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1Introduction

Difference equations with small step size are equations of the form

(1) $T_{\epsilon}y=f(x, y)$ , $x\in D\subset \mathbb{C}$ , $y\in \mathbb{C}^{n}$

where $f$ is an analytic function in some domain of $\mathbb{C}\cross \mathbb{C}^{n}$ , $D$ is adomain ( $i.e$ . connected open
subset) of $\mathbb{C}$ , $\epsilon$ $>0$ or $\epsilon$ in asmall sector $S$ , and $T_{\epsilon}$ is one of the following operators $\sigma_{\epsilon}$ , $\Delta_{\epsilon}$ , $\delta_{\epsilon}$

defined by

$\sigma_{\epsilon}y(x)$ $=$ $y(x+\in)$

$\Delta_{\epsilon}y(x)$ $=$ $\frac{1}{\epsilon}(y(x+\epsilon)-y(x))$

$\delta_{\epsilon}y(x)$ $=$ $\frac{1}{\epsilon}(y(x+\frac{\epsilon}{2})-y(x-\frac{\epsilon}{2}))$

The main questions are:. Are there solutions $y=y(x, \epsilon)$ with anice behavior as $\epsilon$ $arrow 0$?e.g. in the case $T_{\epsilon}=\Delta_{\epsilon}$ or
$\delta_{\epsilon}$ , are there solutions that converge to asolution of the corresponding ODE $y’=f(x, y)$ as
$\mathit{6}arrow 0$ ?

. Are there analytic solutions w.r.t. $x\in D$ and to $\epsilon$ $\in S$?
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$\mathrm{x}$

Figure 1: Curves of fixed points and 2-periodic points of the family $f_{x}$ : $y\mapsto xy(1-y)$ .

. Of course, perfect uniqueness is hopeless: Already the equation $\Delta_{\epsilon}y=f(x)$ has all aperiodic
functions asolutions. However, to which extend can two solutions be close to each other?

To our knowledge, very few work exists in the literature about this topic. We mention all the
references we know during the last 15 years.

The contents of the article is as follows. Section 2presents the problem of bifurcation delay for
slow-fast discrete dynamical systems and states the main results recently obtained in this domain
[10]. As an introduction to the general theory, Section 3deals with the sum of a function, which
is asolution of equation $\Delta_{\text{\’{e}}}y(x)=f(x)$ . General results about the main questions are stated in
Section 4.

2Bifurcation delay

We consider here areal discrete system defined recursively by

(2) $y_{0}$ given, $y_{n+1}=f_{x}(y_{n})=f(x, y_{n})$

where, for this section, $x$ is areal parameter, as is the variable $y$ , and where $f$ : $\mathrm{R}^{2}arrow \mathrm{R}$ is
sufficiently smooth. In this article we only consider the example of the unimodal quadratic family

$f_{x}$ : $y\mapsto xy(1-y)$ .

Static bifurcation. Usually these mappings are considered as mappings of the interval $[0, 1]$ into
itself, i.e. for $x$ in $[0, 4]$ only. Here we will consider them as dynamical systems for all $y\in \mathrm{R}$ and
$x>0$ . There are two curves of fixed points: $y=0$, stable for $|x|<1$ , and $y=g \mathrm{o}(x):=1-\frac{1}{x}$ ,

stable for $1<x<3$ , see figure 1. Indeed the stability of the curve of fixed points $y=g\mathrm{o}(x)$ is
governed by the function

$a:x \mapsto\frac{\partial f}{\partial y}$ ( $x$ , go(x)).

In our example, hence in the whole article, we have $a(x)=2-x$. We are mainly interested in the
period doubling bifurcation, which appears on the curve $y=g_{0}(x)$ for $x>3$ . This curve is named
the slow curve in the sequel.

Dynamic bifurcation. How did we draw figure 2? We replaced the parameter $x$ by avariable
$x_{n}$ that changes slowly with each iteration: We introduced asmall parameter $\epsilon$ $>0$ and calculate
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Figure 2: Bifurcation diagram of the quadratic family, $2<x<5,0<y<1$ .

the orbit of the following discrete slow-fast system

(3) $\{$

$x_{n+1}$ $=$ $x_{n}+\epsilon$

$y_{n+1}$ $=$ $f(x_{n},y_{n})=x_{n}y_{n}(1-y_{n})$

with initial condition $x_{0}=2$ , $y\circ=1/2$ . In the sequel, we will call orbit afamily $(x_{n}(\epsilon),y_{n}(\epsilon))_{n\in \mathrm{N}}$

of solutions of (3) depending upon $\epsilon$ . Here on figure 2, $\epsilon=10^{-6}$ and the accuracy is 8digits.

It is quite natural to slowly move the parameter when one draws abifurcation diagram. Indeed
the description of this tyPe of bifurcation in classical works often contains “dynamic” terms, see [10]
and the references therein. Moreover in applications to physics, in particular non-linear optics, due
to the very long time necessary for asystem to reach astate of equilibrium, this move of parameter
during the experiment is necessary. It is therefore interesting to understand the asymptotic behavior
of some orbit when the small parameter tends to 0, and in particular to find out whether the dynamic
bifurcation reflects the static bifurcation.

In figure 3, we have chosen $\epsilon=10^{-3}$ and as initial point $x_{0}=1$ , $y \mathit{0}=\frac{1}{2}$ . The figures differ only
in the numerical accuracy used to calculate the orbits.

1 2 3 4 5 6
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Figure 3: Successively 8, 100, 400 and 1000 digits

The first observation is that with sufficiently high precision the dynamic bifurcation corre-
sponding to system (3) is completely different from the static bifurcation of (2). In particular, the
orbits follow the curve of repulsive fixed points instead of switch to the curves of 2-periodic points.
This is the s0-called bifurcation delay. The second observation is an exponential sensitivity of this
phenomenon. This will be explained below.

Difference equation. We will see later that the behavior of the orbits of (3) is closely related to
the behavior of the solutions of the associated difference equation

(4) $\varphi(x+\epsilon, \epsilon)=x\varphi(x, \epsilon)(1-\varphi(x, \epsilon))$ .

The smoothness of these solutions (w.r.t. $x$ or g) has no influence on the dynamics of the discrete
solutions of (3). Their closeness to the slow curve, however, is important. This notion of closeness
will be defined in definition 3below.

The general results presented in section 4lead to the following result.

Theorem 2.1. Let $x^{*}$ be determined by $x^{*}>2$ and $\int_{1}^{x^{*}}\ln|2-x|dx=0$ . Put

$g_{0}:]1$ , $x^{*}[arrow \mathrm{R},$ $x \mapsto 1-\frac{1}{x}$ .
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Then for every $\delta>0$ , there exist $\epsilon 0$ $>0$ and an analytic function $\varphi$ :] $1+\delta$ , $x^{*}-\delta[\mathrm{x}]0$ , $\epsilon 0[arrow$

$\mathbb{R}$ , $(x, \epsilon)\mapsto\varphi(x, \epsilon)$ , solution of (4) such that $\varphi$ tends to $g_{0}$ as $\epsilon$ tend to 0uniformly for $x$ on
$]1+\delta$, $x^{*}-\delta[$ .

Numerically one finds $x^{*}\approx 5,65$ . At the end of the present article we explain in few words how
the general results of Section 4are used to prove theorem 2.1.. For acomplete proof, the reader
is referred to [10]. Using the preliminary results of the following section, this theorem implies the
following consequence for the dynamics of the orbits.

Corollary 2.2. Let $(x\mathit{0}, y\circ)$ an initial condition where $x0\in[1,3$ [ and $y0\in$ ] $0,1$ [ and let $((x_{n}, y_{n}))_{n\in \mathrm{N}}*the$

sequence defined by

(5) $\{$

$x_{n+1}$ $=$ $x_{n}+\epsilon$

$y_{n+1}$ $=$ $x_{n}y_{n}(1-y_{n})$ .

If $x_{0}\in[1,2]$ then the orbit of (5) starting at $(x0, y\mathrm{o})$ follows the slow curve $y=g \mathrm{o}(x)=1-\frac{1}{x}$ from
$x=x_{0}$ up to $x=x_{s}\in$ ] $3,$ $+\infty$ ] satisfying $x_{s}\geq l(x_{0})$ , where the function $l$ : $[1, 3[arrow]3$ , $x^{*}]$ is defined
by $\int_{x}^{l(x)}\ln|2-\xi|d\xi=0$ .

If $x_{0}\in$ ] $2,3$ [ and if $y_{0}\neq g\mathrm{o}(x_{0})$ , then the exit abscissa $x=x_{s}$ is equal to $l(x\mathrm{o})$ .

Definitions. 1. We say that some orbit (i.e. solution) $((x_{n}(\epsilon), y_{n}(\epsilon)))_{n\in \mathrm{N}}$ of (3) follows the slow
curve $y=g_{0}(x)$ from the entry abscissa $x_{e}$ to the exit abscissa $x_{s}$ if, for every $\delta>0$ and $\rho>0$ ,
there exists $\epsilon_{0}$ such that:

$\forall n\in \mathrm{N}$ , $\forall\epsilon\in]0$ , $\epsilon_{0}[,$ $(x_{e}+\delta\leq x_{n}(\in)\leq x_{s}-\delta\Rightarrow|y_{n}(\epsilon)-g_{0}(x_{n}(\epsilon))|<\rho)$

and if the interval $[x_{e}, x_{s}]$ is maximal with this property.
Using the terminology of singular perturbation, this amounts more or less to saying that the

orbit $((x_{n}(\epsilon), y_{n}(\epsilon)))_{n\in \mathrm{N}}$ has boundary layers near $x=x_{e}$ and $x=x_{s}$ .

If the initial condition $(x_{0},y\mathrm{o})$ satisfies $1<x0<3$ and $0<y_{0}<1$ then, because of the
attractiveness of the slow curve $y=g0(x)$ for $1<x<3$ , we obtain $x_{e}=x_{0}$ and $x_{s}\geq 3$ . In other
words, the orbit follows the slow curve at least on its attractive part.

2. We say that some orbit $((x_{n}(\epsilon), y_{n}(\epsilon)))_{n\in \mathrm{N}}$ exhibits a bifurcation delay if $x_{s}>3$;we say that
system (3) exhibits a bifurcation delay if every orbit with initial point $(x_{0,y0})$ , satisfying $1<x_{0}<3$

and $0<y_{0}<1$ exhibits abifurcation delay.
In the references [3, 4, 5] these orbits are called “discrete canards”. We avoid the word “canard”

which might indicate acertain volatility. In the present context the phenomenon of bifurcation
delay is robust in some sense.

3. We call invariant curve of (3) the graph of some solution (depending upon $\epsilon$) of the associated
difference equation (4). We say that the invariant curve $y=\varphi_{\epsilon}(x)$ is close to the slow curve
$y=g_{0}(x)$ on some compact interval I if $\lim_{\epsilonarrow 0}\varphi_{\epsilon}(x)=g_{0}(x)$ uniformly on $I$ . We say that the

invariant curve is close to the slow curve on some open interval I if it is close on every compact
sub-interval.

It is easy to construct invariant curves (which are not necessarily close to the slow curve): Define
$\varphi_{\epsilon}$ arbitrarily on some interval of length $\epsilon$ , $\mathrm{e}.\mathrm{g}$. $\varphi_{\epsilon}=g0$ on [$x0$ , $x0+\epsilon$ [, and then use (4) to define
$\varphi_{\epsilon}$ on the intervals [$x_{0}+n\epsilon$ , $x_{0}+(n+1)\epsilon$ [. In this way, it is even possible to construct invariant
curves of class $C^{\infty}$ . On the other hand, the existence of analytic invariant curves is not clear, but
also unnecessary for studying the discrete dynamics. The existence of any invariant curve, even
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not measurable, is sufficient, provided it is close to the slow curve on some appropriate interval.
Ironically, the invariant curves we construct are analytic with respect to $x$ .

To simplify notation, we will not indicate the $\epsilon$-dependence of an orbit of (3). Thus the notation
$((x_{n}, y_{n}))_{n\in \mathrm{N}}$ replaces the notation $((x_{n}(\epsilon), y_{n}(\epsilon)))_{n\in \mathrm{N}}$ used previously. We will indicate, however,
the $\epsilon$-dependence of the invariant curves.

Preliminary results.

1. There are orbits exhibiting bifurcation delay.

2. If some orbit $((x_{n}, y_{n}))_{n\in \mathrm{N}}$ exhibits bifurcation delay and if $((x_{n},\overline{y}_{n}))_{n\in \mathrm{N}}$ is an orbit (having
the same first coordinates $x_{n}$ ) with $0<\overline{y}_{0}<1$ then $((x_{n},\overline{y}_{n}))_{n\in \mathrm{N}}$ also exhibits bifurcation
delay.
Moreover, if $n$ is such that $x_{n}$ is “properly” between $x_{e}$ and $x_{s}$ then the two points $(x_{n}, y_{n})$

and $(x_{n},\overline{y}_{n})$ are exponentially close: $\forall 5>0\exists k$ , $M>0\forall n\in \mathrm{N}\forall\epsilon>0$ , $(x_{e}+\delta\leq x_{n}\leq$

$x_{s}-\delta\Rightarrow|y_{n}-\tilde{y}_{n}|\leq M\exp(-k/\epsilon))$ .

3. System (3) exhibits bifurcation delay if and only if there exists an invariant curve close to
the slow curve on some open interval containing 3.
More precisely, if there is such an invariant curve then, for fixed (i.e. $\epsilon$-independent) $x_{0}\in]1,3[$

and $y_{0}\in$ ] $0,1[\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}y_{0}\neq \mathit{9}\mathrm{o}(x_{0})$ , the orbit with initial point $(x_{0}, y_{0})$ follows the slow curve on
the interval ] $x_{e}$ , $x_{s}$ [, where $x_{e}=x_{0}$ and where $x_{s}>3$ is determined by the entry-exit relation

$\int_{x_{\mathrm{e}}}^{x_{s}}\ln|2-x|dx=0$.
Furthermore, for $n$ such that $x_{n}$ is properly between $x_{e}$ and $x_{s}$ , the point $(x_{n}, y_{n})$ is exp0-

nentially close to the invariant curve. In the same manner, two invariant curves close to the
slow curve on some interval $[a, b]$ are exponentially close to each other on]a, $b[$ .

Ideas of the proofs.

1. Put $m_{n}:=(x_{n}, y_{n})$ and consider the mapping

$F_{\epsilon}$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ , $(x, y)\mapsto(x+\epsilon, xy(1-y))$ .

We construct an invariant curve by iterating the segment $[m_{0}, m_{1}]$ with $F_{\epsilon}$ . If $m_{n}$ is not close
and not too far from the slow curve, then $m_{n+1}$ is on the other side of the slow curve (due to
$a(x)=2-x<0$ , the orbits “oscillate” around the slow curve). Hence by intermediate value
theorem, our invariant curve crosses the slow curve at some point. We then use induction to show
that there is an orbit in some given neighborhood of the slow curve.
2. Using the following change of variables, the exponential closeness of two orbits is expressed
differently: $Z_{n}=\epsilon\ln|y_{n}-\tilde{y}_{n}|$ . This yields an equation of the form

$Z_{n+1}=Z_{n}+\epsilon\ln|2-x_{n}|+\epsilon P(x_{n},y_{n}, \mathrm{y}\mathrm{n}, \epsilon)$

where $P$ is negligible compared to $\ln|2-x_{n}|$ if $y_{n}$ and $\tilde{y}_{n}$ are close to $g_{0}(x_{n})$ . It follows that $Z_{n}-Z\circ$

is close to $\int_{x_{0}}^{x_{n}}\ln|2-x|dx$ . This also shows the exponential closeness of $y_{n}$ and $\tilde{y}_{n}$ .

3. If (3) has bifurcation delay, then the invariant curve constructed as in the proof of item 1. is
composed with orbits that exhibit bifurcation delay, hence is close to the slow curve on an open
interval containing 3.
The rest of the proof of 3. is analogous to the proof of 2., using $Z_{n}=\epsilon\ln|y_{n}-\varphi_{\epsilon}(x_{n})|$ where
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$y=\varphi_{\epsilon}(x)$ parameterizes the invariant curve). Without giving any details, we mention that these
results remain valid in awide class of analogous discrete systems, but if the function $a$ vanishes

between $x_{e}$ and $x_{s}$ , then the approximation $\int_{x_{0}}^{x_{n}}\ln|2-x|dx$ of $Z_{n}$ is not always valid and the

entry-exit relation might be different. This explains why we had to consider separately $x_{\epsilon}\leq 2$ and
$x_{\epsilon}>2$ in the corollary 2.2. Note also that all remains valid for complex $x$ and $y$ . $\square$

In addition to these preliminary results, let us mention the following local result $[4, 1]$ :

If the function $f$ is real analytic in a neighborhood of $C$ then (3) exhibits bifurcation delay.

Two different methods of proof have been used independently. Both rely on the construction of
some quasi-invariant curve, i.e. satisfying equation (4) except for exponentially small error terms.
The first method [4] is an adaptation of atechnique due to $\mathrm{A}.\mathrm{I}$ . Neishtadt and consists of asequence
of changes of variable. The second method, due to Mrs Claude Baesens $[1, 2]$ , is aGevrey analysis
of the formal solution. We insist on the fact that both methods of proof can only give alocal
result. We present in section 4the latest results on the subject [10], which are more global. Before
the elaboration of these new technics, the only previous global results concerned analytical systems
that are linear non homogeneous with respect to $y[5]$ .

3The sum of afunction

As an introduction to the topic, we study in this section the simplest difference equation $\Delta_{\epsilon}y=f(x)$ .
In other words, we are concerned with the following problem.

Given a complex analytic function $f$ in a domain $D$ , is there a family $(y_{\epsilon})_{\epsilon\in]0,\epsilon_{0}]}$ of functions
analytic on $D$ such that:
i) For all $\epsilon$ in]0, $\epsilon 0$ ] and all $x$ in $D$ such that $x\mathit{1}$ $\epsilon$ is in $D$ ,

(6) $y_{\epsilon}(x+\epsilon)=y_{\epsilon}(x)+\epsilon f(x)$

$\mathrm{i}\mathrm{i})y_{\epsilon}$ is bounded uniformly ettith respect to $\epsilon$ on every compact subset of $D$ .

In that case we say that $f$ has asum on $D$ . The answer will essentially depend upon the domain
$D$ . We refer to [6] for more details.

Example. The equation

(7) $\Delta_{\epsilon}y(x)=-\frac{1}{x^{2}}$

has aformal solution in the complex plane:

$y_{1}(x, \epsilon)=\sum_{n=0}^{\infty}\frac{\epsilon}{(x+n\epsilon)^{2}}$

which converges except for $x=$ -ne, $n\in \mathrm{N}$ and defines an analytic function with poles at
$0,-\epsilon,-2\epsilon,\ldots$ It is easy to show that $\lim_{\epsilonarrow 0}y_{1}(x, \epsilon)=\frac{1}{x}$ uniformly in any compact region of $\mathbb{C}\backslash \mathbb{R}^{-}$ .

One can also consider the solution

$y_{2}(x)= \sum_{k=0}^{\infty}\frac{-\epsilon}{(x+(n+1)\epsilon)^{2}}$
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which has poles at $\epsilon,2\epsilon,\ldots$ .and tends to $\frac{1}{x}$ on $\mathbb{C}\backslash \mathbb{R}^{+}$ . However, no solution of (7) exists on $\mathbb{C}\backslash \{0\}$ .
This is somewhat surprising :although the primitive $\frac{1}{x}$ has only asingularity at 0and is single
valued, asum of $- \frac{1}{x^{2}}$ must have a“cut” in one of the directions given by $\epsilon$ .

This example shows that ageneral result is hopeless without condition on the domain $D$ . A
necessary condition seems to be that $D$ has to be horizontally convex in the following sense:

Definition 3.1. A domain $D$ is called horizontally convex if for all $x$ , $y\in D$ with ${\rm Im} x={\rm Im} y$ ,
the whole segment $[x, y]$ is included in $D$ .
It is proven in [6] that this condition is also sufficient:

Theorem 3.2. If $f$ is analytic on a horizontally convex domain $D$ then there is a sum of $f$ on $D$ .
Idea of proof. To simplify we suppose $D$ bounded and $f$ bounded on D-. Let $x^{+}$ , $x^{-}\in \mathrm{C}1(D)$ with
imaginary parts maximal, resp. minimal. For $x\in D$ , consider apath $\gamma_{x}^{-}$ from $x^{-}$ to $x- \frac{\epsilon}{2}$ with
${\rm Im}$ increasing and apath $\gamma_{x}^{+}$ from $x- \frac{\epsilon}{2}$ to $x^{-}$ with ${\rm Im}$ increasing, too. Put

(8) $y(x):= \int_{\gamma_{x}^{-}\cup\gamma_{x}^{+}}\frac{f}{1-e_{x}^{-1}}=\int_{\gamma_{x}^{-}}f+\int_{\gamma_{x}^{-}}\frac{f}{1-e_{x}}+\int_{\gamma_{x}^{+}}\frac{f}{1-e_{x}^{-1}}$

with $e_{x}$ : $\xi\mapsto\exp(\frac{2\pi i}{\epsilon}(\xi-x))$ . By Cauchy’s formula we get

$y(x+\epsilon)-y(x)=2\pi if(x){\rm Res}(1-e_{x}^{-1}; x)=\epsilon f(x)$ .

For any compact subset $K$ of $D$ there is a $c>0$ such that for all $x\in K$ , $\gamma_{x}^{-}$ and $\gamma_{x}^{+}$ can be chosen
“

$c$-ascending”, $\mathrm{i}.\mathrm{e}$ .
(9) $y$ , $z\in\gamma_{x}^{\pm}\Rightarrow|{\rm Im}(y-z)|\geq c|y-z|$ .
Thus $| \frac{1}{1-e_{x}(\xi)}|$ , resp. $| \frac{1}{1-e_{x}^{-1}(\xi)}|$ , are smaller than $\frac{1}{c}\exp(-\frac{\pi}{\epsilon}|{\rm Im}(x-\xi)|)\leq\frac{1}{c}\exp(-\frac{\pi c}{\epsilon}|x-\xi\})$ and
we find that $g(x)- \int_{\gamma_{x}^{-}}f=O(\epsilon/c^{2})$ . $\square$

The followings statements answer to the question “what does asum look like?” The first one is
more or less the Euler-Mac Laurin’s formula; here $B_{2n}$ is the $n$-th Bernoulli number. The second
one is clearly related to $\epsilon$-periodic functions. It expresses that such afunction bounded on some
strip is exponentially flat inside the strip [7].

Proposition 3.3. If $f$ is analytic in a domain $D$ and if $y$ is a sum of $f$ in $D$ , then for any $N\in \mathrm{N}$

and for any $x$ in $D$ :

$y(x)-y(x_{0})= \int_{x_{0}}^{x}f-\frac{\epsilon}{2}(f(x)-f(x_{0}))+\sum_{n=1}^{N}\frac{B_{2n}}{2n!}(f^{(2n-1)}(x)-f^{(2n-1)}(x_{0}))\epsilon^{2n}+O(\epsilon^{2N+2})$ .

Proposition 3.4. If $y_{1}$ and $y_{2}$ are two sums of $f$ on $D$ with $y_{1}(x_{0})=y_{2}(x_{0})$ for some $x0\in D$ ,
then for any $x\in D$ and any $\delta>0$ cite have

$y_{1}(x)-y_{2}(x)=O( \exp(\frac{-2\pi}{\epsilon}(r(x)-\delta)))$

with either

$r(x):= \min\{_{\xi}\sup_{\in D}({\rm Im}(\xi-x),\sup_{\xi\in D}({\rm Im}(\xi-x_{0}),\sup_{\xi\in D}({\rm Im}(x-\xi),\sup_{\xi\in D}({\rm Im}(x_{0}-\xi)\}$

if this minimum is finite, or $r(x)$ is any arbitrary real number if this minimum is too.
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Another expression for $r$ is $r(x)= \min\{d(x), d(x\circ)\}$ where $d(x)$ is the distance from $x$ to the
boundary of the smallest horizontal strip containing $D$ .

Idea of proof. Take $x_{1}\in D$ with $d(x_{1})$ maximal. The function $w:=y_{1}-y_{2}$ is $\epsilon$-periodic and defined
and bounded in any strip $S:=\{x\in \mathbb{C} ; |{\rm Im}(x-x_{1})|<(r(x_{1})-\delta)/2\}$ for $\epsilon$ small enough. Hence
the function $W$ : $u \mapsto w(x_{1}+\frac{\epsilon}{2\pi i}\ln u)$ is analytic (single valued) and bounded (uniformly w.r.t
$\epsilon)$ on the annular region $\{u\in \mathbb{C} ; \rho<|u|<R\}$ with $\rho=\exp(-\frac{\pi}{\epsilon}(r(x_{1})-\delta))=1/R$ . Cauchy’s
formula then allows to show that $W(u)-W(1)=O( \max\{\rho/|u|, |u|/R\})$ . $\square$

4Analytic solutions of difference equations

The general results below are proved in details in [8, 9, 10].

Discretization of ODEs. We start with equations of the form $\Delta_{\epsilon}y=f(\epsilon, x, y)$ . Therefore we
consider an analytic function $f$ : $Dfarrow \mathbb{C}^{l}$ , $Df$ adomain contained in $\mathbb{C}\cross \mathbb{C}\cross \mathbb{C}^{l}$ , and ahorizontally
convex domain $D\subset \mathbb{C}$ . We suppose that the differential equation

(10) $y’=f(0, x, y)$

has an analytic solution $\tilde{y}$ : $Darrow \mathbb{C}^{l}$ ; in particular we assume $(0, x,\tilde{y}(x))\in Vf$ for any $x\in D$ .
As initial conditions, fix some $x0\in D$ and some function $y0$ :]0, $\epsilon 0$ ] $arrow \mathbb{C}^{l}$ be given such that
$y\mathrm{o}(\epsilon)=\tilde{y}(x_{0})+\mathcal{O}(|\epsilon|)$ .

Theorem 4.1. With the above notation and assumptions, for every compact subset $K\subset D$ con-
taining $x_{0}$ , there exist $\eta>0$ and a family $(y_{\epsilon})_{0<\epsilon\leq\eta}$ offunctions analytic on some domain containing
$K$ such that $y_{\epsilon}$ converges to $\tilde{y}$ unifomly on $K$ as $\mathit{6}arrow 0$ and such that $y_{\epsilon}$ is a solution of
(11) $y(x+\epsilon)=y(x)+\epsilon f(\epsilon, x, y(x))$

with initial condition $y_{\epsilon}(x_{0})=y\mathrm{o}(\epsilon)$ .

Idea of proof. We first construct aright inverse of $\Delta_{\epsilon}$ with integrals analogous to those in the
proof of theorem 3.2. This right inverse is constructed on a“$c$-ascending”sub-domain $\Omega$ of $D$ , i.e.
adomain with two points $x^{+}$ and $x^{-}$ in its closure with maximal and minimal imaginary part, and
whose boundary consists of two paths from $x^{-}$ to $x^{+}$ satisfying (9). If $x$ is far enough from $x^{\pm}$

then the paths $\gamma_{x}^{\pm}$ can be chosen $c’$-ascending for some $d$ $<c$ , too. However, as $xarrow x^{-}$ , say, the
path $\gamma_{x}^{-}$ has to pass near $x$ , where $\frac{1}{1-e_{x}}$ has asimple pole. Therefore the function $y$ given by (8)
has alogarithmic singularity at $x^{+}$ and $x^{-}$ . We overcome this difficulty by averaging the integral
of (8) as follows.

Consider $\Omega_{\epsilon}=\Omega+[-\frac{\epsilon}{2}, \frac{\epsilon}{2}]\subset D$ for $\epsilon$ small enough and put

$V_{\epsilon}f(x):=4 \int_{-1/8}^{1/8}dt\int_{x^{-}+\epsilon t}^{x^{+}+\epsilon \mathrm{t}}\frac{f}{1-e_{x}}$

where the integration path from $x^{-}+\epsilon t$ to $x^{+}+$-et passes between $x-\epsilon$ and $x$ , and ${\rm Im}$ increasing on
it. Using the fact that the integral of In converges at 0, we then show that $V_{\epsilon}$ is indeed abounded
right inverse of $\Delta_{\epsilon}$ .

The next step is to linearize equation (11) around $\tilde{y}$ , to solve the initial value problem $z’=$

$\neq_{y}^{\partial}(0, x,\tilde{y}(x))$ , $z(x_{0})=h(x_{0})$ by the variation of constant formula and to express its solution as the
image of $h$ by abounded operator. The last step is an application of the fixed point theorem on
some suitable Banach space. We refer to $[9, 8]$ for the details. $\square$
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Together with this existence result, we have aresult of exponential closeness between two
solutions, analogous to proposition 3.4.:

Theorem 4.2. With the above assumptions and notation, we introduce

$r(x)= \min({\rm Im}(x^{+}-\mathrm{x}\mathrm{o}), {\rm Im}(x_{0}-x^{-}),$ ${\rm Im}(x^{+}-x)$ , ${\rm Im}(x-x^{-}))$ ,

where $x^{+}$ and $x^{-}$ are points of C1(D) with maximal and minimal imaginary part, or $r(x)$ arbitrary
if this $\min$ $is+\infty$ .

Suppose that $y_{\epsilon,1}$ and $y\epsilon,2$ are tuto families of solutions of (11) that are analytic in $D$ , that
converge to $\tilde{y}$ uniformly on $D$ as $\mathrm{e}$ $arrow 0$ and suppose that

$y_{\epsilon,1}(x_{0})-y_{\epsilon,2}(x_{0})= \mathcal{O}(\exp(-\frac{2\pi}{\epsilon}(r(x_{0})-\delta)))$

for ever$ry\delta>0$ . Then for every $\delta>0$ we have

$y_{\epsilon,1}(x)-y_{\epsilon,2}(x)= \mathcal{O}(\exp(-\frac{2\pi}{\epsilon}(r(x)-\delta)))$

on every compact subset $K$ of $D$ .

It is also possible to prove some analyticity result w.r.t. $\epsilon$ in sectors. This yields Gevrey estimates
of the formal solution. As an application we can derive explicit errors bounds for Euler’s scheme.
See [8] for details.

The case of equations of the form $\delta_{\epsilon}y=f(\epsilon, x, y)$ , i.e. with (11) replaced by

(12) $y(x+ \frac{\epsilon}{2})=y(x-\frac{\epsilon}{2})+\epsilon f(\epsilon, x, y(x))$

leads to exactly the same results. We used these results in [9] to analyze in details the s0-called
ghost solutions of the discretized logistic equation

(13) $y_{0}=0$ , $y_{1}=\epsilon$ , $y_{n+1}=y_{n-1}+2\epsilon(1-y_{n}^{2})$ .

In particular, we estimated the length of the levels of these ghost solutions.

Slow-fast difference equations. Let us now return to our problem of bifurcation delay. We
consider the following difference equation in the complex domain

(14) $y_{\epsilon}(x+\epsilon)=f(x, y_{\epsilon}(x))$

where:. The variable $x$ varies in abounded horizontally convex domain $D\subset \mathbb{C}$ ,. The function $f$ : $D\cross \mathbb{C}arrow \mathbb{C}$ is holomorphic,. The letter $\epsilon$ denotes as usual asmall positive parameter.

We suppose there exists an analytic function go : $Darrow \mathbb{C}$ verifying

(15) $f(x, g_{0}(x))=g_{0}(x)$

for all $x\in D$ . We define $a(x)=\neq_{y}^{\partial}(x, g_{0}(x))$ , and we suppose that, for $x\in D$ , the values $a(x)$ are
contained in some simply connected domain of $\mathbb{C}\backslash \{0\}$ .
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As before, we denote by $x^{-}$ and $x^{+}$ the “peeks” of $D$ , i.e. the points of C1(D) such that
$\forall x\in D$ , ${\rm Im} x^{-}<{\rm Im} x<{\rm Im} x^{+}$ .

Finally we denote by $R_{0}$ and $R_{1}$ the s0-called relief functions, defined on $D$ by

$R_{0}$ : $x \mapsto{\rm Re}(\int_{x0}^{x}{\rm Log} a(\xi)d\xi)$

$R_{1}$ : $x\mapsto R_{0}(x)-{\rm Re}(2\pi i(x-x\circ))=R_{0}(x)+2\pi{\rm Im}(x-x\mathrm{o})$

where $x_{0}$ is some arbitrary point of $D$ . These functions are natural generalizations to the complex
variable of the entry-exit relation in Section 2. Already for singularly perturbed ODEs such arelief
function appears. Here in the discrete case the situation is complicated by the fact that two reliefs
are necessary. For the study of apitchfork bifurcation, which leads to actual (i.e. volatile) canards,
up to three reliefs are necessary, see the work of Miss A. El Rabih [11].

An ascending path is apath along which the imaginary part increases.

Theorem 4.3. Suppose that for ever$ryx\in D$ there eist two ascending paths $\gamma_{x}^{-}from$ $x^{-}$ to $x$ and
$\gamma_{x}^{+}$ from $x$ to $x^{+}$ such that $R\circ$ is decreasing on $\gamma_{x}^{-}$ and $R_{1}$ is increasing on $\gamma_{x}^{+}$ .

Then for any compact subset $K$ of $D$ there exists $\epsilon 0$ $>0$ such that for all $\epsilon\in$ ] $0$ , $\mathrm{e}\mathrm{o}$] there is an
analytic solution $y_{\epsilon}$ : $Karrow \mathbb{C}$ of (14) tending to go as $\mathit{6}arrow 0$ unifomly on $K$ .

The second general result needed for aproof of theorem 2.1. concerns the exponential closeness of
solutions of (14). Here, we only present this result in asituation symmetric with respect to the
real axis; this is sufficient in our example.

Theorem 4.4. Suppose that the functions $f$ and go have real values on the real axis.

Suppose furthermore that $y_{1}$ and $y_{2}$ are two solutions of (14) defined in $D$ , such that $y_{j}(x, \epsilon)=$

$\mathit{9}\mathrm{o}(x)+\mathcal{O}(\epsilon)$ unifomly on $D$ , $j=1,2$ .

Then we have $y_{1}(x)-y_{2}(x)=O$ $(\exp(-r/\epsilon))$ unifomly on $D$ , with

$r:= \min(R_{0}(x^{-})-Ro(x), R_{1}(x^{+})-R_{1}(x))$ .

The idea of proof of theorem 2.1. is to construct (using theorem 4.3.) two solutions of (4) close
to $1- \frac{1}{x}$ on two domains not containing the point 2, then to show using theorem 4.4. that these
solutions are exponentially close and finally to deduce the existence of asolution of (14) close to
$1- \frac{1}{x}$ on some domain containing the line segment ] $1+\delta$ , $x^{*}-\delta$ [ of the theorem. Observe that
theorem 4.3. only allows to prove the existence of invariant curves of (4) close to the slow curve
on intervals not containing 2and that theorem 4.4. yields the additional necessary ingredients. We
refer to [10] for details.
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