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1 Introduction
It has been widely recognized that in most epidemic model, the threshold the-
orem can be formulated by using the basic reproduction number $R_{0}$ . The basic
reproduction number is defined as the expected number of secondary cases pr0-
duced, in acompletely susceptible population, by atypical infected individual
during its entire period of infectiousness. Then the epidemiological threshold
criterion states that the disease can invade if $R_{0}>1$ , whereas it cannot if $R_{0}<$

$1$ . In terms of dynamical system, the typical threshold theorem for epidemic
models tells us that the disease-free steady state is globally asymptotically sta-
ble if $R_{0}<1$ and it is unstable if $R_{0}>1$ . In many cases we can state more that
there exists an endemic steady state with local stability if $R_{0}>1$ (Diekmann
and Heesterbeek 2000). This means that the bifurcation of nontrivial steady
state at $R_{0}=1$ is forward one when we take the basic reproduction number as
abifurcation parameter.

Though the above threshold criterion has been accepted as if it were acen-
tral dogma in epidemiology, it has been also pointed out by several authors that
the backward bifurcation can occur for more complex epidemic models, hence
endemic steady states could exist even in case that the basic reproduction num-
ber is less than one and the disease-free steady state is locally stable (Hadeler
1984, Hadeler and van den Driessche 1997, Huang, et al. 1992, Kribs-Zaleta
and VelascO-Hernandz 2000, Kribs-Zaleta and Martcheva 2002, Martcheva and
Thieme 2002, van den Driessche and Watmough 2002).

The presence of abackward bifurcation has practically important conse-
quences for the control of infectious diseases. If the bifurcation of endemic stat$\mathrm{e}$
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at $R_{0}=1$ is forward one, the size of infected population will be approximately
proportional to the difference $|R_{0}-1|$ . On the other hand, in asystem with
abackward bifurcation, the endemic steady state that exists for $R_{0}$ just above
one could have alarge infectious population, so the result of $R_{0}$ rising above one
would be adrastic change in the number of infecteds. Conversely, reducing $R_{0}$

back below one would not eradicate the disease, as long as its reduction is not
sufficient. That is, if the disease is already endemic, in order to eradicate the
disease, we have to reduce the basic reproduction number so far that it enters
the region where the disease-free steady state is globally asymptotically stable
and there is no endemic steady state.

In this short note, we consider the bifurcation of endemic steady state in
an age tructured model for $\mathrm{H}\mathrm{I}\mathrm{V}/\mathrm{A}\mathrm{I}\mathrm{D}\mathrm{S}$ epidemic in homosexual community.
This model is an extension of the well known $\mathrm{H}\mathrm{I}\mathrm{V}/\mathrm{A}\mathrm{I}\mathrm{D}\mathrm{S}$ model with class
age structure which has been already studied by several authors (Iannelli, et
al. 1992, Thieme and CastillO-Chavez 1993). Though Huang, et al. (1992)
have already shown that there could exist multiple endemic steady states for
amultigroup SIR model, we can show that abackward bifurcation can occur
even for asingle community model with age structure.

2The $\mathrm{H}\mathrm{I}\mathrm{V}/\mathrm{A}\mathrm{I}\mathrm{D}\mathrm{S}$ epidemic model with age struc-
ture

In the following, we consider an age-structured population of homosexual men
with aconstant birth rate. For simplicity, we assume that individuals have
sexual contacts with each other at random and the duration of apartnership is
negligibly short, so we neglect the effect of persistent partnership. We divide
the sexually active homosexual population into two groups: $S$ (uninfected but
susceptible) and $I$ (HIV infected). We do not introduce alatent class, since the
latent period of AIDS is negligibly short in compare with its long incubation
period. Thus all of $I$-individuals are infectious and will develop full-b own AIDS
eventually. We assume that infected individuals with fully developed AIDS
symptoms are sexually inactive and hence they are removed from the spread
process.

Let $S(t, a)$ be the age ensity of susceptible population at time $t$ and age $a$

and let $B$ be the birth rate of susceptible population. Let $a$ denote the age at
infection for $I$-individuals and let $I(t, \tau;a)$ be the density of infected population
at time $t$ and disease-age (duration since infection) $\tau$ . Next let $a$ be the age at
which infected individuals have developed AIDS. Let $\mu(a)$ be the age-specific
natural death rate (or the rate of terminating sexual life), $\gamma(a;\zeta)$ the rate of
developing AIDS and let $\lambda(t, a)$ be the infection rate (the force of infection).
Then the dynamics of the host population is governed by the following system:

$S_{t}(t, a)+S_{a}(t, a)=-(\mu(a)+\lambda(t, a))S(t, a)$ , (2.1
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$I_{t}(t, \tau;a)+I_{\tau}(t, \tau;a)=-(\mu(a+\tau)+\gamma(\tau;a))I(t, \tau;$ a), (2.2)

$S(t, 0)=B$ , (2.3)

$I(t, 0;a)=\lambda(t, a)S(t, a)$ , (2.4)

where $S_{t}=\partial S/\partial t$ , etc. The force of infection $\lambda(t, a)$ is assumed to have the
following expression:

$\lambda(t, a)=\frac{C(P(t))}{P(t)}\int_{0}^{\omega}\int_{0}^{b}\beta(a, b, \tau)I(t,\tau;b-\tau)d\tau db$ , (2.3)

where $P(t)$ is the total size of sexually active population $N(t, a):=S(t, a)+$
$\int_{0}^{a}I(t,\tau;a-\tau)d\tau$ given by

$P(t):= \int_{0}^{\omega}N(t,a)da=\int_{0}^{\omega}[S(t, a)+\int_{0}^{a}I(t, \tau;a-\tau)d\tau]$ da,

and $C(P)$ denotes the mean number of sexual partners an average individual
has per unit time when the population size is $P$ . Typical examples for $C(P)$ is
given as follows:

(i) $C(P)=\alpha_{0}P$, (ii) $C(P)= \frac{\alpha_{0}\alpha_{\infty}P}{\alpha_{0}P+\alpha_{\infty}}$ , (iii) $C(P)=\alpha_{\infty}$ .

The saturating contact law (ii) approaches to mass action type contact law (i)
when $Parrow \mathrm{O}$ and become the homogeneous of degree one (scale independent)
contact law (iii) if $Parrow\infty$ . If we adopt the mass action assumption (i) and we
assume that $\beta$ can be factorized as $\beta(a, b, \tau)=\beta_{1}(a)\beta_{2}(b, \tau)$ , our model can be
reduced to amodel studied by Gripenberg (1983).

In order to simplify system (2.1)-(2.5), let us introduce new functions $s$ , $i$ ,
$n$ by

$\{$

$S(t,a)=s(t, a)B\ell(a)$ ,
$I(t,\tau;a)=i(t,\tau;a)B\ell(a+\tau)\Gamma(\tau;a)$ ,
$N(t,a)=n(t, a)B\ell(a)$ ,

(2.6)

where $\ell(a)$ and $\Gamma(\tau;a)$ are the survival functions defined by

$\ell(a):=\exp(-\int_{0}^{a}\mu(\sigma)d\sigma)$ , $\Gamma(\tau;a):=\exp(-\int_{0}^{\tau}\gamma(\sigma;a)d\sigma)$ .

Then $\ell(a)$ is the probability that an individual survives to age $a$ under the
natural death rate and $1-\Gamma(\tau;a)$ gives the incubation distribution fox individuals
infected at age $a$ . Now we obtain the new simplified system for $(s,i)$ as follows:

$s_{t}(t, a)+s_{a}(t, a)=-\lambda(t, a)s(t, a)$ , (2.7)

$i_{t}(t,\tau;a)+i_{\tau}(t,\tau;a)=0$, (2.2)
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$s(t, 0)=1$ , (2.9)

$i(t, 0;a)=\lambda(t, a)s(t, a)$ , (2.10)

$\lambda(t, a)=\frac{C(P(t))}{P(t)}\int_{0}^{\omega}db\int_{0}^{b}d\tau K(a, b, \tau)i(t, \tau;b-\tau)$ , (2.11)

where

$K(a, b, \tau):=\beta(a, b,\tau)B\ell(b)\Gamma(\tau;b-\tau)$ ,

$P(t)= \int_{0}^{(v}B\ell(a)[u(t, a)+\int_{0}^{a}\Gamma(\tau;a-\tau)i(t, \tau;a-\tau)d\tau]$ da.

Mathematical well-posedness of the system (2.7)-(2.11) can be shown by using
classical integral equation approach or semigroup approach, though we do not
deal with the time evolution problem here.

System (2.7)-(2.11) has adisease-free steady state $(s^{*}, i^{*})=(1,0)$ . We here
assume that the host population is in the steady state before the invasion of
HIV. In the early stage of the epidemic, the dynamics of infected population
can be described by the linearized equation at the disease-free steady state $(1, 0)$

as follows:

$i_{t}(t, \tau;a)+i_{\tau}(t, \tau;a)=0$ , (2.12)

$i(t, 0;a)= \frac{C(P_{0})}{P_{0}}\int_{0}^{\omega}\int_{0}^{b}K(a,b, \tau)i(t, \tau;b-\tau)d\tau db$, (2.13)

$i(0, \tau;a)=i_{0}(\tau;a)$ , (2.14)

where $i_{0}$ is the initial data and $P_{0}$ denotes the size of totally susceptible host
population given by $P_{0}:= \int_{0}^{\omega}B\ell(a)da$. Prom (2.12) and (2.13), we obtain the
following integral equation for the boundary value $B(t, a):=i(t, 0;a)$ :

$B(t, a)=G(t, a)+ \frac{C(P_{0})}{P_{0}}\int_{0}^{t}\int_{\tau}^{v}‘ K(a, b, \tau)B(t-\tau, b-\tau)dbd\tau$, (2.15)

where $G$ is given by

$G(t, a):= \frac{C(P_{0})}{P_{0}}\int_{t}^{\omega}\int_{\tau}^{\omega}K(a, b, \tau)i_{0}(\tau-t;b-\tau)dbd\tau$ .

Let us consider $G(t, a)$ and $B(t, a)$ as $L^{1}$-valued functions of $t>0$ and let
$\Pi(\tau)$ be alinear positive operator from $L^{1}(0,\omega)$ into itself defined by

$( \Pi(\tau)\psi)(a):=\frac{C(P_{0})}{P_{0}}\int_{\tau}^{\omega}K(a, b,\tau)\psi(b-\tau)db$ .
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Then we can rewrite (2.15) as an abstract renewal integral equation i $\mathrm{n}$
$L^{1}$ :

$B(t)=G(t)+ \int_{0}^{t}\Pi(\tau)B(t-\tau)d\tau$ , $t>0$ ,

where we adopt the convention such as $G(t)=0$ for $t>\omega$ and $\Pi(\tau)=0$

for $\tau>\omega$ . Though we omit the proof, we can show that under appropriate
assumptions, $\mathrm{t}\mathrm{h}\mathrm{e}_{(}$ basic reproduction number is given by the spectral radius of
the linear operator $\Psi$ defined by $\Psi$ $:= \int_{0}^{\infty}\Pi(\tau)d\tau$ , which is called as the next
generation operator (Diekmann, et al. 1990, Diekmann and Heesterbeek 2000,
Inaba 2002).

3Bifurcation of endemic steady states
Let $(s^{*}, i^{*})$ be the steady state for system (2.7)-(2.11) and let $\lambda^{*}(a)$ be the force
of infection in the steady state. Then it follows that

$s^{*}(a)=e^{-\int_{0}^{a}\lambda^{*}(\xi)d\xi}$ , $i^{*}(\tau;a)=\lambda^{*}(a)s^{*}(a)$ .
It follows from (2.11) that $\lambda^{*}$ must satisfy the nonlinear integral equation as
follows:

$\lambda^{*}(a)=\frac{C(P(\lambda^{*}))}{P(\lambda^{*})}\int_{0}^{(v}db\int_{0}^{b}d\tau K(a, b, \tau)\lambda^{*}(b-\tau)e^{-\int_{0}^{b-\tau}\lambda^{\alpha}(\xi)d\xi}$ , (3.1)

where $P(\lambda^{*})$ denotes the size of steady state population with force of infection
$\lambda^{*}$ given by

$P( \lambda^{*}):=\int_{0}^{\omega}B\ell(a)[e^{-\int_{0}^{a}\lambda^{*}(\xi)d\xi}+\int_{0}^{a}\Gamma(a-\tau;\tau)\lambda^{*}(\tau)e^{-\int_{0}^{\tau}\lambda^{\mathrm{r}}(\xi)d\xi}d\tau]$ da.

It is clear that $\lambda^{*}=0$ is atrivial solution corresponding to adisease-ffee steady
state. Let us define anonlinear positive operator $F$ on $L^{1}(0, \omega)$ as follows:

$F( \lambda)(a):=\frac{C(P(\lambda))}{P(\lambda)}\int_{0}^{\omega}db\int_{0}^{b}d\tau K(a, b, \tau)\lambda(b-\tau)e^{-\int_{0}^{b-\tau}\lambda(\xi)d\xi}$ , $\lambda\in L^{1}$ .

In most cases, under appropriate conditions for the integral kernel $K$ , we
can assume that $F$ is completely continuous operator and we can observe that
$F$ maps acone $L_{+}^{1}$ into abounded set. The Fresche derivative of $F$ at $\lambda=$

$0$ , denoted by $F’[0]$ , is no other than the next-generation operator $\Psi$ . Then
its Frobenius eigenvalue gives the basic reproduction number $R_{0}$ , and if $R_{0}=$

$r(F’[0])>1$ , then $\Psi$ $=F’[0]$ does not have positive eigenvector with eigenvalue
one, since the Frobenius eigenvector is the unique positive eigenvector in the
positive cone. Therefore by using Krasnoselskii’s theorem (Krasnoselskii 1964,
Theorem 4.11), we can conclude that $F$ has at least one positive (non-zero
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fixed point, which means that there exists an endemic steady state if $R_{0}>1$ .
For this type of argument, the reader may refer to Inaba (1990).

In order to see the possibility of multiple endemic steady state for our model
as simply as possible, let us use the proportionate mixing assumption. That is,
we assume that the kernel $K$ can be decomposed as $K(a, b, \tau)=k_{1}(a)k_{2}(b, \tau)$ .
In this case, the range of the operator $F$ is one-dimensional, spanned by $k_{1}$ .
Therefore if we insert A(a) $=ck_{1}(a)$ , $c>0$ to the equation $\lambda=F(\lambda)$ , we arrive
at the characteristic equation for unknown number $c>0$ as follows:

$1= \frac{C(P(ck_{1}))}{P(ck_{1})}\int_{0}^{\omega}db\int_{0}^{b}k_{2}(b, \tau)k_{1}(b-\tau)e^{-c\int_{0}^{b-\tau}k_{1}(\xi)d\xi}d\tau$. (3.2)

If this characteristic equation has apositive root $c>0$ , $ck_{1}$ becomes apositive
fixed point of $F$ which gives the force of infection of an endemic steady state.
Moreover in this case the next generation operator is also one-dimensional:

$( \Psi\lambda)(a)=\frac{C(P(0))}{P(0)}k_{1}(a)\int_{0}^{\omega}db\int_{0}^{b}d\tau k_{2}(b, \tau)\lambda(b-\tau)$ .

Hence $k_{1}(a)$ is apositive eigenfunction of $\Psi$ and its eigenvalue is given by

$R_{0}= \frac{C(P(0))}{P(0)}\int_{0}^{(v}db\int_{0}^{b}k_{2}(b, \tau)k_{1}(b-\tau)d\tau$.

Let us define two functions $f(c)$ , $g(c)$ as

$f(c):= \int_{0}^{\omega}\int_{0}^{b}k_{2}(b, \tau)k_{1}(b-\tau)e^{-c\int_{0}^{b-\tau}k_{1}(\xi)d\xi}d\tau db$ , $g(c):= \frac{P(ck_{1})}{C(P(ck_{1}))}$ .

Then the characteristic equation is given by

$f(c)/g(c)=1$ , (3.3)

and the basic reproduction number $R_{0}$ equals to $f(0)/g(0)$ . Observe that

$P(ck_{1})= \int_{0}^{\omega}B\ell(a)[e^{-c\int_{0}^{a}k_{1}(\xi)d\xi}+\int_{0}^{a}\Gamma(a-\tau;\tau)ck_{1}(\tau)e^{-c\int_{0}^{\tau}k_{1}(\xi)d\xi}d\tau]$ da

$= \int_{0}^{\omega}B\ell(a)\Gamma(a;0)da+\int_{0}^{\omega}e^{-c\int_{0}^{\tau}k_{1}(\xi)d\xi}d\tau\int_{\tau}^{\omega}B\ell(a)\frac{\partial\Gamma(a-\tau,\tau)}{\partial\tau}$

.
da.

Then we obtain that

$P( \infty)=\int_{0}^{\omega}B\ell(a)\Gamma(a;0)da$, $g( \infty)=\frac{P(\infty)}{C(P(\infty))}>0$.

Prom the above observations, it follows that $f(\infty)/g(\infty)=0$ , hence if $R_{0}=$

$f(0)/g(0)>1$ , then there exists at least one positive root $c>0$ for the charac-
teristic equation. Now we can prove the existence of multiple endemic steady
states by subcritical bifurcation as follows:
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Proposition 3. 1Suppose that $g’(0)<f’(0)$ . If $R_{0}=1$ , then there exists at
least one endemic steady state. If $R_{0}<1$ and $|R_{0}-1|$ is small enough, then
there exist at least two endemic steady states. If $g’(0)>f’(0)$ , the bifurcation
at $R_{0}=1$ is supercritical.

Proof. Let us consider the characteristic equation with aparameter $\mu$ :

$F(c, \mu):=\mu f(c)/g(c)-1$ ,

where we assume that the transmission kernel is normalized such that $f(0)/g(0)=$
$1$ , then $F(0,1)=0$ and $\mu$ is the basic reproduction number $R_{0}$ . It follows ffom
our assumption that

$\frac{\partial F}{\partial c}(0,1)=\frac{f’(0)-g’(0)}{g(0)}>0$.

Then it follows ffom the Implicit Function Theorem that $F(c, \mu)=0$ can be
solved as $c=c(\mu)$ at the neighborhood of $(c, \mu)=(0,1)$ , and

$\frac{dc}{d\mu}|_{\mu=1}=-\frac{F_{\mu}(0,1)}{F_{c}(0,1)}=-\frac{1}{F_{c}(0,1)}<0$ .

Since $c(1)=0$, for small $\epsilon>0$ , we have $c(\mu)>0$ such that $F(c(\mu), \mu)=0$ for
$\mu\in(1-\epsilon, 1)$ . Let us fix such a $\mu\in(1-\epsilon, 1)$ and consider $F(c, \mu)$ as afunction
of $c$ . Then we know that $F(0, \mu)=\mu-1<0$ , $F(c(\mu), \mu)=0$ and $F(\infty, \mu)=$

$-1$ . Moreover,

$\frac{\partial F}{\partial c}=\mu\frac{f’(c)g(c)-f(c)g’(c)}{g(c)^{2}}$ ,

is positive at $c=c(\mu)$ if $\epsilon$ is small enough, because $\partial F/\partial c>0$ at $c=0$ .
Therefore we conclude that the basic reproduction number $R_{0}=\mu$ is less than
one but very near to the unity, there exists at least two endemic steady states
which are given as positive roots of $F(c, \mu)=0$ . It is also clear that if $R0=$

$1$ , then there exists at least one endemic steady state. Finally if $g’(0)>f’(0)$ ,
we have $dc/d\mu|_{\mu=1}>0$ . Then for small $\epsilon$ , there is no $c(\mu)>0$ such that
$F(c(\mu), \mu)=0$ , $\mu\in(1-\epsilon, 1)$ . Then the possible bifurcation is supercritical. $\square$

Corollary 3. 2If the transmission rate $\beta$ and the developing rate $\gamma$ are con-
stant, the bifurcation at $R_{0}=1$ is supercritical.

From the above result, we know that the subcritical bifurcation could occur
when the basic reproduction number is passing through $R_{0}=1$ . On the other
hand, if the basic reproduction number is small enough, there is no endemic
steady state and the disease free steady state becomes globally asymptotically
stable. For example, let us assume that $M:= \sup_{x\geq 0}C(x)/x<\infty$ , and define
$\alpha>0$ such that $\alpha=M^{-1}C(P(0))/P(0)$ . Then it is easy to show that if $R_{0}<$
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$\alpha$ , there is no endemic steady state and the disease-free steady state is globally
asymptotically stable (Inaba 2002).

For simplicity, we have only considered the proportionate mixing case above,
by using the bifurcation theory of operators, it is not difficult to formulate a
necessary and sufficient condition of the subcritical bifurcation for the general
transmission rate. The general case will be reported in aseparate note.
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