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1. Introduction
In this talk, we will present some stationary solution for nonlinear partial differ-
ential equation called Mullins Equation which is occered in the theory of grain
boundary grooving.

$u_{t}=-C_{1}^{E}(u)(1+u_{x}^{2})^{1/2}exp(-C_{2}^{E}(u) \frac{u_{xx}}{(1+u_{x}^{2})^{3/2}})+C_{1}^{C}(u)(1+u_{ox}^{2})^{1/2}$ . (1)

The main tool, which we can use, is the admissibility property between weighted
continuous function spaces for the integral $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r},\mathrm{a}\mathrm{s}$ follows.

$T_{\xi}x(t)=- \int_{t}^{\infty}e^{\zeta_{1}(t-\epsilon)}F(x(s), y(s))ds$ ,

$T_{\xi}y(t)= \xi e^{\zeta_{2}t}+\int_{0}^{t}e^{\zeta_{2}(t-\epsilon)}F(x(s),y(s))ds$ . (2)

Prom this admissibility we can prove the existence theorem for the special si-
multaneous differential equation. This existence theorem can be applied for the
second order differential equation,

$u’=f(u, u’)= \frac{kT(u)(1+u^{\prime 2})^{3/2}}{v\gamma}ln(\frac{P_{0}(u)}{P_{c}})$. (3)

The solution of this equation is one of the stationary solution for Mullins Equa
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2. Theorems
On the equation (1), we are interested in the stational solution. So we shall
consider the equation (3) which we can make by putting $u_{t}=0$ for the equation
(1). To prove the existence theorem for the stational solution, we use the next
two theorems.
Theoreml
For the second oreder differential equation,

$u’=f(u,u’)$ , (4)

suppose that the following hypotheses.

$f(u,p)\in C^{1}(R^{2})$ , $x>0$ , $\exists\lambda\in R^{1}$ $s.t$ . $f(\lambda, 0)=0$ , $f_{\mathrm{u}}(\lambda,0)>0$

Then there exits the solution on $(0, \infty)$ and it satisfies that

$\exists D>0$ $s.t$ . $|u(x)-\lambda|\leq Dexp(-rx)$ ,

where
$0< \tau<|\frac{f_{p}(\lambda,0)-\sqrt{f_{p}(\lambda,0)^{2}+4f_{u}(\lambda,0)}}{2}|$ .

TheOrem2
On the differential equation,

$\omega_{1}’=\zeta_{1}\omega_{1}+F(\omega_{1},\omega_{2})$, $\omega_{2}’=\zeta_{2}\omega_{2}+F(\omega_{1},\omega_{2})$ , $x>0$ ,

where,

$f(\eta_{1},\eta_{2})\in C^{1}(R^{2})$ , $F(0,0)=0$, $F_{\eta 1}(0,0)=0$ , $\zeta_{1}>0$ , $\zeta_{2}<0$ ,

there exists some global nontrivial solution

$\omega(x)=(\omega_{1}(x),\omega 2(x))$ , $x>0$ ,

for every $\tau$ , $0<\tau<|\zeta_{2}|$ , and the next inequality is satisfied.

$|e^{\tau x}\omega_{1}(x)|+|e^{\tau x}\omega_{2}(x)|<\infty$, $x>0$ .

At first we consider TheOrem2. By using the addmissibility of the integral
operator(2), we can establish the proof of TheOrem2. Let consider the integral
operator on the following function set $\mathrm{B}$ ,

$B=\omega(x)=(\omega_{1}(x),\omega_{2}(x))\in C^{0}([0, \infty));||\omega||\leq 2|\xi|$ ,

$|| \omega||=\sup_{x\geq 0}(e^{\tau ax}\omega_{1}(x)+e^{\tau x}\omega_{2}(x))$ .
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On this set the integral operator(2) satisfies the contraction princeple. Then
the operator $T_{\xi}$ : B $arrow B$ has the unique fixes point $\omega(x)=(\omega_{1}(x),\omega_{2}(x))$ .
Hence we can prove TheOrem2. Next we treat Theoreml, by using the results of
TheOrem2. Let define the function $F(\omega_{1},\omega_{2})$ in TheOrem2 by the next equation,

$F( \eta_{1}, \eta_{2})=f(\frac{\eta_{1}-\eta_{2}}{\zeta_{1}-\zeta_{2}}+\lambda, \frac{\zeta_{1}\eta_{1}-\zeta_{2}\eta_{2}}{\zeta_{1}-\zeta_{2}})-\frac{\eta_{1}-\eta_{2}}{\zeta_{1}-\zeta_{2}}f_{u}(\lambda,0)-\frac{\zeta_{1}\eta_{1}-\zeta_{2}\eta_{2}}{\zeta_{1}-\zeta_{2}}f_{p}(\lambda,0)$,

where
$\zeta_{1}=\frac{f_{p}(\lambda,0)+\sqrt{f_{p}(\lambda,0)^{2}+4f_{u}(\lambda,0)}}{2}>0$ ,

$\zeta_{2}=\frac{f_{p}(\lambda,0)-\sqrt{f_{p}(\lambda,0)^{2}+4f_{u}(\lambda,0)}}{2}<0$ ,

where the function $f$ as in Theoreml. By the result of TheOrem2 there exists
the solution $\omega(x)=(\omega_{1}(x),\omega_{2}(x))$ . Define

$u(x)= \frac{\omega_{1}(x)-\omega_{2}(x)}{\zeta_{1}-\zeta_{2}}+\lambda$ , $x>0$ .

This function $u$ is the solution in Theoreml. At last, we can apply Theoreml
for the equation (3), we get the stational solution of (1).
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