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Abstract

Rotating stratified turbulence is analyzed using the rapid distortion theory
(RDT) in the Craya-Herring frame, so that the unsteady time development of
the wave components and the vortex components becomes much clearer than
the previous analysis which utilized the usual Eulerian frame. In this study we
have explicitly calculated the energy partition among the wave, vortex and po-
tential energy components which would be useful for clarifying the mechanisms
controlled by the buoyancy and Coriolis forces. We have found, for example
the equi-partition between the wave components of kinetic energy (Ew) and
the potential energy (PE) in a long time as observed in previous DNS for
non-rotating stratified turbulence. This holds irrespective of the initial energy

partition Ey (0)/PE(0) at least when the initial turbulence is isotropic.

1 RDT equations

We consider a homogeneous turbulent flow with vertical density stratifica-
tion (dp/dz3) and system rotation around the vertical axis. The governing
equations for an inviscid fluid in the rotating frame under Boussinesq ap-

proximations are
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where p is the density perturbation from p(z3), u is the velocity fluctua-
tions, Q = (0,0, 2) denotes the angular velocity € of the system rotation,
g is the accerelation due to gravity, £3 is the unit vector in the vertical
upward direction, py is the representative density, and v and k are the
viscosity and diffusion coefficient respectively.

We then substitute the Fourier decomposition of velocity and density
perturbations given by

wi=Y ik, t)e*® (i=1,2,3), (4)
k .

and
g ~ ik-
%p = Z ok, t)e* . (5)
k
Then, RDT equations for stratified rotating turbulence with stratifica-

tion in the vertical (z3) direction and rotation around the vertical axis are

obtained as (Hanazaki 2002)

7 + (5ij -~ ‘“k_él) €jafiy = ( k23 - 5i3> P, (6)
and
dp R
'&g - N2U3, (7)

where N is the Brunt-Viisild frequency and f is the Coriolis parame-
ter (twice the angular frequency of rotation). The wave number vector
k(t) = (ki, ks, k3)(= k(0)) does not change with time when there is no
shear. We next rewrite the equations in Craya-Herring frame by rotating
the usual Eulerian frame so that one of the new coordinate axes e*(= k/|k|)

agrees with the direction of the wave number vector k. Due to the incom-

pressibility condition, the velocity vector must be perpendicular to e and



is rewritten as () = ¢re! + dre? (¢3 = 0). We use the spherical coordi-

nates (k, 0, ¢) defined by
ki = ksinfcos ¢, ko = ksinfsin ¢, ks = kcosb, (8)

where 6 is the angle between the polar (z3) axis and vector k. Since the new
coordinate, i.e. the Craya-Herring frame (e!, €2, €®) is obtained by rotating
the original coordinate (z3, z9, z3) by m/2 + ¢ around the z3 axis and then
rotating by angle 6 around the new x; (or e!) axis, the old components 4;

and new components g%,- have the relation

U = —$1 sin¢ — q32 cos 8 cos ¢,
g = ¢A>1 cos ¢ — q§2 cos @sin ¢,
fis = ¢osind. (9)

or equivalently
$1 = Gig cos p — Gy sin @ = (kydle — kotly) /ky = —ids/ky,  (10)

¢ = — (i1 cos ¢ + figsin ¢) cos @ + diz sin 6 = kiﬁg = d3/sind,  (11)
H

where ky is the horizontal wave number defined by ky = (k% + k2)'/? and
the incompressibility condition kji; + katis + kstiz = 0 has been used in
(11). These expressions show that ¢ is related to the vertical vbrticity
while &2 is related to the vertical velocity. Then c,?)l is called ’vortex mode’
and ¢A52‘is called 'wave mode’.

Using (10) and (11), equations (6) and (7) can be rewritten in the
Craya-Herring frame as |

dy dés

— £4 — 7 ) dp _ 2“‘.
p” = f¢gcosé, pral fpr1cosf — psiné, dt—Nngsme. (12)

A



Solving these set of equations, we obtain
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A 4 |
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p(t) = ;2-¢10N2f sin @ cosf(cosat — 1) + 5¢20N2 sin @ sin at
1
+ —po(N?sin® 6 cosat + f2 cos®d), (15)
a
where subscript 0 denotes the initial values and a is the frequency of the
internal gravity wave defined by

o N2(K}+k3) + f2K3
a = 2 L 1.2 1 1.2
ki + k3 + k3

= N%sin? 6 + f% cos? 6. (16)

Since the density is a scalar quantity and not a vector, g(t) is independent of
the frame of reference and agrees with the expression in the usual Eulerian
frame given by Hanazaki (2002).

In this study we assume that the initial density flux is zero, i.e. @gH (k,0)

= (1/ 2)ﬁo$2‘0 + ﬁaqﬁio =0 (¢ = 1,2) in agreement with the usual DNS and
experiments. Then, the three-dimensional spectra in the Craya-Herring

frame become, for example,

7
= %@%H (k,0)N*£2sin? 0 cos? §(cos at — 1)?

+ %@%H (k,0)N*f sin? @ cos @ sin at

,,(k, 1)

1
+ ;@%H(k, 0)N*sin? @ sin® at

+ %CIﬁ(,p(lc,O)(N2 sin® f cos at + f* cos? 6)?, (17)



Using equation (12), we can derive general and fundamental relations

among the three-dimensional spectra. Some of them are

%@CH = 2f cos 0%, (18)
d —®GH = —2f cos §GH — 2sin OGF (19)

d .

a—t@,,,, = 2N?sin 097", ~(20)

Since d®,,/dt = 2N?®,; (Hanazaki & Hunt 1996),. (20) shows that
®,3 = sin Gq)CH . Then,

/ @ 3dk = / dkk? / dfsin 6 d¢d>,,3 (21)

is different from pgy = [ ®, 2 Hdk although they agree in the long-time limit
as will be shown later.

Integrations of the three-dimensional spectra such as (17) in the whole

spectral space ([ dk = [ k%dksin 6d6d¢) give
—Ev / f cos 0CE (22)

—EW = /(fcos 0D + 5in 0 ,5)dk = — /fCOS 004" dk — pus, (23)

and
d . _
EPE = / sin 025 dk = pu, (24)
where .
By(t) = 3 / BCH (k, t)dk, (25)
Ew(t) = 5 [ 85 (k,t)dk, (26)
1 .
PE(t) = 51 / ®,,(k, t)dk, (27)



are the vortex-mode kinetic energy, wave-mode kinetic energy and potential
energy respectively, and KE = Ey + Ew is the total kinetic energy.

The kinetic energies of vortex mode and wave mode (Ey and Ey) ex-
change energy via the integral [ f cos 93 dk, which vanishes when there
is no rotation (f = 0). Then, without rotation (e.g., pure stratified flow),
the spectrum ®{H(t)(= ®¢F(0)) is constant (cf. (18)) and vortex mode
energy Ey(t)(= EV(O)) is constant. Even with the rotation (f # 0), the
energy exchange vanishes if ®{ (t) = 0 at all times. This occurs if N = 0
(pure rotation) and if the turbulence is initially isotropic. This recovers the
previous results (e.g., Cambon & Jacquin 1989, Hanazaki 2002) that initial
isotropy is conserved for pure rotating turbulence in the most general form.

It is important here to note that the integral decays rapidly with time
(e.g., o< t73/2) even if f, N # 0. This rapid decay occurs since the dispersion
relation of the inertial gravity wave gives that the most contributions to thé
integral should have come from near § = 7/2, while the integral contains
cos 8(= 0) (cf. §2), as verified mathematicaly by the method of stationary
phase (Hanazaki & Hunt 1996, Hanazaki 2002).

On the other hand, Ew and PE exchange energy via [ sin0®,dk (or
pu3), which does not exist if N =0 (e.g., pure rotation) but decays slowly
(oc t71/2) since § = /2 gives sinf = 1 which is contained in dk and the
integrand does not vanish for the most contributing wave number compo-
nents.

These characteristics of the interaction integrals show that the rotation
contributes to the interaction between the vortex mode and the wave mode

only for a short time, while the stratification contributes to the periodic



energy exchange between the wave mode and the potential energy for a
longer time. In ohter words, the system rotation does not contribute to
the energy exchange for a long time at least in the linear dynamics.

This fact has been already found in the solutions for the usual Eulerian
frame (Hanazaki 2002) for both the initially isotropic and the axisymmetric
purely horizontal turbﬁlence. Above result shows that the characteristics
is quite general and independent of the initial conditions such as the initial
isotropy or anisotropy of turbulence.

We should remember that the internal gravity wave is a transverse wave
and the wave-number vector is perpendicular to the velocity of the fluid, i.e.
k-u = 0) the energy exchange/oscillation is maintained by the components
of  ~ /2, i.e. the vertical motion of the fluid which has angﬁlar frequency
N, noting that the dispersion relation a2 = N2sin? 6+ f2 cos? 6 givesa = N
at 0 = /2.

Steady non-decaying components are also contributed mainly from  ~
m/2 since they also are multiplied by sin# in the integration in spherical
coordinates. This result suggests that the energy containing cone is defined
by 6 ~ m/2 which corresponds to a horizontal wave-numver vector with
vertical fluid motion rather than § ~ 0 and 7 with horizontal motion??

The sum of (22) and (23) gives

d d _ d
EKE = a—t(EV + Ew) = —puz = _ZEPE' (28)

This shows the conservation of total energy (Ey + Ew) + PE = KE +
PE in the inviscid fluid. At the same time the energy exchange between
the kinetic energy and the potential energy is maintained by the vertical

density flux pu3, which decays slowly with time.



Sum of (23) and (24) gives

j (Ew + PE) /fcos 90 dk = iEV. (29)

This again shows the conservation of total energy Ey + Ew + PE in the
inviscid fluid. At the same time the energy exchange between the vortex
mode energy Ey and the wave-like energy components (PE and Ew ) occur

only with the effect of rotation f, which decays rapidly with time.

2 Initially isotropic turbulence

If we further assume that the turbulence is initially isotropic, the initial

three-dimensional spectra are given by

®ij(k,0) = E(Zg (5ij - k;’;") , (30)
and
®,,(k,0) = ﬂ:zzN? (31)

where E(k) and S(k) are the initial radial kinetic and potential energy
spectra and the initial kinetic energy KFEj and potential energy PEy are
given by
| KEo = / E(k)dk, (32)
| 0
and
1 o0
PEy = W/q)ppdk =/0 S(k)dk. (33)
Using the relation (6), the isotropic condition for the kinetic energy

spectra can be rewritten in the Craya-Herring frame as

®%H (k,0) = 85 (k,0) = 75’]3 &% (k,0) = 0. (34)



Then we obtain the three-dimensional spectra in the Craya-Herring
frame. The e; (vortex mode) component spectrum becomes Integrating

(8) in the whole spectral space, we obtain the kinetic energy of the vortex

mode (Ey) as

1—- 1
By(t) = 38 =7 [ 05k, t)dk

1
= KBy~ l(KE0 — 2PE,)
7r 2f2
X / : sin® 6 cos® §(1 — cos at)? (35)
0 a

Similarly, the kinetic energy of the wave mode (Ew) can be calculated

as

Ew(t)

1—- 1
3B = [ 5 k)

1 .
SKEy — %(KEO — 2PE,)

X / d0— sin® (1 — cos 2at), (36)

The steady components in the integrand of (37) shows that, when
KFEy > 2PE,, Ew is not reduced by the components of § ~ 0 or 7.

The potential energy becomes

1 — 1

= PEy+ %(KEO — 2PEy)
0,2

2

X / do [—]X— sin® §(1 — cos 2at)
0
2N2f2

a4

+ sin® @ cos® 6(1 — cos at)z] : (37)

which agrees with the results previously obtained in the usual Eulerian

frame [3]. The density fluxes become

phi(t) = 5(KEy — 2PE)



and

péa(t)

0 at

10

T 2
do

sin” @ cos (1 — cos at)(N?sin? @ cos at + f2 cos® 6)

(38)

= -;-(KEO — 2PEy)

™ 2 »
X / dG% sin® 6 sin at(N? sin? @ cos at + f2cos?6).  (39)
0

Note that pg; = 0 holds identically because of the asymnietry of the inte-

grand against 0 = /2.

2.1 General case of N #*f

If we separate the steady and unsteady components in the integrals (38)-

(40), and integrate analytically only the steady components, we obtain

Ey

PE(%)

-—KE() + =

1

3 fIN?
ST o )(KEO 2PE0)(

2 2
);2-1— 2N IA)

-;-(KEO — 2PE,)

™ N2f2
/ df—; sin® @ cos® 8(4 cos at — cos 2at), (40)
0

a

1
%KEO + 5 (KEy — 2PE)

IN?2 2N2f2 T N2
(fz — N2 (F2 - N2)2IA +/0 dG? sin 0cos2at)

1

5KEO + g(KEO — 2PE,)
2N* 2N2f2

fA—N? (f?-N2)?

T 4 272
/ dé (% sin® 6 + N 4f sin® 4 cos? 0) cos 2at] : (41)
0 a a

514

1
PEy + ¢ (KEq — 2PEy)
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N2(11f%2—2N?)  N2f2(5f% + 4N2)I
X (f2 — N2)2 (f2—N2)3 4
m 4 2 £2
— / do (N—4 sin® § cos 2at + AN 4f sin® § cos? @ cos at)] ,(42)
0 a a

where

1 dx
”zfﬂﬂ+NWﬂ—M>4
(f2 — N2)1/2 - (f2 = N2)1/2

= N ¢ N (f >N)

or
N2 — 2\1 _ 2 _ f2\1/2
(01 g V=07 =1

and the sign + represents + when f > N, and — when f < N.

(F<N).,  (3)

As is clear in (38)—(40), p¢y(= 0) and pp; do not have steady com-
ponents. We note that there is an unsteady exchange of energy among
Ey, Ew and PE. The echange between Ew and PE is due to stratification
which exsts even when f = 0, while the exchange Ey < Ew exists only
when f # 0.

Note that if there is no rotation (f = 0), Ew asymptotes to Ew (t —
oo) = (1/4)KEy + (1/2) PE,, which is equivalent to the asymptotic value
of the potential energy PE(t — o0) = (1/4)KEq + (1/2) PEy [4]. This also
agrees with the DNS for non-rotating stratified turbulence [7] which showed
the equi-partition of energy between Ey and PE. It is also important to
note that Ew(t — oco) = PE(t — oo) holds irrespective of the initial
energy partition between KEy(= Ey(0) + Ew(0)) and PEy, showing that
this is a rather general feature of the stratified turbulence. In the previous
studies Godeferd & Cambon(1994) (PE, = 0) and Métais & Herring (1989)
(PEy = 0.056KEy < KEy) argued Ew(t — oo) = PE(t = oo) for small



initial potential energy. The equi-partition is, however, violated by the
system rotation and the parameter f/N alters the energy partition among

Ey, Ew and PE (Hanazaki 2002).

2.2 Special case of N = f

In the special case of N = f the integrations can be done exactly and the

energy and the fluxes become

Ey ;(2KEO + PEy) + (KEy — 2PEy) (3 cos Nt — % cos th) . (44)
1 .
EW = %(KE() + PE()) + —(KE() - 2PEO) (01] 2Nt, (45)
PE = iKEO + 175PE0 - -——(KEO 2PEy)(cos Nt + cos2Nt),  (46)
p¢1 = 0) (47)
— N~ 3
pha = T: —(KEy — 2PEy) | sin Nt + 3 sin 2Nt (48)

which show non-decaying oscillation (Kaneda, 2000; Hanazaki, 2002). This
is in contrast to the horizontal kinetic energy components _z;? and u_g which
had components proportional to cos Nt only and where clear distinction
from the vertical components (ox cos2N't) could be made (Iida & Nagano
1999, Hanazaki 2002).

When N = f, pds does not agree with puz even in the long-time limit

because there is no localization to § — m/2 in this particular case.

3 Conclusions

Solutions of the RDT equations for the stratified rotating turbulence in the

Craya-Herring frame have been obtained. The results for the non-rotating

12
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stratified turbulence showed the equi-partition of energy between Ey and
PE in their final equilibrium state, as observed in the previous DNS. This
is independent of the initial energy partition. It will be altered, however,
with the system rotation, since the final steady values of Ey, Ew and PE

will depend on the value of f/N.
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