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We announce the paper [2].

1. INTRODUCTION

1.1. Let g be a complex semisimple Lie algebra, and g’ be a reductive Lie
subalgebra of g. The restriction 7|y of a irreducible representation 7 of g

need not be irreducible.

The irreducible decompsiton of g’
g = @ s
pis irreducible representation of g’

is called branching rule.

Problem 1.|Say something about ck.

Exmaple 1. There are well-known branching rules.

(1) classical rule. Set g = sl,.1, g’ = sl,, then irreducible represen-
tations of g are indexed by A = (A1,...,A,) with Ay > A > -0 >
An > 0. In this case, we have the complete answer to Problem 1.

We have

)‘|g' = @ M.

A1Zp1Z2AQ> 212 Ap
In particular, we have c# < 1.
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(2) highest weight theory. Let g’ be a Cartan subalgebra of g. The
answer of Problem 1 is the Cartan-Weyl!’s highest weight theory. The
branching rule is decomposition of weight spaces. The description of
ch is Kostant’s formula.

(3) tensor product Let g = ¢’ x g’ and g’ diagonal in g. The irreducible
representation of g is given by m = oX7 where o and 7 are irreducible
representations of g’. The branching rule 7|y = 7 @ o is the tensor

product, which causes Littlewood-Richardson rule.

Remark 2. Koike-Terada [9] gave general formulas of GL(n) to SO(n) or
GL(2n) to Sp(n) by using the universal characters.

Problem 2.| In which cases do we have ck <17

This branching rule is called multiplicity-free.
Remark 3. 1t is difficalt to get the weight mutiplicity-free representations,
though we have the Kostant’s general formula. Similarly, we do not have
the classification of mutiplicity-free branching rules, though we have the
general formula Koike-Terada’s algorigthm.
Exmaple 4. We have some answers to the emaples in Example 1.

(1) always

(2) few
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(3) few (Multiplicity-free tensor products are called Clebsch—-Gordan’s

rule, which are cllasified by Stembridge [13].

Remark 5. Kobayashi recently obtained an abstract theorem of multiplicity-
free branching rules for both infinite and finite dimensional representations

for a general symmetric pair (G, G") [6] [8].

Okada uses new combinatorial formulas on minors due to Ishikawa-Wakayama [5]

to obtain explicit branching rules [11].
We want a new technique in getting many branching rules.
In the paper [2], we get the many examples of multiplicity-free branching

rules, which we intoduce in this proceeding.
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2. SETTING.

Let g be a complex simple Lie algebra, ¢ be a Dynkin diagram auto-
morphism of g, and g’ = g7 := {X € gloX = X}. We choose a o-stable
Cartan subalgebra b in g such that §” := {X € hloX = X} is a Cartan
subalgebra of g°. We shall use the same notation ¢ to denote the natural
action on b, and also h*. Let A = A(g,h) be the root system of g with
respect to the Cartan subalgebra b, and A* be positive roots.

Case 1
(A2, A;) thatis (sl(3,C),sl(2,C)).
1
A
I,
O1 A
Case 2
(A2m-1,C) (m>2) thatis (sl(2m,C),sp(m,C)).
1 2 m—1
Cc—
m  Asm_y
>
2m—-12m -2 m+1
GC— 0O Cm
1 2 m-1m
Case 3 .
(A2m, Bm) (m>2) thatis (sl(2m + 1,C),s0(2m +1,C)).
Case 4
(Dms Bm-1) (m>4) thatis (so(2m,C),s0(2m — 1,C)).
Case 5 |

(Es, Fy).
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1 _2 m-—1m
c—— o
A2m
2m 2m —1 m+2 m+1
G—6— Bm
1 2 m-1m
m-—1
Gc—— D
1 2
m
c—6— Bm-1
1 2 m-2 m-—1
2 1
4 3
Es
C—Ea O Fy
1 2 3 4
Case 6
(D41G2)'
1
2 3 Dy
4
=2 Ga
1 2

Remark 6. We remark that there is a detailed study of (g,g°) when g is
a generalized Kac-Moody Lie algebra by Fuchs-Schellekens-Schweigert [3]
and Fuchs-Ray-Schweigert [4].

Remark 7. Only in Case 6, the order of o is three. The pairs (g,g%) in

Cases. 1-5 are called symmetric pairs.
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3. MAIN RESULTS

We denote by X, () the irreducible finite dimensional representation of
a complex simple Lie algebra of type X,, (X = A, B,C, D, E, F,G) with a
highest weight A, and by X,,())]y,, the restriction to a complex Lie algebra
g’ of type Y,

Let {w;}?_; be fundamental weights, with respect to a fixed simple sys-
tem {c;}7_; of a complex Lie algebra of type X or Yy, which are labeled

in the previous subsection.

Theorem 1. For k € N,

(2A) | Asm-1(kw1)|c,, = Aom-1(k@om-1)|c, = Cm(kw1) (m > 2)

(4A)  Dm(kwm-1)|B., = Dm(kwn)|s,,, = B-1(kwm_1) (m > 4)

Theorem 2. For k,l € N,

k-
(1B) Ag(kwn)|a, = Aa(kws)|a, = D Ar(swn)
s=0
(2B) A2m—1(kw1 + lw2)|Cm = A2m—1(kw2m—1 + IWZm—2)|Cm =

!
@ Cm(kwy + sw3) (m > 3)

s=0

(3B) A2m(kw1)|Bm = A2m(kw2m)|Bm = @ Bm(swl) (m 2 2)

s=k mod 2
k
(4B) D (k@1)|B,_, = P Bm-1(sw@1) (m > 4)
s=0
k
(5B) Eg(kw1)|r, = Es(kws)|r, = @ Fi(sws).
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k
(6B)  Da(kwi)lg, = Da(kws)lg, = Da(kwy)le, = €D Ga(sw)
s=0
Remark 8. Some of these branching rules are new. One can prove some
of them in several ways by using Borel-Weil theory, Gelfand-Tsetlin basis,
formulas of minors, and so on (See, for example, [7], [14], [12], [11], [10}),

4. SKETCH OF PROOF

We write down the sketch of proof of the theorems by using Weyl’s
character formula and denominator formula (See [2]). |

Let X,(A) be the representation which appears in left hand side of The-
orems 1 and 2.

Let char X,,()) be the character of X,(A).

We write px,, dx,,, A}n, Wx,, as half sum of positive roots, Weyl denomi-
nator, positive roots of complex simple Lie algebra of type X,,, Weyl group,
respectively.

By Weyl’s character formula,

char X,(A) = dx! Z e(w)e@P+exn)

weWx,,

(We set Wy, (X) := {w € Wx,|w\ = A} and W3, minimal representatives
Of WXn/WXn(A)')

=d}1 § : E : €(w1w2)ew1w2/\+w1w2pxn
n

wEeW} \weWx,(\)

= dy Z e(w)e¥? Z €(wy) W12 Xn

wy EW)'}n w2 GWxn (A)
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By the denominator formula for Wx_ (),

Z €(wq)e"?PXn = gPXn H (1—e™?).

w2€Wx,, (A) aeA}n (A)

Applying w; € W)’}n,

Z €(wq) et WPXn = W1PXn H (1- e~u1®),

wa€Wx, (A) aeAl ()
Then,
(X)

char Xn(/\) = d}i Z e(wl)e'UIl(/\) eV1PXn H (1 _ e—w1a)

w €W3, aed} ()

In the same way, we calculate char Y/(X’). (X = Alye)
(Y)

char Yn’()\,) — d}-;nll Z e(wl)euh(,\') ew1PYn, H (1 _ e—wm)

wy eW,é:‘, a€ Aj’,n, (A

Lemma 3. W)’}n and W{);, are "equal”.

In explicit, in the situation of Theorem 1, W)’}n and Wﬁ, are equal. In the
situation of Theorem 2, W)’}n \ W,ﬁ;’ can be characterized by ww|y = 0.
Remark 9. This lemma may be mysterious, because Wy, is much smaller than Wy .

Lemma 4. The summands of (X) and (Y) are "equal”.
In ezplicit, in the situation of Theorem 1, the summands are equal. In the situation of

Theorem 2, the difference of each summands is only one term.

We can prove the theorems by using the mysterioué lemmas, in particular Lemma 3. We
prove these lemmas by case-by-case calculation, then we do not understand why Lemma 3

is true.
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