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Abstract. In this paper, we consider aPolya urn model containing balls of $m$ different labels
under ageneral replacement scheme, which is characterized by an $m\cross m$ addition matrix of
integers without constraints on the values of these $m^{2}$ integers other than non-negativity. This
urn model includes some important urn models treated before. By amethod based on the
probability generating functions, we consider the exact joint distribution of the numbers of balls
with particular labels which are drawn within $n$ draws. As aspecial case, for $m=2$, the
univariate distribution, the probability generating function and the expected value are derived
exactly.

We present methods for obtaining the probability generating functions and the expected values
for all $n$ exactly, which are very simple and suitable for computation by computer algebra systems.
The results presented here develop ageneral workable framework for the study of P\’olya urn
models and attract our attention to the importance of the exact analysis. Our attempts are very
useful for understanding non-classical urn models. Finally, numerical examples are also given in
order to illustrate the feasibility of our results.

Key words and phrases: Polya urn, replacement scheme, addition matrix, probability

generating functions, expected value.

1Introduction

Urn models have been among the most popular probabilistic schemes and have received
considerable attention in the literature (see Johnson, Kotz and Balakrishnan (1997),

Feller (1968) $)$ . The Polya urn was originally applied to problems dealing with the spread
of acontagious disease (see Johnson and Kotz (1977), Marshall and Olkin (1993)).

We describe the Polya urn scheme briefly. From an urn containing $\alpha_{1}$ balls labeled
1and $\alpha_{2}$ balls labeled 2, aball is drawn, its label is noted and the ball is returned to
the urn along with additional balls depending on the label of the ball drawn; If aball
labeled $i(i=1,2)$ is drawn, $a_{ij}$ balls labeled $j(j=1,2)$ are added. This scheme is

characterized by the following $2\cross 2$ addition matrix of integers, $(\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array})$ ;whose

rows are indexed by the label selected and whose columns are indexed by the label of
the ball added.

Several P\’olya urn models have been studied by many authors in the various addition
matrices, which generate many fruitful results. The case of the classical Polya urn model
$(a_{11}=\mathrm{a}22, a_{12}=a_{21}=0)$ was studied earlier and adetailed discussion can be found
in Johnson and Kotz (1977). In the case of $a_{11}=\mathrm{a}22$ , $a_{12}=a_{21}=0$ , Aki and Hirano
(1988) obtained the Polya distribution of order $k$ . In the case of $a_{\dot{|}i}=c$, $a_{\dot{|}j}=0$ for $i\neq j$

$(i,j=0,1, \ldots, m)$ , Inoue and Aki (2000) considered the waiting time problem for the first
occurrence of apattern in the sequence obtained by an $(m+1)\cross(m+1)$ Polya urn scheme,

数理解析研究所講究録 1308巻 2003年 29-38

29



In the case of $a_{11}=022$ , $a_{12}=a_{21}$ , Friedman (1949) obtained the moment generating
function of the total number of balls with aparticular label remaining in the urn after $n$

draws; Friedman’s urn can be used to model the growth of leaves in recursive trees (see
also Mahmoud and Smythe (1991) $)$ . In the case of $a_{11}+a_{12}=a_{21}+a_{22}$ , Bagchi and Pal
(1985) showed an interesting example of Polya urn scheme applied to data structures in
computer. (Gouet $(1989,1993)$ corrected some of the statements made by Bagchi and
Pal (1985) $)$ . In a $p\cross p$ P\’olya urn scheme (constant row sums allowing negative entries on
the diagonal, but having several constraints on the eigenvalue structure), Smythe (1996)
considered acentral limit theorem.

One interest has been focused on the exact distribution of the total numbers of balls
with particular labels remaining in the urn after $n$ draws, or the exact distribution of
the numbers of balls with particular labels which are drawn within $n$ draws from the
urn. Their derivation involves acombinatorial method of counting paths representing a
realization of the urn development.

For along time, most investigations have been made under the special structure of
the constant addition matrix with constant row sums, which implies asteady linear
growth of the urn size. The reason for the imposition of this constraint is mathematical
convenience; Urn schemes where the constraint is imposed are generally much simpler
to analyze than those where it was not imposed.

Recently, Kotz, Mahmoud and Robert (2000) attempted to treat aP\’olya urn model
containing 2different labels according to ageneral replacement scheme, and pointed out
that no constraint case is considerably more challenging even in $2\cross 2$ case. That is, the
exact distribution of the number of balls with aparticular label which are drawn within
$n$ draws is rather convoluted and such an exact distribution is rather unwieldy for large
$n$ for numerical computation.

Our purpose in the present paper is to develop ageneral workable framework for the
exact distribution theory for P\’olya urn models mentioned before and to emphasize the
importance of the exact analysis. The approach is to solve asystem of equations of
conditional probability generating functions (p.g.f.’s). Then, the probability functions
and moments are derived from an expansion of the solution regardless of whether or not
the constraint is imposed.

In this paper, aPolya urn model containing balls of $m$ different labels and charac-
terized by ageneral replacement scheme is considered, which include some important
models treated before. We consider the exact joint distribution of the numbers of balls
with particular labels which are drawn within $n$ draws. As aspecial case, aunivariate
distribution is derived from aPolya urn model containing balls of 2different labels.

For the derivation of the main part of the results, we use the method based on the
conditional p.g.f.’s. This method was introduced by Ebneshahrashoob and Sobel (1990),
and was developed by Aki and Hirano$(1993, 1999)$ , Aki, Balakrishnan and Mohanty
(1996). The procedure is very simple and suitable for computation by computer algebra
systems. Furthermore, we propose amethod for the P\’olya urn model. It is arecurrence
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for obtaining the expected values for all $n$ , which is derived from the system of equations

of conditional $\mathrm{p}.\mathrm{g}.\mathrm{f}$ . ’s.
The rest of this paper is organized in the following ways. In Section 2, aPolya urn

model containing balls of $m$ different labels is introduced, which is characterized by the

general replacement scheme. As aspecial case, aunivariate distribution is derived from
aPolya urn model containing balls of 2different labels. We give amethod for the Polya

urn models. It is arecurrence for obtaining the expected values for all $n$ . In Section 3,

numerical examples are given in order to illustrate the feasibility of our main results.

2The models
In this section, we consider aPolya urn model characterized by an $m\cross m$ addition ma-

trix. As aspecial case, for $m=2$ , the univariate distribution, the probability generating
function and the expected value are derived exactly.

2.1 The Polya urn model containing m different labels

From an urn containing $\alpha_{1}$ balls labeled 1, $\alpha_{2}$ balls labeled 2, ..., $\alpha_{m}$ balls labeled
$m$ , aball is chosen at random, its label is noted and the ball is returned to the urn
along with additional balls according to the addition matrix of non-negative integers,
$A=(a_{ij})i,j=1$ , $\ldots$ , $m$ , whose rows are indexed by the label of the ball chosen and whose
columns are indexed by the label of the ball added. Always starting with the newly

constituted urn, this experiment is continued $n$ times. Let $Z_{1}$ , $Z_{2}$ , $\ldots$ , $Z_{n}$ be asequence
obtained by the above scheme, which take values in afinite set $B=\{1, 2, \ldots,m\}$ . Let
$r$ be apositive integer such that $1\leq r\leq 2^{m}-1$ and let $B_{1}$ , $B_{2}$ , $\ldots$ , $B_{r}$ be subsets
of $B$ , where $B_{i}\neq\emptyset$ and $B_{i}\neq B_{j}$ for $i\neq j$ . Then, we define the numbers of balls
whose labels belong to the subsets $B_{i}$ $(i=1, \ldots, r)$ which are drawn within $n$ draws

by $X_{n}^{(i)}= \sum_{j=1}^{n}I_{B}\dot{.}(Z_{j})(i=1, \ldots, r)$ , where $I_{B}\dot{.}(\cdot)(i=1, \ldots, r)$ means the indicator
function of the subset $B_{i}$ .

In the sequel, we will obtain the p.g.f. $E[t_{1}^{X_{n}^{(1)}}t_{2}^{X_{n}^{(2)}}\cdots t_{r}^{X_{n}^{(r)}}]$ of the joint distribution
of $(X_{n}^{(1)},X_{n}^{(2)}, \ldots, X_{n}^{(r)})$ . Hereafter, we denote the urn composition and the total of the
balls in the urn by $b=$ $(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ and $|b|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}$, respectively. We
denote the $i\mathrm{t}\mathrm{h}$ row of the addition matrix $A$ by $a_{i}=$ $(a_{i1},a_{i2}, \ldots, a_{im})$ . Needless to say,
$\alpha_{i}\geq 0$ $(i=1, \ldots, m)$ and $|b|\neq 0$ are assumed throughout this paper.

Suppose that we have an urn composition $b=$ $(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ after $\ell(\ell=0,1, \ldots, n)$

draws. Then, we denote by $\phi_{n-\ell}(b;t)$ the p.g.f. of the conditional distribution of the

numbers of balls whose labels belong to the subsets $B_{i}$ $(i=1, \ldots, r)$ which are drawn

within $(n-\ell)$ draws, where $t=(t1, \ldots, t_{r})$ .

Theorem 2.1 From the definitions of $\phi_{n-\ell}(b;t)(\ell=0,1, \ldots, n)$ , we have the following
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system of the equations;

(2.1) $\phi_{n}(b;t)=\sum_{i=1}^{m}\frac{\alpha_{i}}{|b|}t^{\mathrm{I}_{\mathrm{B}}(i)}\phi_{n-1}(b+a_{i};t)$ ,

(2.2) $\phi n-\ell(b;t)=\sum_{i=1}^{m}\frac{\alpha_{i}}{|b|}t^{\mathrm{I}_{\mathrm{B}}(i)}\phi n-\ell-1(b+a_{i;}t)$ , $\ell=1,2$ , $\ldots$ , $n-1$ ,

(2.3) $\phi_{0}(b;t)=1$ ,

where, $t^{\mathrm{I}_{\mathrm{B}}(i)}=t_{1}^{I_{B_{1}}(i)}t_{2}^{I_{B_{2}}(i)}\cdots t_{r}^{I_{B_{r}}(i)}$ .

Proof. It is easy to see that $\phi_{0}(b;t)=1$ by the definition of the p.g.f.. Suppose that the
urn composition is $b=$ $(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ after $\ell(\ell=0,1, \ldots, n-1)$ draws. Then, the p.g.f.
of the conditional distribution of the numbers of balls whose labels belong to the subsets
$Bj$ $(j=0, \ldots, r)$ which are drawn within $(n-\ell)$ draws is $\phi_{n-\ell}(b;t)(\ell=0,1, \ldots, n-1)$ .
We should consider the condition of one-step ahead from every condition. Given the
condition we observe the $(\ell+1)$-th draw. For every $i=1$ , $\ldots$ , $m$ , the probability that we
draw the ball labeled \’i is $\alpha_{i}/|b|$ . If we have the ball labeled $i$ $(i=1, \ldots, m)$ , then the
p.g.f. of the conditional distribution of the numbers of balls whose labels belong to the
subsets $B_{j}$ $(j=0, \ldots, r)$ which are drawn within $(n-\ell-1)$ draws is $\phi_{n-\ell-1}(b+a_{\dot{l}};t)$

$(\ell=0,1, \ldots, n-1)$ . Therefore, we obtain the equations (2.1) and (2.2). $\square$

Example 2.1 Assume that $B=\{1,2,3,4\}$ , $B_{1}=\{2,4\}$ , $B_{2}=\{3,4\}$ , $t=(t_{1}, t_{2})$

and the addition matrix is equal to the $4\cross 4$ zero matrix. Suppose that we have an
urn composition $b=(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4})$ after $\ell(\ell=0,1, \ldots, n)$ draws. Then, we denote by
$\phi_{n-\ell}(b;t)$ the p.g.f. of the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\backslash$ of the numbers of balls whose labels
belong to the subsets Bi,B2 which are drawn within $(n-\ell)$ draws. Then, we have the
following system of the equations;

(2.4) $\phi_{n-\ell}(b;t_{1},t_{2})$ $=$ $( \frac{\alpha_{1}}{|b|}+\frac{\alpha_{2}}{|b|}t_{1}+\frac{\alpha_{3}}{|b|}t_{2}+\frac{\alpha_{4}}{|b|}t_{1}t_{2})\phi_{n-\ell-1}(b;t_{1},t_{2})$,

$\ell=0,1$ , $\ldots$ , $n-1$ ,
(2.5) $\phi_{0}(b;t_{1}, t_{2})$ $=$ 1.

Under an initial urn composition $b_{0}=(2\cdot 1)\alpha_{02},$ $\alpha_{03},$ $\alpha_{04})$ , we get

(2.6) $\phi_{n}(b_{0;}t_{1}, t_{2})=(\frac{\alpha_{01}}{|b_{0}|}+\frac{\alpha_{02}}{|b_{0}|}t_{1}+\frac{\alpha_{03}}{|b_{0}|}t_{2}+\frac{\alpha_{04}}{|b_{0}|}t_{1}t_{2})^{n}$

In this example, if the labels 1, 2, 3, 4are regarded as $(0, 0)$ , $(1, 0)$ , $(0, 1)$ , $(1, 1)$ , re-
spectively, the equation (2.6) is the p.g.f. joint distribution of the number of balls with
the first label 1and the number of balls with the second label 1which are drawn within
$n$ draws. The distribution is called the bivariate binomial distribution (see Kocherlakota
(1989), Marshall and Olkin (1985) $)$ .
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2.2 The Polya urn model containing 2different labels

As aspecial case, for $m=2$ , we study the Polya urn model containing 2different labels.
Assume that $B=\{1,2\}$ , $B_{1}=\{2\}$ and $A=(a_{ij})i,j=1,2$ . Let $\mathrm{Y}_{n}=\sum_{i=1}^{n}I_{B_{1}}(Z_{i})$ .
Suppose that we have an urn composition $b=(\alpha_{1}, \alpha_{2})$ after $\ell(\ell=0,1, \ldots, n)$ draws.
Then, we denote by $\psi_{n-\ell}(b;t_{1})$ the p.g.f. of the conditional distribution of the number
of balls labeled 2which are drawn within $(n-\ell)$ draws. From Theorem 2.1, we have
the following Corollary 2.1.

Corollary 2.1 From the definitions of $\psi_{n-\ell}(b;t_{1})(\ell=0,1, \ldots, n)$, we have the following
system of the equations;

(2.7) $\psi_{n}(b;t_{1})=\frac{\alpha_{1}}{|b|}\psi_{n-1}(b+a_{1}; t_{1})+\frac{\alpha_{2}}{|b|}t_{1}\psi_{n-1}(b+a_{2};t_{1})$,

(2.8) $\psi_{n-\ell}(b;t_{1})=\frac{\alpha_{1}}{|b|}\psi_{n-\ell-1}(b+a_{1}; t_{1})+\frac{\alpha_{2}}{|b|}t_{1}\psi_{n-\ell-1}(b+a_{2}; t1)$ , $\ell=1,2$ , $\ldots$ , $n-1$ ,

(2.9) $\psi_{0}(b;t_{1})=1$ .

$\square$

We will solve the system of the equations (2.7), (2.8) and (2.9) under an initial urn
composition $b_{0}=(\alpha_{01}, \alpha_{02})$ . First, we note that the above equation (2.7) can be written
in matrix form as

$\psi_{n}(b_{0;}t_{1})$ $=$ $\frac{\alpha_{01}}{\alpha_{01}+\alpha_{02}}\psi_{n-1}(b_{0}+a_{1}; t_{1})+\frac{\alpha_{02}}{\alpha_{01}+\alpha_{02}}t_{1}\psi_{n-1}(b_{0}+a_{2}; t_{1})$ ,

$=$ $( \frac{\alpha_{01}}{\alpha_{01}+\alpha_{02}}\frac{\alpha_{02}}{\alpha_{01}+\alpha_{02}}t_{1})$ $(\begin{array}{l}\psi_{n-1}(b_{0}+a_{1}\cdot,t_{1})\psi_{n-1}(b_{0}+a_{2}\cdot,t_{1})\end{array})$ ,

$=$ $C_{1}(t_{1})\psi_{n-1}(t_{1})$ , (say).

Next, for $\ell=1$ , we write the equation (2.8) as

$\psi_{n-1}(b_{0}+a_{1}; t_{1})$ $=$ $\frac{\alpha_{01}+a_{11}}{\alpha_{01}+\alpha_{02}+a_{11}+a_{12}}\psi_{n-2}(b_{0}+2a_{1}; t1)$

$+t_{1}\psi_{n-2}(b_{0}+a_{1}+a_{2;}t_{1})\underline{\alpha_{02}+a_{12}}$,
$\alpha_{01}+\alpha_{02}+a_{11}+a_{12}$

$\psi_{n-1}(b_{0}+a_{2;}t_{1})$ $=$
$\underline{\alpha_{01}+a_{21}}\psi_{n-2}(b_{0}+a_{1}+a_{2;}t_{1})$

$\alpha_{01}+\alpha_{02}+a_{21}+a_{22}$

$+ \frac{\alpha_{02}+a_{22}}{\alpha_{01}+\alpha_{02}+a_{21}+a_{22}}t_{1}\psi_{n-2}(b_{0}+2a_{2;}t_{1})$ ,

or, equivalently,

$(\begin{array}{l}\psi_{n-1}(b_{0}+a_{1}\cdot,t_{\mathrm{l}})\psi_{n-1}(b_{0}+a_{2}t_{1})\end{array})$ $=$ $( \frac{\alpha+a}{\alpha_{01}+\alpha_{02}+a_{11}+a_{1,2},0}$ $\alpha^{1}\frac{\ovalbox{\tt\small REJECT}\alpha+a01+\alpha_{02}+a_{11}+a_{12}^{l}\alpha_{01}+a_{21}}{\alpha_{01}+\alpha_{02}+a_{21}+a_{22}}$

$\ovalbox{\tt\small REJECT}\alpha+a\alpha_{01}+\alpha_{02}+a_{21}+a_{22}0t_{1})$

. $(\begin{array}{l}\psi_{n-2}(b_{0}+2a_{1}t_{1})\psi_{n-2}(b_{0}+a_{1}+a_{2}\cdot,t_{1})\psi_{n-2}(b_{0}+2a_{2}t_{1})\end{array})$ .
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We write $\psi_{n-1}(t_{1})=C_{2}(t_{1})\psi_{n-2}(t_{1})$ . For non-negative integers $\ell_{1}$ , $\ell_{2}$ such that $\ell_{1}+\ell_{2}=$

$\mathit{1}$ , let

$\psi_{n-\ell}(t_{1})=\{\begin{array}{l}\psi_{n-\ell}(b_{0}+\ell a_{1}\cdot,t_{1})\psi_{n-\ell}(b_{0}+(\ell-1)a_{1}+a_{2}t_{1})\psi_{n-\ell}(b_{0}+(\ell-2)a_{1}+2a_{2}\cdot,t_{1})\vdots\psi_{n-\ell}(b_{0}+\ell_{1}a_{1}+\ell_{2}a_{2}\cdot,t_{1})\vdots\psi_{n-\ell}(b_{0}+\ell a_{2}\cdot,t_{1})\end{array})$ .

Then, the system of the equations (2.7), (2.8) and (2.9) can be written in matrix form as
$\psi_{n-\ell+1}(t_{1})=C\ell(t_{1})\psi_{n-\ell}(t_{1})$ $(\ell=1, \ldots, n)$ , and $\psi_{0}(t_{1})=1(n+1)=(1,1, \ldots, 1)$ ’, where,
$1_{(n+1)}$ denotes the $(n+1)\cross 1$ column vector whose components are all unity and $C_{\ell}(t_{1})$

denotes the $\ell\cross$ $(\ell +1)$ matrix whose $(i,j)\mathrm{t}\mathrm{h}$ component is given by,

(2.10) $c_{ij}(\ell; t_{1})=\{$

$\frac{\alpha_{01}+(\ell-i)a_{11}+(i-1)a_{21}}{\alpha_{01}+\alpha_{02}+(\ell-i)(a_{11}+a_{12})+(i-1)(a_{21}+a_{22})}$ , $j=i,i=1$, $\ldots,\ell$ ,

$\frac{\alpha_{02}+(\ell-i)a_{12}+(i-1)a_{22}}{a_{01}+\alpha_{02}+(\ell-i)(a_{11}+a_{12})+(i-1)(a_{21}+a_{22})}t_{1}$, $j=i+1$ , $i=1$ , $\ldots,\ell$,

0, otherwise.

Proposition 2.1 The probability generating function $\psi_{n}(b_{0;}t_{1})$ , the exact distribution
of $\mathrm{Y}_{n}$ and its expected value are given by

$\psi_{n}(b_{0;},t_{1})=C_{1}(t_{1}).C_{2}(t_{1})\cdots$ $C_{n}(t_{1})1_{(n+1)}= \prod_{i=1}^{n}C_{\dot{l}}(t_{1})1_{(n+1)}$ ,

$P( \mathrm{Y}_{n}=y)=\sum_{1\leq n_{1}<\cdots<n_{y}\leq n}C_{1}(0)\cdots\dot{C}_{n_{1}}(0)\cdots\dot{C}_{n_{y}}(0)\cdots C_{n}(0)1_{(n+1)}$
,

$E[ \mathrm{Y}_{n};b\circ]=\sum_{i=1}^{n}C_{1}(1)\cdots$ $\dot{C}_{i}(1)\cdots$ $C_{n}(1)1_{(n+1)}$ ,

where, $C.k(t_{1})= \frac{dC_{k}(t_{1})}{dt_{1}}=(.\frac{d\mathrm{q}_{j}(k,t_{1})}{dt_{1}}.)$ .

$\square$

In asimilar way, under an initial urn composition $b0=$ $(\alpha_{01}, \alpha 02, \ldots, \alpha_{0m})$ , we can solve
the system of the equations in Theorem 2.1 by virtue of their linearity and obtain the
p.g.f.. However, we do not write it due to lack of space.

Remark 1In this Polya urn model, Kotz, Mahmoud and Robert (2000) derived the
exact distribution of $\mathrm{Y}_{n}$ by another approach, and derived the recurrence relation for
the expected value. They also reported that the expected value can be derived from the
recurrence relation in a case that the constraint is imposed, whereas the expected value
can not be derived from it in a case that the constraint is not imposed. Then, we present
a useful recurrence for the expected values, as will be shown later
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2.3 The recurrences for the expected values

In this subsection, we present amethod for the exact analysis, which are very sim-

ple and suitable for computation by computer algebra systems. It is arecurrence for

obtaining the expected values for all $n$ .

Theorem 2.1 (The Polya urn model containing m different labels)

The expected values of $X_{n}^{(i)}$ (i $=0,$ 1, \ldots r), $E[X_{n}^{(i)}$; b] say, satisfy the recurrences;

(2.11) $E[X_{n}^{(i)} ; b]$ $=$ $\sum_{j=1}^{m}\frac{\alpha_{j}}{|b|}(I_{B}.\cdot(j)+E[X_{n-1}^{(i)}; b+a_{j}])$ , $n\geq 1$ , $i=1$ , $\ldots$ , $r$,

(2.12) $E[X_{0}^{(i)} ; b]$ $=$ 0, $i=1$ , $\ldots$ , $r$.

Proof, It is easy to check the equation (2.12). The equation (2.11) is obtained by

differentiating both sides of the equation (2.1) with respect to $t_{i}(i=1, \ldots, r)$ and then

setting $t_{1}=\cdots=t_{r}=1$ . The proof is completed. $\square$

As aspecial case, for $m=2$, we consider the Polya urn model containing 2different

labels treated in Section 2.2. Then, from Theorem 2.1, we have the following Corollary

2.2.

Corollary 2.2 (The Polya urn model containing 2different labels)

The expected value of $\mathrm{Y}_{n}$ , $E[\mathrm{Y}_{n};b]$ say, satisfies the recurrence;

(2.13) $E[ \mathrm{Y}_{n};b]=\frac{\alpha_{1}}{|b|}E[\mathrm{Y}_{n-1}; b+a_{1}]+\frac{\alpha_{2}}{|b|}E[\mathrm{Y}_{n-1}; b+a_{2}]+\frac{\alpha_{2}}{|b|}$, $n\geq 1$ ,

(2.14) $E[\mathrm{Y}_{0;}b]=0$ .
$\square$

3Numerical examples

In this section, we illustrate how to obtain the distributions and the expected values

by using computer algebra systems.
Example 4.1 :The Polya urn model containing 4different labels

Assume that $b_{0}=(1,2,1,2)$ , $B=\{1,2,3,4\}$ , $B_{1}=\{2,4\}$ , $B_{2}=\{3,4\}$ and $A=$

$(\begin{array}{llll}1 0 1 10 1 0 11 0 1 01 1 0 1\end{array})$ . Let $X_{n}^{(i)}= \sum_{j=1}^{n}I_{B}.\cdot(Z_{j})(i=1,2)$ . For $n=3$, the p.g.f. is

$\phi_{3}(b_{0;}t_{1},t_{2})$ $=$ $\frac{1}{108}+\frac{73}{3564}t_{1}+\frac{73}{2376}t_{2}+\frac{269}{7920}t_{1^{2}}+\frac{3209}{35640}t_{1}t_{2}+\frac{269}{7920}t_{2^{2}}$

$+ \frac{1}{20}t_{1^{3}}+\frac{3361}{23760}t_{1^{2}}t_{2}+\frac{3191}{35640}t_{1}t_{2^{2}}+\frac{1}{80}t_{2^{3}}+\frac{269}{1980}t_{1^{3}}t_{2}+\frac{4951}{35640}t_{1^{2}}t_{2^{2}}$

$+ \frac{269}{11880}t_{1}t_{2^{3}}+\frac{73}{594}t_{1^{3}}t_{2^{2}}+\frac{73}{2376}t_{1^{2}}t_{2^{3}}+\frac{1}{27}t_{1^{3}}t_{2^{3}}$ .
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Table 1. The exact joint probability function of $(X_{3}^{(1)},X_{3}^{(2)})$ , given $b_{0}=(1,2,1,2)$ .

$\overline{\frac{X_{3}^{(1)}--0X_{3}^{(1)}--1X_{3}^{(1)}--2X_{3}^{(1)}=3}{X_{3}^{(2)}=00.0092590.0204820.0339650.05-}-}$

$X_{3}^{(2)}=1$ 0.030724 0.090039 0.141456 0.135859
$X_{3}^{(2)}=2$ 0.033965 0.089534 0.138917 0.122896
$X_{3}^{(2)}=3$ 0.0125 0.022643 0.030724 0.037037

For $n=10$, we give Fig.1, which is the three dimensional plot of the exact joint proba
bility function of $(X_{10}^{(1)}, X_{10}^{(2)})$ , given $b_{0}=(1,2,1,2)$ and the addition matrix $A$ .

Fig.1. The exact joint probability function of $(X_{10}^{(1)}, X_{10}^{(2)})$ in the Example 4.1, given $b_{0}=$

(1, 2, 1, 2) and the addition matrix A.

Marshall (1990) discussed this model in case that the addition matrix is the identity
matrix. So far as we know, it was first proposed by Kaiser and Stefansky (1972).

Example 4.2 :The Polya urn model containing 2different labels

Assume that $b0=(2,3)$ , $B=\{1,2\}$ , $B_{1}=\{2\}$ and $A=$ $(\begin{array}{ll}1 01 1\end{array})$ . Let $\mathrm{Y}_{n}=$

$\sum_{\mathrm{j}=1}^{n}I_{B_{1}}(Zj)$ . For $n=10$, the p.g.f. and the expected value are, respectively,

$\psi_{10}(b_{0;}t_{1})=\frac{1}{91}+\frac{125291}{3153150}t_{1}+\frac{4404557}{50450400}t_{1^{2}}+\frac{52734593}{367567200}t_{1^{3}}+\frac{8659858873}{46313467200}t_{1^{4}}$

$+ \frac{985104707}{5028319296}t_{1^{5}}+\frac{195631373}{1197218880}t_{1^{6}}+\frac{8913571}{84651840}t_{1^{7}}+\frac{16000}{323323}t_{1^{8}}$

$+ \frac{10240}{676039}t_{1}^{9}+\frac{1536}{676039}t_{1}^{10}$ ,

$E[ \mathrm{Y}_{10;}b_{0}]=\dot{\psi}_{10}(b_{0;}1)=\frac{11750459755829}{2529873145800}=4.644683381$ .
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We give Fig.2, which is the two dimensional plot of the exact expected values of $\mathrm{Y}_{n}$ ,
given three initial urn compositions $b_{0}=(1,1)$ , $(2, 3)$ , $(5, 1)$ and the addition matrix $A$ .

Fig.2. The exact expected values of Yn, given three initial urn compositions $b_{0}$ $=$

$(1,1)$ , $(2, 3)$ , $(5, 1)$ and the addition matrix $A$ in Example 4.2, Value $\mathrm{I}$, $\mathrm{I}\mathrm{I}$, III are, respectively,

the values given initial urn compositions $b_{0}=(1,1)$ , $(2, 3)$ , $(5, 1)$ .

Remark 2In this example, Kotz, Mahmoud and Robert (2000) suggested that the fixed
values of the initial condition ill be asymptotically negligible with rega$rd$ to $\mathrm{Y}_{n}$ for large
$n$ and $E[\mathrm{Y}_{n}]\sim n/\ln n$ , as $narrow\infty$ . By calculating the exact expected values of $\mathrm{Y}_{n}$ given
three initial conditions, we observe that their values depend on the initial conditions
when $n$ is small.

However, when $n$ comes to 250, it seems that the exact expected values of $\mathrm{Y}_{n}$ still
heavily depend on their initial conditions. Therefore, we think that the exact analysis is
important.
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