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Generalized Pdlya urn models
and related distributions
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The Institute of Statistical Mathematics

Abstract. In this paper, we consider a Pélya urn model containing balls of m different labels
under a general replacement scheme, which is characterized by an m x m addition matrix of
integers without constraints on the values of these m? integers other than non-negativity. This
urn model includes some important urn models treated before. By a method based on the
probability generating functions, we consider the exact joint distribution of the numbers of balls
with particular labels which are drawn within n draws. As a special case, for m = 2, the
univariate distribution, the probability generating function and the expected value are derived
exactly.

We present methods for obtaining the probability generating functions and the expected values
for all n exactly, which are very simple and suitable for computation by computer algebra systems.
The results presented here develop a general workable framework for the study of Pdlya urn
models and attract our attention to the importance of the exact analysis. Our attempts are very
useful for understanding non-classical urn models. Finally, numerical examples are also given in
order to illustrate the feasibility of our results.

Key words and phrases: Pélya urn, replacement scheme, addition matrix, probability

generating functions, expected value.

1 Introduction

Urn models have been among the most popular probabilistic schemes and have received
considerable attention in the literature (see Johnson, Kotz and Balakrishnan (1997),
Feller (1968)). The Pélya urn was originally applied to problems dealing with the spread
of a contagious disease (see Johnson and Kotz (1977), Marshall and Olkin (1993)).

We describe the Pélya urn scheme briefly. From an urn containing a; balls labeled
1 and oy balls labeled 2, a ball is drawn, its label is noted and the ball is returned to
the urn along with additional balls depending on the label of the ball drawn; If a ball
labeled i (i = 1,2) is drawn, a;; balls labeled j (j = 1,2) are added. This scheme is
apl @12
a1 a2
rows are indexed by the label selected and whose columns are indexed by the label of
the ball added.

Several Pélya urn models have been studied by many authors in the various addition
matrices, which generate many fruitful results. The case of the classical Pélya urn model
(a11 = azg, @12 = az = 0) was studied earlier and a detailed discussion can be found
in Johnson and Kotz (1977). In the case of aj1 = a2, @12 = az; = 0, Aki and Hirano
(1988) obtained the Pélya distribution of order k. In the case of ai; = ¢, a;; = 0 fori # j
(3,7 =0,1,...,m), Inoue and Aki (2000) considered the waiting time problem for the first
occurrence of a pattern in the sequence obtained by an (m+1) x (m+1) Pélya urn scheme.

characterized by the following 2 x 2 addition matrix of integers, ; whose
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In the case of aj;; = a2, a1z = ag;, Friedman (1949) obtained the moment generating
function of the total number of balls with a particular label remaining in the urn after n
draws; Friedman’s urn can be used to model the growth of leaves in recursive trees (see
also Mahmoud and Smythe (1991)). In the case of a1; + a2 = a9 + agg, Bagchi and Pal
(1985) showed an interesting example of Pélya urn scheme applied to data structures in
computer. (Gouet (1989,1993) corrected some of the statements made by Bagchi and
Pal (1985)). In a p x p Pélya urn scheme (constant row sums allowing negative entries on
the diagonal, but having several constraints on the eigenvalue structure), Smythe (1996)
considered a central limit theorem.

One interest has been focused on the exact distribution of the total numbers of balls
with particular labels remaining in the urn after n draws, or the exact distribution of
the numbers of balls with particular labels which are drawn within n draws from the
urn. Their derivation involves a combinatorial method of counting paths representing a
realization of the urn development.

For a long time, most investigations have been made under the special structure of
the constant addition matrix with constant row sums, which implies a steady linear
growth of the urn size. The reason for the imposition of this constraint is mathematical
convenience; Urn schemes where the constraint is imposed are generally much simpler
to analyze than those where it was not imposed.

Recently, Kotz, Mahmoud and Robert (2000) attempted to treat a Pélya urn model
containing 2 different labels according to a general replacement scheme, and pointed out
that no constraint case is considerably more challenging even in 2 x 2 case. That is, the
exact distribution of the number of balls with a particular label which are drawn within
n draws is rather convoluted and such an exact distribution is rather unwieldy for large
n for numerical computation.

Our purpose in the present paper is to develop a general workable framework for the
exact distribution theory for Pélya urn models mentioned before and to emphasize the
importance of the exact analysis. The approach is to solve a system of equations of
conditional probability generating functions (p.g.f.’s). Then, the probability functions
and moments are derived from an expansion of the solution regardless of whether or not
the constraint is imposed.

In this paper, a Pdlya urn model containing balls of m different labels and charac-
terized by a general replacement scheme is considered, which include some important
models treated before. We consider the exact joint distribution of the numbers of balls
with particular labels which are drawn within n draws. As a special case, a univariate
distribution is derived from a Pélya urn model containing balls of 2 different labels.

For the derivation of the main part of the results, we use the method based on the
conditional p.g.f.’s. This method was introduced by Ebneshahrashoob and Sobel (1990),
and was developed by Aki and Hirano(1993, 1999), Aki, Balakrishnan and Mohanty
(1996). The procedure is very simple and suitable for computation by computer algebra
systems. Furthermore, we propose a method for the Pélya urn model. It is a recurrence
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for obtaining the expected values for all n, which is derived from the system of equations
of conditional p.g.f.’s.

The rest of this paper is organized in the following ways. In Section 2, a Pdlya urn
model containing balls of m different labels is introduced, which is characterized by the
general replacement scheme. As a special case, a univariate distribution is derived from
a Pélya urn model containing balls of 2 different labels. We give a method for the Pdlya
urn models. It is a recurrence for obtaining the expected values for all n. In Section 3,
numerical examples are given in order to illustrate the feasibility of our main results.

2 The models

In this section, we consider a Pélya urn model characterized by an m x m addition ma-
trix. As a special case, for m = 2, the univariate distribution, the probability generating
function and the expected value are derived exactly.

2.1 The Pélya urn model containing m different labels

From an urn containing a; balls labeled 1, as balls labeled 2, ..., s, balls labeled
m, a ball is chosen at random, its label is noted and the ball is returned to the urn
along with additional balls according to the addition matrix of non-negative integers,
A = (a;j) 3,5 = 1,...,m, whose rows are indexed by the label of the ball chosen and whose
columns are indexed by the label of the ball added. Always starting with the newly
constituted urn, this experiment is continued n times. Let Z;, 22, ..., Z, be a sequence
obtained by the above scheme, which take values in a finite set B = {1,2,...,m}. Let
r be a positive intéger such that 1 < r < 2™ — 1 and let By, By, ..., B, be subsets
of B, where B; # O and B; # B; for i # j. Then, we define the numbers of balls
whose labels belong to the subsets B; (i = 1,...,7) which are drawn within n draws
by X% = > i=11B,(Z;) (4 = 1,...,7), where Ip,(-) (i = 1,...,r) means the indicator
function of the subset B;.

In the sequel, we will obtain the p.g.f. E[tX’(‘l)tX’('z) . -tX'(‘T)] of the joint distribution

quel, we w ain the p.g it . i
of (X,(,l),X,(f), ...,X,(f)). Hereafter, we denote the urn composition and the total of the
balls in the urn by b = (a1, @z, ..., ) and |b] = a1 + a2 + -+ - + am, respectively. We
denote the ith row of the addition matrix A by a; = (a1, ai2, ..., @im). Needless to say,
a; >0 (i=1,..,m) and |b| # 0 are assumed throughout this paper.

Suppose that we have an urn composition b = (a1, a2, ..., o) after £ (£ =10,1, )
draws. Then, we denote by ¢,_¢(b;t) the p.g.f. of the conditional distribution of the
numbers of balls whose labels belong to the subsets B; (¢ = 1,...,7) which are drawn
within (n — £) draws, where t = (%3, ..., ;).

Theorem 2.1 From the definitions of ¢n_s(b;t) (£ =0,1,...,n), we have the following
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system of the equations;

m
(074 ;
(2.1) ba(bit) = I—b’lt18<’)¢n_1(b +a;t),
i=1
m o ]
(2.2) ¢mdmﬂ=§hﬁﬁwwwpﬂbﬂmﬂ, £=1,2,..,n—1,
i=1
(2.3) do(b;t) =1,

ahere, 90 = (om0 o)

Proof. It is easy to see that ¢o(b;t) = 1 by the definition of the p.g.f.. Suppose that the
urn composition is b = (aa, @, ..., am) after £ (£ =0,1,...,n— 1) draws. Then, the p.g.f.
of the conditional distribution of the numbers of balls whose labels belong to the subsets
Bj (j =0,...,r) which are drawn within (n — ¢) draws is ¢,_o(b;t) (£ =0,1,...,n — 1).
We should consider the condition of one-step ahead from every condition. Given the
condition we observe the (£+ 1)-th draw. For every i = 1,...,m, the probability that we
draw the ball labeled i is ;/|b|. If we have the ball labeled i (i = 1,...,m), then the
p-g-f. of the conditional distribution of the numbers of balls whose labels belong to the
subsets B; (j = 0, ...,r) which are drawn within (n — £ — 1) draws is ¢n_s_1(b + a;;t)
(¢6=0,1,..,n —1). Therefore, we obtain the equations (2.1) and (2.2). O

Example 2.1 Assume that B = {1,2,3,4}, B; = {2,4}, By = {3,4}, t = (t1,t3)
and the addition matrix is equal to the 4 x 4 zero matrix. Suppose that we have an
urn composition b = (1, a2, @3, 4) after £ (£ = 0,1,...,n) draws. Then, we denote by
$n—e(b;t) the p.g.f. of the conditional distribution of the numbers of balls whose labels
belong to the subsets B;, B> which are drawn within (n — ¢) draws. Then, we have the
following system of the equations; '

a; « a a
(2.4) @n_e(bjts,t2) = ('—bl—' + l—;)'h + l-b—sltz + ]—;Ihtz) On—2—1(b; t1,t2),
£=0,1,..n—1,

(2.5) #o(b;t,t2) = 1.

Under an initial urn composition by = (o1, a2, 203, @04), We get

n
Qo1 Q02 Qo3 Qo4
2.6 bo;t1,ta) = [ —= + -2t + —o¢ +—tt)

In this example, if the labels 1, 2, 3, 4 are regarded as (0,0), (1,0), (0,1), (1, 1), re-
spectively, the equation (2.6) is the p.g.f. of joint distribution of the number of balls with
the first label 1 and the number of balls with the second label 1 which are drawn within
n draws. The distribution is called the bivariate binomial distribution (see Kocherlakota
(1989), Marshall and Olkin (1985)).



2.2 The Pélya urn model containing 2 different labels

As a special case, for m = 2, we study the Pélya urn model containing 2 different labels.
Assume that B = {1,2}, B; = {2} and A = (ai;) %,j = 1,2. Let Y, = > 1, Ip,(Z;).
Suppose that we have an urn composition b = (a3, ag) after £ (¢ = 0,1,...,n) draws.
Then, we denote by 1, _s(b;t1) the p.g.f. of the conditional distribution of the number
of balls labeled 2 which are drawn within (n — £) draws. From Theorem 2.1, we have
the following Corollary 2.1.

Corollary 2.1 From the definitions of ¥n—s(b;t1) (£ =0,1,...,n), we have the following
system of the equations;

(2.7) Yn(bst1) =

(2.8) Yn—y(bit1) =
(2.9) to(b;t1) = 1.

1/Jn 1(b+al,t1)+ t11/1n—1(b+02,t1),

Ibl L

¢n—e~1(b +ant) + = t1¢n—e—1(b +agty), £=1,2,..,n—1,

L L

O

We will solve the system of the equations (2.7), (2.8) and (2.9) under an initial urn

composition by = (ag1, ag2). First, we note that the above equation (2.7) can be written
in matrix form as

boit) = 1By + arit) + et t1),
Yn(bo; t1) a01+a Yn 1(bo + a1;t1) + o 1¥n—1(bo + a2;t1)

_ ( 01 002 t1) ¢n—1(bo + a1;t1)
ao1 + ag2 oo1 + Qo2 Yn-1(bo +az;t1) |’

= (tl)’lpn—l(tl), (_Sa‘Y)'

Next, for £ = 1, we write the equation (2.8) as

a1 + a1 : :
—1(bo + a1;t = - + 2a;;t
Yn—1(bo + a1;t1) a01+a02+a11+a12¢" 2(bo 1;t1)

ag2 + a12

ag1 + ag2 + a1l + a2
ag1 + a2
—1(bg + as;t = _o(bg + a1 +ag;ty
Yn—1(bo + az;t1) a01+a02+a21+a22¢" 2(bo + a1 ;1)

Qo2 + a2
a1 + o2 + az1 + a2

t1¥n—2(bo + a1 + az;t1),

t1¥n—2(bo + 2a9;ty),

or, equivalently,

. aq1+ay; aga+aiz
wn_l(bo T a1 tl) = ag1tagz+taii+ai2 a01+aoz+$u+a12 2t +0 )
. ap;+az) agatazy
¢"‘1(b0 + az; tl) 0 ag1+ao2+a21+a22 ao1+agafaz tazz 1

Yn—2(bo + 2a1;t1)
Ym—2(bo + a1 + az;ty)
Yn—2(bo + 2az2;t1)
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We write 1,,_;(t1) = Ca(t1)¥,_o(t1). For non-negative integers ¢1, £ such that £1+49 =
£, let

Yn—e(bo + Lay;ty) \
Yn—e(bo + (£ — 1)a1 + az;t1)
¢n~l(b0 + (f — 2)(11 + 2a2;t1)

¢n—€(t1) = .
Yn—e(bo + £1a; + Laaz;ty)

\ Yn—t(bo + Laz;t1) ]
Then, the system of the equations (2.7), (2.8) and (2.9) can be written in matrix form as
Yn—er1(t1) = Co(t1)Yp_p(t1) (€ =1,..,n), and YPo(t1) = 141y = (1,1,..., 1), where,
1(n+1) denotes the (n+ 1) X 1 column vector whose components are all unity and Cy(t1)
denotes the £ x (£ + 1) matrix whose (i, j)th component is given by,

( ap1+(£—i)a11+(i—laz1 - ii=1,..0
ag1+aoz+(f—1)(a11+a12)+(GE—1)(az1 +azz)’ j= ’

(f:t) = +(¢—i)ara+(i-1) c .
(2.10) ij (4;t1) = < 001+002:&2—i()(a12$:12)+ (,-_af)z(amaza t,, j=1+1,i=1,...,¢,

{ 0, otherwise.

Proposition 2.1 The probability generating function 1n,(bo;t1), the ezact distribution
of Y, and its expected value are given by

Yn(bo; t1) = Cl(tl),Cz(tl) -+ Ca(t1)1(ns1) = [[ Cilt1)Lnra),
! i=1

P(Yp=y)= Y Ci(0):-Cn,(0)-+Cn,(0) - Cr(0)1(ny1),

1<n1 <+ <ny<n

EYa; bo] = Z C1(1) - Ci(1) - Ca(1) Ly,

dCy(t dc;;(k;t
where, Ci(t;) = ;t(1 ) ( %cgtl 1)).

O

In a similar way, under an initial urn composition by = (o1, @02, .--, @om), We can solve
the system of the equations in Theorem 2.1 by virtue of their linearity and obtain the
p.g.f.. However, we do not write it due to lack of space.

Remark 1 In this Polya urn model, Kotz, Mahmoud and Robert (2000) derived the
ezact distribution of Y, by another approach, and derived the recurrence relation for
the expected value. They also reported that the expected value can be derived from the
recurrence relation in a case that the constraint is imposed, whereas the expected value
can not be derived from it in a case that the constraint is not imposed. Then, we present
a useful recurrence for the expected values, as will be shown later.
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2.3 The recurrences for the expected values

In this subsection, we present a method for the exact analysis, which are very sim-
ple and suitable for computation by computer algebra systems. It is a recurrence for
obtaining the expected values for all n.

Theorem 2.1 (The Pélya urn model containing m different labels)
The expected values of X,(:) (=0,1,..r), E[X,(:); b] say, satisfy the recurrences;

m

(2.11) E[X%;b] = Z = (IB,(J)+E[X£ll,b+a,]) n>1,i=1,..r

2.12) E[x{P;p) = 0, i=1,..,r

Proof. It is easy to check the equation (2.12). The equation (2.11) is obtained by
differentiating both sides of the equation (2.1) with respect to t; (i = 1,...,7) and then
setting t; = - -+ = t, = 1. The proof is completed. O

As a special case, for m = 2, we consider the Pélya urn model containing 2 different
labels treated in Section 2.2. Then, from Theorem 2.1, we have the following Corollary
2.2.

Corollary 2.2 (The Pélya urn model containing 2 different labels)
The expected value of Yy, E[Yn;b] say, satisﬁes the recurrence;

E[Yn 17b+a‘2] a2 'nZl,

(2.13) E[Y;b] = Bl

|b|E[Y —-1;0+ 0«1] + =

(2.14) E[Yy;b] = 0.

3 Numerical examples

In this section, we illustrate how to obtain the distributions and the expected values
by using computer algebra systems.

Example 4.1 : The Pélya urn model containing 4 different labels

Assume that by = (1,2,1,2), B = {1,2,3,4}, By = {2,4}, B2 = {3,4} and A =

1011
0101 . Let X =37 ,I5,(Z;) (i=1,2). For n =3, the p.gf. is
1010 j=11Bi
1101
1 73 73 269 3209 29
bo: - = £t ¢
Ga(bostit2) = o5+ 3zaitit g3metet 7ot T gmeas 1t 7em0 2 .
1 3361 ., 3191 1., 269 5 . 4951 5 ,
_— — t1°t ti1“t
+3501° + 53750 118 T 35520 1112 T a0t T Tes0 2+ 35640 O 2
269 73

73 1
L2 183802 4+ ——— 1129 + = 1133
+iiss0 12 THeat @ tagre it T2
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Table 1. The exact joint probability function of (Xél),X:g?)), given by = (1,2,1,2).
xV=0 x{=1 x{"=2 x{V=3
X =0 0.009259 0.020482 0.033965 0.05
xP =1 0030724 0.090039 0.141456 0.135859
X =2 0033965 0.089534 0.138917 0.122896

x® =3 00125 0022643 0.030724 0.037037

For n = 10, we give Fig.1, which is the three-dimensional plot of the exact joint proba-
bility function of (Xﬂ)), ng)), given by = (1,2,1,2) and the addition matrix A.

0.04 -

0.03 1
Z

0.02 7

0.014

o2

Fig.1. The exact joint probability function of (Xfé),ng)) in the Example 4.1, given by =
(1,2,1,2) and the addition matrix A.

Marshall (1990) discussed this model in case that the addition matrix is the identity
matrix. So far as we know, it was first proposed by Kaiser and Stefansky (1972).

Example 4.2 : The Pélya urn model containing 2 different labels

1
Assume that by = (2,3), B = {1,2}, B, = {2} and A = ) (1) ) Let Y, =
>.i=118,(Z;). For n = 10, the p.g.f. and the expected value are, respectively,
1 125291 4404557 52734593 8659858873
Yr0(bo; 1) = o + 2 3 4

o1 * 3153150 ** T 50450400 °* T 367567200 ' T 16313467200 1

| 985104707 5 195631373 6, 8913571 ;16000
5028319296 * ' 1197218880 ' ' 84651840 ' ' 323323

L 10200 o 1536 g
676039 * ' 676039 * °

t,8

, 11750459755829
E[Y10; bo] = v10(bo; 1) = 2520873145800 — 1-644683381.




We give Fig.2, which is the two-dimensional plot of the exact expected values of Y,
given three initial urn compositions by = (1, 1), (2, 3), (5,1) and the addition matrix A.

80 T T T 1
n/in(n) —
Valuel o
Valuell +
70 Valueill @ 1
60 | . * o
+
+
+
50_ + -
) + r 3
+
+ o Al
40 + + o 2 [ H
+ -
+ o
. k-3
30 | N . o 9
. + o
+ & ol (@ P
Y la]
. + . o O .
20 F + o 2 G H
[o
+ D)
o
+ ol
+ o| @
10 ol [ .
+ o @
{a]
()
Th
o. G 1 'l 1 1
0 50 100 . 150 200 250

Fig.2. The exact expected values of Y, given three initial urn compositions by =
(1,1),(2,3),(5,1) and the addition matrix A in Example 4.2, Value I, II, III are, respectively,
the values given initial urn compositions by = (1, 1), (2,3), (5,1).

Remark 2 In this example, Kotz, Mahmoud and Robert (2000) suggested that the fized
values of the initial condition will be asymptotically negligible with regard to Yy, for large
n and E[Y,] ~ n/lnn, as n — co. By calculating the exzact expected values of Y, given
three initial conditions, we observe that their values depend on the initial conditions
when n is small.

However, when n comes to 250, it seems that the exact expected values of Yy, still
heavily depend on their initial conditions. Therefore, we think that the exact analysis is
important.
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