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1. Introduction
In this talk, we will present some stationary solution for nonlinear partial differ-
ential equation called Mullins Equation which is occered in the theory of grain
boundary grooving,.

Uzy

w = ~CF ()1 + ) eop(-CF () [ avsrs) +

CP(w)(1+u3)% (1)
The main tool, which we can ﬁse, is the admissibility property between weighted
continuous function spaces for the integral operator,as follows.

Tea(t) = ~ / " et F(a(s), y(s))ds,

Teu() = 66 + [ 0= F(o)y(o)ds. (@)

From this admissibility we can prove the existence theorem for the special si-
multaneous differential equation. This existence theorem can be applied for the
second order differential equation, '

kT (u)(1+u'?)%/?

u' = f(u,u') = oy Fou)

in(2), 3)

The solution of this equation is one of the stationary solution for Mullins Equa-
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2. Theorems
On the equation (1), we are interested in the stational solution. So we shall
consider the equation (3) which we can make by putting u; = 0 for the equation
(1). To prove the existence theorem for the stational solution, we use the next
two theorems.
Theorem1
For the second oreder differential equation,

u' = f(u,u'), (4)
suppose that the following hypotheses.

f(u,p) € C*(R?), >0, 3}AeR' st .f(0,0)=0, fu(2,0)>0

Then there exits the solution on (0, 00) and it satisfies that

3D>0 st |u(z) — A| < Dexp(—Tz),

where

|fp()‘,0) - \/fp(’\, 0)2 + 4fu(A’0)

0<r< 5

Theorem?2
On the differential equation,

wy = Gwi + Fw,ws), wh=C(ews+ F(wy,ws), x>0,

where,

f(nlam)ecl(R2)7 F(0,0)=0, Fm(0,0):O, C1>0’C2<01

there exists some global nontrivial solution
w(z) = (w1(z),w 2(z)), >0,
for every 7,0 < 7 < |(2|, and the next inequality is satisfied.
le"*wy(z)| + |e"*wa(z)| < 00, =z > 0.

At first we consider Theorem2. By using the addmissibility of the integral
operator(2), we can establish the proof of Theorem2. Let consider the integral
operator on the following function set B,

B = w(z) = (w1(z),w2(z)) € C°([0, 00)); ||wl| < 2[¢],

llwll = sup(e™wy (z) + e™*w2(x)).
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On this set the integral operator(2) satisfies the contraction princeple. Then
the operator T¢ : B — B has the unique fixes point w(z) = (w1(z),w2(z)).
Hence we can prove Theorem2. Next we treat Theorem1, by using the results of
Theorem?2. Let define the function F'(w;,ws) in Theorem2 by the next equation,

Flm,m) = f(L22 gy, QM bty My g q) QLM gy g,

G —C ¢ — ¢ G — G2 ¢ — G2
where 5
o = A0+ \/fp(/2\,0) +4uA0) o
fp(A,0) — \/fp)\02+4fu(/\0)
CZ = 2 0,

where the function f as in Theoreml. By the result of Theorem2 there exists
the solution w(z) = (w;(x),ws2(x)). Define

w1 (2) — wa(x)
G —C
This function u is the solution in Theoreml. At last, we can apply Theoreml
for the equation (3), we get the stational solution of (1).
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u(z) = +2A, z>0.
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