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1 Introduction
In this paper we consider population dynamics of sea bass and young sea bass. It is known that young
sea bass eats resource such as a prawn or benthos and when it grows up into sea bass, sea bass eats
not only resource but also prey like small fish.

Let $x(t)$ denote the density of resource, $y(t)$ the density of prey and $z(t)$ the density of sea bass
at time $t.$ It is assumed that young sea bass and sea bass are divided by age $\tau.$ Also, we can neglect
predation rate upon resource and reproduction rate of young sea bass since it seems to have little
ability of predation and can not reproduce for itself. Based on the above assumptions, we have the
model

$x’(t)$ $=$ $x(t)(r_{1}-a_{11}x(t)-a_{12}y(t)-a_{13}z(t))$ ,
$y’(t)$ $=$ $y(t)(-r_{2}+a_{21}x(t)-a_{23}z(t))$ , (1)
$z’(t)$ $=$ $-r_{3}z(t)+e^{-l\tau}(a_{31}x(t-\tau)+a_{32}y(t-\tau))z(t-\tau)$

with initial conditions

$x(\theta)=\psi_{1}(\theta)y(\theta)=\psi_{2}(\theta)z(\theta)=\psi_{3}(\theta)$

”,
$-\tau\leq\theta\leq 0-\tau\leq\theta\leq 0-\tau\leq\theta\leq 0’,$

,

where $\psi_{i}(i=1,2,3)$ are nonnegative continuous functions on $\theta\in[-\tau,0]$ . $r_{1}$ is the intrinsic growth
rate of resource. $r_{2}$ is the death rate of prey. $l$ is the death rate of young sea bass and $r_{3}$ is the death
rate of sea bass. $a_{11}$ is the density-dependent coefficient of resource. $a_{12}$ and $a_{13}$ are the predation
rate of prey and sea bass feeding upon resource respectively. $a_{23}$ is the predation rate of sea bass
feeding upon prey. $a_{21}/a_{12}$ is the transformation rate of prey due to predation on resource. $a_{31}/a_{13}$

and $a_{32}/a_{23}$ are the transformation rate of sea bass due to predation on resource and prey respectively.
The term

$e^{-\mathrm{t}\tau}(a_{31}x(t-\tau)+a_{32}y(t-\tau))z(t-\tau)$

represents the number of young sea bass that was born at time $t-\tau$ which still survives at time $t$ and
is transferred from the immature stage to the mature stage at time $t$ .

This paper consists of five sections. In Section 2 we consider model (1) without time delay,
that is, without young sea bass. The model becomes intra-guild predation model. As a result, we
find relatively high predation rate and small transformation rate of sea bass feeding on resource can
cause the emergence of chaos. In Section 3 we find existence conditions of the equilibria and some
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Figure 1: Stability and instability domains for model (2). $r_{1}=5,$ $r_{2}=1,$ $r_{3}=1.2,$ $a_{11}=0.4,a_{12}=$

$1,$ $a_{21}=1,$ $a_{23}=1,$ $a_{32}=1$ . The values $(a_{13}, a_{31})$ at (A), (B) and (C) are (0.1,0.1), (1.0,0.1) and
(10.0,0.1) respectively.

of their local stability conditions. But it is not easy to find local stability conditions of apositive
equilibrium and boundary equilibrium composed of resource and sea bass. With respect to the positive
equilibrium, the numerical simulation indicates stability changes from instability to stability as time
delay increases. In Section 4, in order to investigate in detail the result obtained in Section 3, we try
to aPPly the geometric stability switch criteria established by Beretta and Kuang [1] to the model.
Then, we can obtain acritical value at which the stability switch occurs. Finally, in Section 5we give
future problems.

2 Intra-guild predation $(\tau=0)$

First of all we consider model (1) with $\tau=0$ , that is, without young sea bass. Then, model (1)
becomes the following:

$x’(t)$ $=$ $x(t)(r_{1}-a_{11}x(t)-a_{12}y(t)-a_{13}z(t))$ ,
$y’(t)$ $=$ $y(t)(-r_{2}+a_{21}x(t)-a_{23}z(t))$ , (2)
$z’(t)$ $=$ $z(t)(-r_{3}+a_{31}x(t)+a_{32}y(t))$ .

Model (2) is called an “intra-guild predation model”. Intra-guild predation means asubset of
omnivory, which is defined as feeding on resources at different trophic levels. In this model both
sea bass and Prey feed on the same resource. Holt and Polis [3] showed relatively small amounts of
intra-guild predation can strongly destabilize the system. However whether chaos occurs or not has
not been investigated yet. By using numerical simulation, we can obtain trajectory which seems to
be chaotic. In the following we show the emergence of chaos numerically.

We fix parameters except $a_{13}$ and $a_{31}$ . Then, as aresult of local stability analysis of (2), we can
obtain stability and instability domains of equilibria (see Fig.1). Let us choose three points (A), (B)
and (C) from Fig.l so that $a_{31}$ remains constant and $a_{13}$ increases . The value $(a_{13},a_{31})$ of each
point are respectively (0.1,0.1), (1.0,0.1) and (10.0,0.1). Three figures (a), (b) and (c) in Fig.2 show
solution behaviours at (A), (B) and (C) in Fig.l respectively. These figures indicate as $a_{13}$ increases
the solution behaviour changes from stable to periodic and finally becomes chaotic. $\mathrm{R}o\mathrm{m}$ abiological
point of view, relatively high predation rate and small transformation rate of sea bass feeding on the
resource can cause the emergence of chaos.
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Figure 2: Figures (a), (b) and (c) are solution behaviours at (A), (B) and (C) in Fig.l respectively.
We can see as $a_{13}$ increases the system is destabilized. As $a_{13}$ increases further chaos occurs.
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3Sea bass and young sea bass model $(\tau\neq 0)$

In this section we consider population dynamics of model (1). In Section 3.1 we show existence
conditions and some of local stability conditions of the equilibria. However, we can not obtain local
stability conditions of a positive equilibrium and boundary equilibrium composed of resource and
sea bass. So, in Section 3.2, we investigate local dynamics around the positive equilibrium by using
numerical simulation. It shows as time delay $\tau$ increases solution behaviour which is unstable at $\tau=0$

changes to be stable.

3.1 Equilibrium and local stability

Model (1) has five equilibria. Existence conditions and local stability conditions of equilibria are the
following table:

where $|A|$ is the determinant of matrix

$A=(\begin{array}{lll}a_{11} a_{12} a_{13}-a_{21} 0 a_{23}-a_{31} -a_{32} 0\end{array})$ .

However, it is not so easy to find local stability conditions of $E_{3}$ and $E_{4}.$ In this paper we try to
investigate numerically local dynamics around $E_{4}$ .

3.2 Simulation
We consider local dynamics around $E_{4}$ . By using the parameters at which solution behaviour is
chaotic in model (2), we investigate how the system’$\mathrm{s}$ behaviour changes as $\tau$ increases. $\mathrm{F}\mathrm{i}\mathrm{g}.3(\mathrm{a})$ ,
(b) and (c) are depicted at respectively $\tau=0.5,1.2$ and 1.5. These figures show as $\tau$ increases the
solution behaviour which is chaotic at $\tau=0$ (Fig.2 (c)) changes to periodic one and finally becomes
stable one. That is, the increase of time delay $\tau$ can stabilize the system. Also, we can observe the
stability change from instability to stability at $\tau$ between 1.2 and 1.5. However, numerical simulation
can not indicate explicitly a critical value at which stability changes. So in the next section, by using
geometric stability switch criteria, we will try to find the critical value.

4Stability switch

4.1 Geometric stability switch criteria
In this section we summarize the theory given by Beretta and Kuang [1]. Let us consider the charac-
teristic equation of model (1)

$\lambda^{3}+a(\tau)\lambda^{2}+b(\tau)\lambda+c(\tau)+(d(\tau)\lambda^{2}+e(\tau)\lambda+f(\tau))e^{-\lambda\tau}=0$; (3)
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Figure 3: Figures (a), (b) and (c) are depicted at respectively $\tau=0.5,1.2$ and 1.5. Parameters are
$r_{1}=5,$ $r_{2}=1,$ $r_{3}=1.2,$ $a_{11}--0.4,$ $a_{12}=1,$ $a_{13}=10,$ $a_{21}=1,$ $a_{23}=1,$ $a_{31}=0.1,$ $a_{32}=1.$ These figures
show as time delay $\tau$ increases each amplitude of the solution gets smaller. Finally, solution behaviour
which is chaotic at $\tau=0(\mathrm{F}\mathrm{i}\mathrm{g}.2(\mathrm{c}))$ becomes stable at some value $\tau$ between 1.2 and 1.5.
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$\tau\in \mathrm{R}\mathrm{o}+\mathrm{a}\mathrm{n}\mathrm{d}a(\tau),$ $b(\tau),$ $c(\tau),$ $d(\tau),$ $e(\tau),$ $f(\tau):\mathrm{R}_{+\mathrm{O}}arrow \mathrm{R}$ are differentiable functions of class $C^{1}(\mathrm{R}+0)$

such that $c(\tau)+f(\tau)\neq 0$ for all $\tau\in \mathrm{R}_{+\mathrm{O}}$ and for any $\tau,$ $d(\tau),$ $e(\tau),$ $f(\tau)$ are not simultaneously zero.
We define

$P(\lambda, \tau):=\lambda^{3}+a(\tau)\lambda^{2}+b(\tau)\lambda+c(\tau),$ $Q(\lambda, \tau):=d(\tau)\lambda^{2}+e(\tau)\lambda+f(\tau)$ .

Due to $c(\tau)+f(\tau)\neq 0,$ $\lambda=0$ can not be aroot of (3). So astability switch (or acrossing of the
eigenvalue on the imaginary axis) necessarily occurs with $\lambda=\pm i\omega$ with $\omega>0$ . Without loss of
generality we assume $\lambda=i\omega,\omega>0$ , as aroot of (3). Then $P(\lambda, \tau)$ and $Q(\lambda, \tau)$ are

$P(i\omega, \tau)$ $=$ $-i\omega^{3}-a(\tau)\omega^{2}+ib(\tau)\omega+c(\tau)$ ,
$Q(i\omega, \tau)$ $=$ $-d(\tau)\omega^{2}+ie(\tau)\omega+f(\tau)$ .

Now we replace that $P(i\omega, \tau^{-})=P_{R}(i\omega, \tau)+iP_{I}(i\omega,$ $\tau\rangle$ and $Q(i\omega, \tau)=Q_{R}(i\omega, \tau)+iQ_{I}(i\omega, \tau)$ where

$P_{R}(i\omega, \tau)$ $=$ $-a(\tau)\omega^{2}+c(\tau)$ ,
$P_{I}(i\omega, \tau)$ $=$ $-\omega^{3}+b(\tau)\omega$ ,

$Q_{R}(i\omega, \tau)$ $=$ $-d(\tau)\omega^{2}+f(\tau)$ ,
$Q_{I}(i\omega, \tau)$ $=$ $e(\tau)\omega$ .

We put $\lambda=i\omega$ into (3), then we have

$\cos\omega\tau=-\sin\omega\tau=-\frac{\frac{P_{R}Q_{R}+P_{I}Q_{I}}{P_{R}1@_{I}^{(i\omega}-,d_{tQ_{R}}^{1^{2}}\mathcal{T}}}{|Q(i\omega,\tau)|^{2}}.$

’

(4)

Now we can define $F(\omega)$ as follows and consider

$F(\omega)\equiv|P(i\omega)|^{2}-|Q(i\omega)|^{2}=0$ . (5)

And we can define the angle $\theta\in[0,2\pi]$ , as the solution of (4)

$\cos\theta(\tau)=-\sin\theta(\tau)=-\frac{\frac{P_{R}Q_{R}+P_{I}Q_{I}}{P_{R}1@_{I}^{(i\omega,\tau]_{I}|^{2}}-lQ_{R}}}{|Q(i\omega,\tau)|^{2}},$

’

(6)

and the relation between the argument 0in (6) and $\omega\tau$ in (4) for $\tau>0$ must be

$\omega\tau=\theta+2n\pi,n\in N_{0}:=\{0,1,2, \cdots\}$ . (7)

Hence we can define the maps $\tau_{n}$ : $Iarrow \mathrm{R}_{+0}$ given by

$\tau_{n}(\tau):=\frac{\theta(\tau)+2n\pi}{\omega(\tau)},$ $\tau_{n}>0,$ $n\in N_{0}$ (8)

where a positive root $\omega(\tau)$ of (5) exists in $I$ . Let us introduce the functions $Iarrow \mathrm{R}$,

$S_{n}(\tau):=\tau-\tau_{n}(\tau)$ (9)

that are continuous and differentiable in $\tau$ .
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Theorem 4.1 ([1]) Assume that $\omega(\tau)$ is a positive root of (5) defined for $\tau\in I,$ $I\subseteq \mathrm{R}_{+0},$ and at
some $\tau^{*}\in I$

$S_{n}(\tau^{*})=0$ for some $n\in \mathrm{N}\mathrm{o}$ . (10)

Then a pair of simple conjugate pure imaginary roots $\lambda=\pm i\omega$ exists at $\tau=\tau^{*}$ uthich crosses the
imaginary axis from lefl to right if $\delta(\tau^{*})>0$ and crosses the imaginary axis from right to lefl if
$\delta(\tau^{*})<0$ , where

$\delta(\tau^{*})=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\{F_{\omega}’(\omega(\tau^{*}), \tau^{*})\}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\{\frac{dS_{n}(\tau)}{d\tau}|_{\tau=\tau^{*}}\}$ . (11)

Remark 4.1 Assume that $\theta(\tau)\in(0,2\pi),$ $\tau\in I,$ where $\theta(\tau)$ is defined by (6). Then we have
$\theta(\tau)$ $=$ $\arctan(-\eta(\tau)/\phi(\tau))$ if $\sin\theta>0,$ $\cos\theta>0$ ;
$\theta(\tau)$ $=$ $\pi/2$ if $\sin\theta=1,$ $\cos\theta=0$ ;
$\theta(\tau)$ $=$ $\pi+\arctan(-\eta(\tau)/\phi(\tau))$ if $\cos\theta<0$ ;
$\theta(\tau)$ $=$ $3\pi/2$ if $\sin\theta=-1,$ $\cos\theta=0$ ;
$\theta(\tau)$ $=$ $2\pi+\arctan(-\eta(\tau)/\phi(\tau))$ if $\sin\theta<0,$ $\cos\theta>0$ .

where $\phi(\tau)=P_{R}Q_{R}+P_{I}Q_{I}$ and $\eta(\tau)=-P_{R}Q_{I}+P_{I}Q_{R}$ .

4.2 Local stability of a positive equilibrium

Let us consider local stability of positive equilibrium $E_{4}.$ As we showed in Section 3.1, it is not easy to
find rigorously local stability condition of $E_{4}$ . So in Section 3.2 we showed the numerical simulation
which indicates as time delay increases solution behaviour changes from chaotic to periodic, and finally
to stable. In this section, we try to apply Theorem 4.1 and Remark 4.1 to the model in order to obtain
acritical value at which stability changes from unstable to stable.

The characteristic equation at $E_{4}=(x^{*}, y^{*}, z^{*})$ takes the form (3) with
$a(\tau)$ $=$ $a_{11}x^{*}+r_{3}$ ,
$b(\tau)$ $=$ $a_{12}a_{21}x^{*}y^{*}+a_{11}r_{3}x^{*}$ ,
$c(\tau)$ $=$ $r_{3}a_{12}a_{21}x^{*}y^{*}$ ,
$d(\tau)$ $=$ $-e^{-l\tau}(a_{31}x^{*}+a_{32}y^{*})$ ,
$e(\tau)$ $=$ $e^{-l\tau}(a_{13}a_{31}x^{*}z^{*}+a_{23}a_{32}y^{*}z^{*}-a_{11}x^{*}(a_{31}x^{*}+a_{32}y^{*}))$ ,
$f(\tau)$ $=$ $e^{-\mathrm{t}\tau}((a_{11}a_{23}a_{32}+a_{13}a_{21}a_{32}-a_{12}a_{23}a_{31})x^{*}y^{*}z^{*}$

$-a_{12}a_{21}x^{*}y^{*}(a_{31}x^{*}+a_{32}y^{*}))$ .
$\mathrm{F}\mathrm{i}\mathrm{g}.4$ indicates for $n=0$

$\frac{dS_{n}(\tau)}{d\tau}|_{\tau=\mathcal{T}}$ . $>0$ .

Also with respect to $F_{\omega}’$ in Theorem 4.1 we checked numerically it is negative. Then since $\delta(\tau^{*})$ in
Theorem 4.1 is negative, apair of imaginary roots moves from the right half plane to the left half
plane at critical value $\tau^{*}=1.29967.$ Further it is easy to check that the Jacobian matrix evaluated
at $E_{4}$ for $\tau=0$ with parameter values given in $\mathrm{F}\mathrm{i}\mathrm{g}.2(\mathrm{c})$ has one negative real and apair of complex
eigenvalues with apositive real part. That is, as we predicted in Section 3.2, at $\tau^{*}$ between 1.2 and
1.5 a stability switch occurs from instability to stability. So we find the increase of time delay has a
stabilizing effect for the system. Actually, $\mathrm{F}\mathrm{i}\mathrm{g}.3(\mathrm{b})$ and (c) show when $\tau<\tau^{*}$ the solution behaviour
is unstable, whereas when $\tau>\tau^{*}$ it is stable.
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Figure 4: Graph of stability switch in terms of time delay. At $\tau^{*}=1.29967$ apair of imaginary roots
moves from the right half plane to the left half plane. Actually, stability changae from instability to
stability at $\tau^{*}$ .

5 Discussion
It will be published in another paper by using an average Liapunov function (see [2]) that system (2)
is permanent if there exists a positive equilibrium and $|A|>0.$ That is, for three trajectories given in
Fig.2, there exist positive constant vectors $\delta$ and $M$ such that

$\delta\leq\lim\inf(x(t), y(t),$ $z(t)) \leq\lim\sup(x(t), y(t),$ $z(t))\leq M$ .
t\rightarrow 十科科 t\rightarrow 十科科

The interesting future problem is to obtain the corresponding permanence condition for system (1).

Some mathematics given in [4] seems to be applicable to our system.
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