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1. Introduction

Critical Point Theory has shown to be apowerful tool for the solution of linear and

nonlinear problems in Analysis, both of abstract nature $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ described by ordinary or

partial differential equations. Indeed as long as these problems are of variational nature,

their solutions are precisely the points $x$ where the derivative $f’(x)$ of certain differentiable

functional $f$ , attached to the problem and defined on asuitable Banach space $E$ , vanishes;

that is, the critical (or stationar$ry$ ) points of $f$ .

While relative minima or maxima yield the most familiar kind of critical points, one is

often led to consider saddle points of $f$ , that is (strictly speaking) points $x_{0}\in$. $E$ such that,

for some neighborhood $U$ of $\mathrm{O}\in E$ ,

$\{$

$f(x_{0}+v)\leq f(x_{0})$ , $v\in U\cap V$

$f(x_{0}+w)\geq f(x_{0})$ , $w\in U\cap W$

where $V$, $W$ are complementary subspaces of $E$ . By extension, is often named “saddle

point” any critical point of $f$ which -loosely speaking-stems from an essentially different

behaviour of $f$ on two complementary subspaces of $E$ .
Fundamental results on the existence and properties of critical points of saddle type for

$C^{1}$ functional on Banach spaces have been proved among others by P. H. Rabinowitz, and

we recommend in particular his monograph [Ra] for an overview of this subject and of its

applications; see also [Kr] and [Pa] for general reference in Critical Point Theory.
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In this lecture (which is based on the paper [C2]), we shall briefly describe how these

methods can be used in particular to study the effect that some nonlinear perturbations

have upon the spectra of linear elliptic operators acting in abounded domain $\Omega$ of $\mathbb{R}^{N}$ .

Precisely, we consider the semilinear elliptic eigenvalue problem

(1.1) $\{$

$Lu=\mu u+m(x, u)u$ in $\Omega$

$u=0$ on CVQ

where an is the boundary of 0and $L$ is the uniformly elliptic operator

$Lu:=- \sum_{\underline{\neg}i,,,j1}^{N}\frac{\partial}{\partial x_{j}}(a_{ij}(x)\frac{\partial u}{\partial x_{i}})+a_{o}(x)u$

with $L^{\infty}$ coefficients $a_{ij}=a_{ji}$ $(i,j=1, \ldots, N)$ and $a_{0}$ , while $m=m(x, s)$ : $\Omega\cross \mathbb{R}arrow \mathbb{R}$

is assumed to be uniformly bounded and (for simplicity) continuous in both variables.

Without loss of generality (see [C2]) we can assume that

(HO) $0\leq m(x, s)\leq a$

for some $a\geq 0$ and all $(x, s)\in\Omega\cross \mathbb{R}$ . Since $u=0$ solves (1.1) for all $\mu\in \mathbb{R}$ , we look for

values of $\mu$ (eigenvalues)for which there exists anontrivial solution (an eigenfunction)

of (1.1). We let Idenote the spectrum of (1.1), that is

I $=$ { $\mu\in \mathbb{R}$ : $\mu$ is an eigenvalue of (1.1)}.

As is well known from linear spectral theory, the eigenvalues of the problem

(1.2) $\{$

$Lu=\mu u$ in $\Omega$

$u=0$ on an
form an infinite sequence $\mu_{1}^{0}<\mu_{2}^{0}\leq\mu_{3}^{0}\leq\ldots$ with $\mu_{n}^{0}arrow\infty$ as $narrow\infty$ ;each eigenvalue

is repeated as many times as its multiplicity. We let $\mu 0$ be afixed higher order eigenvalue

of (1.2) (i.e. $\mu 0=\mu_{k}^{0}$ for some $k>1$ )and ask about the structure of Inear $\mu 0$ .

When $m$ does not depend on $s$ , i.e. $m(x, s)=m(x)$ with $m\in L^{\infty}$ , then (1.1) is itself a

linear problem of the same kind of (1.2), except that $L$ is replaced by $\tilde{L},\tilde{L}u=Lu-m(x)u$ .
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The corresponding spectrum is thus of the same type, i.e. formed by asequence going off
$\mathrm{t}\mathrm{o}+\infty$ , and therefore near $\mu^{0}\Sigma$ will consist of finitely many points. We shall show on the

contrary that when -loosely speaking- $m$ depends on $s$ in anontrivial way, then locally

nea$\mathrm{r}$ $\mu^{0}\Sigma$ i $\mathrm{s}$ an interval . In particular, we shall give conditions on $m$ ensuring that for

some neighborhood $\mathcal{U}$ of $\mu_{0}$ ,

$]\mu 0-a$ , $\mu 0[\subset\Sigma\cap \mathcal{U}\subset[\mu 0-a, \mu 0]$ .

We deal with (1.1) by variational methods, and consequently seek its (weak) solutions

as critical points of some suitable functional. However, two different points of view can be

adopted about (1.1), depending on whether one looks at it as aconstrained critical point

problem or rather as afree critical point problem. To be more precise, we let $H_{0}^{1}(\Omega)$ be

the first Sobolev space on $\Omega$ equipped with scalar product and norm

$(u, v)= \int_{\Omega}\nabla u\cdot\nabla vdx$ $||u||^{2}=(u, u)$ .

Aweak solution of (1.1) is an $u\in H_{0}^{1}(\Omega)$ such that

(1.3) $a(u, v)= \mu\int_{\Omega}uvdx+\int_{\Omega}m(x, u)uvdx$ $\forall v\in H_{0}^{1}(\Omega)$

where

(1.4) $a(u, v)= \sum_{i,j=1}^{N}\int_{\Omega}a_{ij}(x)\frac{\partial u}{\partial x_{i}}\frac{\partial v}{\partial x_{j}}dx+\int_{\Omega}a_{0}(x)uvdx$

is the Dirichlet form associated with $L$ . Let $Q_{0}(u)=a(u, u)$ be the corresponding

quadratic form; assuming -as we do here and henceforth -that $a_{0}\geq 0\mathrm{a}.\mathrm{e}$ . in $\Omega$ , we

have $Q_{0}(u)\geq\mu_{0}^{1}||u||^{2}$ for all $u\in H_{0}^{1}(\Omega)$ by the variational characterization of the first

eigenvalue of (1.2) ([CH, Chapter 6]). Also set $F(x, t)= \int_{0}^{t}m(x, s)sds$ for $(x, t)\in\Omega\cross \mathbb{R}$

and define the functionals I and $J$ on $H_{0}^{1}(\Omega)$ by the rules

(1.5) $J(u)= \int_{\Omega}F(x, u(x))dx$ , $I(u)= \frac{1}{2}Q_{0}(u)-J(u)$ .
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Then (1.3) can be written

(1.6) $I’(u)v= \mu\int_{\Omega}uvdx$ $\forall v\in H_{0}^{1}(\Omega)$

where $I’(u)$ stands for the Fr\’echet derivative of I at the point $u$ . Therefore, finding a

solution $u\in H_{0}^{1}(\Omega)$ of (1.1) with given $L^{2}$ norm $\int_{\Omega}u^{2}(x)dx=r^{2}$ is equivalent to finding

aconstrained critical point of I on the manifold

(1.7) $M_{r}= \{u\in H_{0}^{1}(\Omega) : \int_{\Omega}u^{2}(x)dx=r^{2}\}$.

In this case, $\mu$ appears as aLagrange multiplier, and we have to find solutions $u_{r}\in M_{r}$

with Lagrange multiplier $\mu_{r}$ near $\mu_{0}$ . On the other hand, we can let $\mu$ run as independent

variable near $\mu 0$ and, setting

(1.8) $I_{\mu}(u)=I(u)- \frac{\mu}{2}\int_{\Omega}u^{2}(x)dx$ ,

can write (1.3) as

(1.9) $I_{\mu}’(u)v=I’(u)v- \mu\int_{\Omega}uvdx=0$ $\forall v\in H_{0}^{1}(\Omega)$ .

Following this alternative point of view, we are looking at free (nontrivial) critical points

of $I_{\mu}$ on $H_{0}^{1}(\Omega)$ for $\mu$ near $\mu 0$ . We shall employ both methods, applying to our concrete

problem two different abstract results on the existence of saddle points for a $C^{1}$ functional

$f$ on aBanach space $X$ (respectively, Theorem A[C1] in Section 2and Theorem $\mathrm{B}$ [Ra]

in Section 3).

Our results depend on the assumption that $m$ be small with respect to $d(\mu 0)$ , where
$\mathrm{I}\{\mathrm{u}$ ) $=dist(\mu_{0}, \sigma\backslash \{\mu 0\})$ denotes the isolation distance of $\mu_{0}$ in the spectrum $\sigma=\{\mu_{n}^{0}$ :

$n\in \mathrm{N}\}$ of (1.2). Precisely, letting $\underline{\mu}<\mu 0<\overline{\mu}$ be the eigenvalues of (1.2) nearest to $\mu 0$ , we

assume at first that

(H1) $a<d( \mu_{0})=\min\{\mu_{0}-\underline{\mu},\overline{\mu}-\mu 0\}$ .
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Thus by assumption,

$\underline{\mu}<\mu_{0}-a$ and $\mu_{0}<\overline{\mu}-a$ .

Proposition 1. Let (HO) and (HI) be satisfied, and suppose that $u$ is asolution of (1.1)

corresponding to some $\mu\in$ ] $\underline{\mu}$, $\mu_{0}-a[\cup]\mu_{0},\overline{\mu}-a$ [. Then $u=0$ .

This is asimple consequence of the comparison principle [CH, Chapter 6] for the eigen-

values of linear problems such as (1.2); see [C2].

Therefore, as afirst information on Inear $\mu^{0}$ , we have that

$\Sigma_{0}\equiv\Sigma\cap]\underline{\mu},\overline{\mu}-a[\subset[\mu_{0}-a,\mu_{0}]$ .

2. Results by Constrained Critical Point Theory

We now strenghten (HI) to

(H2) $2a<d(\mu 0)$ .

Proposition 2. Let (HO) and (H2) be satisfied. Then for each r $>0$ , (1.1) possesses an

eigenfunction-eigenvalue pair $(u_{r}, \mu_{r})\in H_{0}^{1}(\Omega)\cross \mathbb{R}$ with $\int_{\Omega}u_{r}^{2}dx=r^{2}ad$

(E) $\mu_{0}-a\leq\mu_{r}\leq\mu_{0}$ .

Proposition 2is aconsequence of the following abstract result [C1]. Let $X$ be a

real Banach space, let $f$ be a $C^{1}$ functional on $X$ , and let $M$ be a $C^{1}$ submanifold

of $X$ ;also, let $f_{M}\equiv f|_{M}$ denote the restriction of $f$ to $M$ . We recall that $f$ is said

to satisfy the Palais-Smale (PS) condition on $M$ if any sequence $(x_{\mathrm{n}})\subset M$ such that

$f_{M}(x_{n})$ is bounded and $f_{M}’(x_{n})arrow 0$ contains aconvergent subsequence. Moreover, we

shall say that a $C^{1}$ submanifold $M$ of $X$ (not containing the origin) is spherelike if it is

radially diffeomorphic to $S=\{x\in X : ||x||=1\}$ , i.e. $(C^{1})$ diffeomorphic to $S$ via the

radial projection $R(x)= \frac{x}{||x||}$ , $x\neq 0$ . Finally, we recall that $c\in \mathbb{R}$ is acritical value of

$f$ if $f(x)=c$ for some critical point $x$ .
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Theorem A(Constrained Saddle Point Theorem [C1]). Let X be aBanach space,

let $f\in C^{1}(X;\mathbb{R})$ , and let $M$ be a $C^{2}$ spherelike submanifold of X. Assume that $f$

is bounded below on $M$ and satisfies the (PS) condition on M. Suppose further that

$X=V\oplus Wwith$ $dimV<\infty$ , and let $\alpha$ , $\beta$ be such that

(2.1) $\{$

$f(x)\leq\alpha$ on $M\cap V$

$f(x)\geq\beta$ on $M\cap W$ .

Then if $\alpha<\beta$ , $f$ has acritical value $c$ on $M$ satisfying

(2.2) $\theta\leq c\leq\alpha$

where $f(x)\geq\theta$ on $M\cap(V_{0}\oplus W)$ , Vo being anontrivial subspace of $V$ .

Sketch of the proof of Proposition 2:

Apply Theorem Awith $X=H_{0}^{1}(\Omega)$ , $f=I$ , $M=M_{r}$ as defined in (1.5) and (1.7).

Indeed (see [C1] or [C2]), $M_{r}$ is a $C^{2}$ spherelike submanifold of $X$ and I is bounded below

on $M_{r}$ and satisfies (PS) on $M_{r}$ . In particular, (HO) implies that

(2.3) $0 \leq F(x, t)\leq\frac{a}{2}t^{2}$ $\forall(x, t)\in\Omega\cross \mathbb{R}$

and so

(2.1) $0 \leq J(u)\leq\frac{a}{2}\int_{\Omega}u^{2}(x)dx$ $\forall u\in H_{0}^{1}(\Omega)$ .

Therefore we have

(2.5) $I(u)= \frac{1}{2}Q_{0}(u)-J(u)\geq\frac{1}{2}(\mu_{1}^{0}-a)r^{2}$ on $M_{r}$ .

Next let $V$ be the orthogonal (in the $L^{2}$ sense) sum of the eigenspaces corresponding

to all eigenvalues $\mu$ of $L_{0}$ with $\mu\leq\mu 0$ , let $V0$ be the eigenspace corresponding to $\mu 0$ , and
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let $W= \{u\in H_{0}^{1}(\Omega) : \int_{\Omega}uv=0 \forall v\in V\}$ . Using the variational characterization of the

eigenvalues ([CH, Chapter 6]) and (2.4), we obtain

(2.6) $\{$

$I(u) \leq\frac{1}{2}\mu_{0}r^{2}$ on $M_{r}\cap V$

$I(u) \geq\frac{1}{2}(\overline{\mu}-a)r^{2}$ on $M_{r}\cap W$

$I(u) \geq\frac{1}{2}(\mu_{0}-a)r^{2}$ on $M_{r}\cap(V0\oplus W)$ .

Now (HI) implies that $\mu_{0}<\overline{\mu}-a$ , and so the condition $\alpha<\beta$ required in Theorem A

is satisfied on $M_{r}$ with $\alpha=\frac{1}{2}\mu_{0}r^{2}$ , $\beta=\frac{1}{2}(\overline{\mu}-a)r^{2}$ . We conclude from Theorem Athat $I$

has acritical value $c_{r}$ on $M_{r}$ , i.e. there exists $(u_{r}, \mu_{r})\in M_{r}\cross \mathbb{R}$ so that

(2.7) $I(u_{r})=c_{r}$ , $I’(u_{r})v= \mu_{r}\int_{\Omega}u_{r}v$ $\forall v\in H_{0}^{1}(\Omega)$ ;

moreover $c_{r}$ satisfies the estimate

(2.8) $\frac{1}{2}(\mu_{0}-a)r^{2}\leq c_{r}\leq\frac{1}{2}\mu_{0}r^{2}$ .

Using (2.7), we can also estimate the difference $c_{r}- \frac{1}{2}\mu_{r}r^{2}$ to deduce the corresponding

bounds for $\mu_{r}$ , which turn out to be

(2.9) $\mu 0-2a\leq\mu_{r}\leq\mu 0+a$

However, (H2) implies that $\underline{\mu}<\mu_{0}-2a$ and $\mu_{0}+a<\overline{\mu}-a$ ;therefore, using PropO-

sition 1we infer that $\mu_{r}$ satisfies the improved bounds (E).

When, in addition to the boundedness of $m=m(., s)$ , we know more about its behaviour

at $s=0$ and for $|s|arrow\infty$ , then correspondingly the information about $\mu_{r}$ is richer.

Proposition 3. Let (HO) and (H2) be satisfied and let $\mu_{r}(r>0)$ be as in Proposition 2.

Suppose moreover that

(H3) $\lim_{sarrow 0}m(x, s)=m_{0}$ , $\lim m(x, s)=m_{\infty}$
$|s|arrow\infty$
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uniformly for $x\in\Omega$ . Then $\mu_{r}arrow\mu 0-m\mathit{0}$ as $rarrow \mathrm{O}$ and $\mu_{r}arrow\mu_{0}-m_{\infty}$ as $rarrow\infty$ .

Proof (Sketch): It follows from (HO) and (H3) that

(2.10) $\frac{2F(x,s)}{s^{2}}m_{0}\vec{sarrow 0}$ , $\frac{2F(x,s)}{s^{2}}\vec{|s|arrow\infty}m_{\infty}$

uniformly for $x\in\Omega$ . Now it is just amatter of refining the estimate (2.11) for $c_{f}$ :

indeed, looking at Theorem Awe see that $\theta_{r}\leq c_{r}\leq\alpha_{r}$ whenever $I\leq\alpha_{r}$ on $M_{r}\cap V$ ,

$I\geq\theta_{r}$ on $M_{r}\cap(V_{0}\oplus W)$ . See [C2] for details.

3. Results by Free Critical Point Theory

Let us collect the informations obtained so far about $\Sigma_{0}=\Sigma\cap$] $\underline{\mu},\overline{\mu}-a$ [. We have first

seen (Proposition 1) that, under the assumptions (HO) and (HI), $\Sigma_{0}\subset[\mu_{0}-a, \mu_{0}]$ . Next,

reinforcing (HI) to (H2), Proposition 2shows that (1.1) possesses aone-parameter family

$(\mu_{r})_{r>0}$ of eigenvalues with $\mu_{0}-a\leq\mu_{f}\leq\mu_{0}$ for all $r>0$ ;that is,

$\{\mu_{r} ; r>0\}\subset\Sigma_{0}\subset[\mu_{0}-a, \mu_{0}]$ .

Finally by Proposition 3, we have that $\lim_{rarrow}0\mu_{r}=\mu 0-m0$ and $\lim_{\mathrm{r}arrow\infty}\mu_{r}=\mu 0-m_{\infty}$

if in addition (H3) is satisfied. Evidently $0\leq m_{0}$ , $m_{\infty}\leq a$;and it follows that if $m_{0}\neq$

$m_{\infty}$ , then $\Sigma_{0}$ contains at least two distinct points. It is now natural to ask whether $\Sigma_{0}$

contains an interval , and whether in particular, if e.g. $m_{0}<m_{\infty}$ , it contains the interval

$]\mu_{0}-m_{\infty}$ , $\mu_{0}-m_{0}$ [. This is indeed the case:

Proposition 4. If (HO), (HI) and (H3) hold, and if moreover $m_{0}<m_{\infty}$ , then for each

$\mu\in]\mu 0-m_{\infty}$ , $\mu_{0}-m_{0}$ [ there exists anontrivial solution of (1.1); that is,

(3.1) $]\mu_{0}-m_{\infty}$ , $\mu_{0}-m_{0}[\subset\Sigma_{0}$ .

Proposition 4is aconsequence of the following abstract result [Ra]. Let $X$ be aBanach

space; for $r>0$ , we set $B_{r}=\{x\in X : ||x||\leq r\}$ and $S_{r}=\{x\in X : ||x||=r\}$ .
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Theorem $\mathrm{B}$ (Generalized Mountain Pass Theorem [Ra]). Let $X$ be aBanach space

and let $f$ be a $C^{1}$ functional on $X$ satisfying the (PS) condition. Suppose that $X=\hat{V}\oplus\hat{W}$

with $dim\hat{V}<\infty$ . Given $e\in\hat{W}$ with $||e||=1$ , set for $R>0$

(3.2) $Q_{R}:=(B_{R}\cap\hat{V})\oplus\{te : 0\leq t\leq R\}$

and denote with $\partial Q_{R}$ the boundary of $Q_{R}$ relative to the subspace $\hat{V}\oplus \mathbb{R}e$ . Assume

that there exist $\beta>0$ and $R>\rho$ such that

(3.3) $\{$

$f(x)\leq 0$ on $\partial Q_{R}$

$f(x)\geq\beta$ on $S_{\rho}\cap\hat{W}$ .

Then $f$ has acritical value $c\geq\beta$ . In particular, $c>0$ and so, if $f(0)=0$, $f$ has a

nontrivial critical point

Remark.

i) If $\hat{V}=\{0\}$ , then Theorem $\mathrm{B}$ reduces to the ordinary Mountain Pass Theorem ([AR]).

$\mathrm{i}\mathrm{i})$ Looking at $\partial Q_{R}$ , it is easy to check that the first condition in (3.3) is satisfied if

a) $f\leq 0$ on $\hat{V}$ and b) $f\leq 0$ on $\{x\in\hat{V}\oplus \mathbb{R}e:||x||\geq R\}$ .

Sketch of the Proof of Proposition 4:

Apply Theorem $\mathrm{B}$ taking $X=H_{0}^{1}(\Omega)$ and $f=I_{\mu}$ as defined in (1.10), with

(3.4) $\mu 0-m_{\infty}<\mu<\mu 0-m_{0}$ .

Moreover, letting Vb, $V$ and $W$ be as in the proof of Proposition 2, we choose
$\hat{V}$ to be the sum of the eigenspaces corresponding to the eigenvalues $\mu\leq\underline{\mu}$

(so that $V=\hat{V}\oplus V_{0}$ ) and $\hat{W}=V_{0}\oplus W$ . Therefore $X=\hat{V}\oplus\hat{W}$ .

Also let $e$ be any unit vector in $V_{0}\subset\hat{W}$ . First consider the behaviour of $I_{\mu}$ on

the complementary subspaces $\hat{V},$ $W\wedge$ when $\mu$ varies in the larger interval

$\underline{\mu}<\mu<\mu 0-m_{0}$ .
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One can check that $I_{\mu}\leq 0$ on $\hat{V}$ (using (HO) and the variational characterization of $\underline{\mu}$)

and that, for suitable $\beta>0$ and $\rho>0$ , $I_{\mu}\geq\beta$ on $S_{\rho}\cap\hat{W}$ (using (H3), and in particular

the definition of $m_{0}$ ).

Moreover when $\mu 0-m_{\infty}<\mu$ , we have (using (H3), and in particular the definition of

$m_{\infty})$ , that

$I_{\mu}(u)arrow$ $-\mathrm{o}\mathrm{o}$ as $||u||arrow \mathrm{o}\mathrm{o}$ with $u\in V$.

Using the above Remark, we see that for $\mu_{0}-m_{\infty}<\mu<\mu_{0}-m_{0}$ , all conditions of

Theorem $\mathrm{B}$ are satisfied except the verification of the (PS) condition for $I_{\mu}$ . However, this

can be checked making use of results of de Figueiredo ([DF], Lemma 6.3); see [C2].

Corollary. Assume that $m$ satisfies (HO), (HI) and (H3) with $m_{0}=0$ and $0<m_{\infty}=a$ .

Then $\Sigma_{0}$ is the (open, or closed, or semiopen) interval of endpoints $\mu 0-a$ and $\mu 0$ .

Example. Suppose that for fixed $x\in\Omega$ , $m(x, s)$ is increasing for $s>0$ and decreasing

for $s<0$ . Then $m_{\infty}=a$ (with $a=$ $\sup$ $m$ ($x$ , $s$ )).
$(x,s)\in\Omega \mathrm{x}\mathrm{R}$
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