity. Since
1<p<p* Ay € (1,00] and

(9.5) G(t) < I'(s,t) fors>0,t€eR,
we can show the lemma below. A

Lemma 9.1. Assume 1 < p <p* and that u satisfies (1.7) and A'[u] € (1,00]. Then
the following properties hold:
(i) Functional I[u] : HY(R") - R is of class C' and its derivative is given by

(9.6) <Iu] (v), p> =/Rn(Vv Vo + v — y(u,v)p)dm for v, € H'(R").

(ii) The origin (in H(R")) is a local minimum of I[u] and satisfies I[u](0) = 0.
(iii) There exists T € H'(R™)\ {0} such that I[u}(7) < I[0](7) < 0.

Now we denote P = { P € C([0,1]; H'(R")) | P(0) =0, P(1) =¥ } and set

(9.7) C[u]‘= Pirelfptlen[gﬁll [u](P(t)).-

Note that c[u] > 0 under the assumption of Lemma 9.1.
Definition 9.1. Let c € R and u satisfies (1.7). We call {v;},2, C H'(R") a Palais-

Smale sequence for I[u] at level c if

I[u)(v;) » ¢ and I[u](v;) -0 asj — o0.

Then we say that I[u] satisfies condition (PS),, which is called Palais-Smale condi-
tion at level c, if any Palais-Smale sequence for I[u] at level ¢ contains a convergent
subsequence in H'(R™). '

It is well-known that there exists a critcal point %, of I[0] satisfying I[0](,) = c[0].
By using this fact and the concentration compactness argument as in [14, Chapter 8],
we can show the following lemma.

Lemma 9.2. Assume 1 < p < p* and that u is non-zero and satisfies (1.7) and
M[u] € (1,00). Then the following properties hold:
(i) For any ¢ > 0, any Palais-Smale sequence for I[u] at level ¢ is bounded in H'(R™).



(if) 0 < cfu] < €[0].

(ili) Functional I[u] satisfies condition (PS) clu]"
From two lemmas above we can apply the mountain pass theorem to I[u] and

prove Proposition 9.1. Moreover, we can obtain a nonminimal solution %, to (P,), by

putting u = u_, provided that A'fu,,] € (1,00). Particularly, @, , = %, is a solution

required in Theorem 1.2. :
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