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Abstract. The large amplitude standing wave excited in a resonator induces acoustic
streaming of Rayleigh type outside the acoustic boundary layer on the wall of the resonator.
For the case that the resonator is a two-dimensional rectangular box, the streaming motion
with large Reynolds number is examined numerically. The two-dimensional incompressible
Navier-Stokes equations with no external force are used as the governing equations for
the streaming velocity, which is defined by a time-averaged mass flux density vector. The
steady velocity component at the outer edge of the acoustic boundary layer, which induces
Rayleigh type streaming, is employed as the boundary condition for the Navier-Stokes
equations. By using a finite-difference method, we shall show the existence of multiple
steady solutions.

INTRODUCTION

Steady streaming induced in acoustic standing wave fields is a classical topic
in physics [1,2]. An active control of streaming- in resonators becomes an important
problem in some applications today (e.g., [3]). Some authors have recently carried out
accurate measurements for slow streaming motions [4,5]. However, the behavior in the
case of large Reynolds number rcmams unresolved.
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FIGURE 1. The schematic of the model.

Recently, one of the present authors has numerically studied the resonant gas
oscillation with a periodic shock wave in a closed tube by solving the system of
compressible Navier-Stokes equations [6]. The result has suggested the occurrence
of turbulent acoustic streaming when a streaming Reynolds number is sufficiently
large. However, the direct numerical simulation of viscous compressible flow is an
extraordinarily hard task if one tries to resolve all phenomena from an initial state




of uniform and at rest to an almost steady oscillation state throughout the flow field
including the boundary layer. In the present paper, we shall adopt a simple model based
on the linear standing wave solution and boundary layer theory, and thereby execute
a number of numerical simulations to clarify how the classical symmetric streaming
pattern changes into different flow patterns as the streaming Reynolds number increases.

FORMULATION

We shall consider the streaming motion induced by resonant gas oscillations in a
two-dimensional rectangular box filled with an ideal gas (see Fig. 1). The box, whose
length is L and width is W, is closed at one end by a solid plate and the other by a piston
(sound source) oscillating harmonically with an amplitude e and angular frequency w.

In the case that the excitation at the sound source is moderately weak and the
dissipation effect is sufficiently small outside the boundary layer, the wave motion in the
body of the fluid is a plane standing wave accompanied with small correction terms due
to nonlinear and dissipation effects,

u=M%@-sint+---, p=1+M9‘§gn—;—Qcost+---, 1)

where £ = x*w/c, is a normalized axial coordinate, ¢ = wt* is a normalized time, u =
u* /¢, is the = component of normalized fluid velocity, p = p*/p, is a normalized density,
M = aw/cy (K 1) is the acoustic Mach number at the sound source, and b = Lw/c, is a
normalized box length or a normalized angular frequency (c; is the speed of sound in an
initial undisturbed state of density p,).

‘We shall assume that the oscillation is near the second mode resonance, i.e.,

b=2mr+VMA, ()

where A is a nondimensional parameter which measures the detuning. If |A| = O(VM),
then the oscillation includes two periodical shock waves as long as the dissipation effect
is sufficiently small. The formation of shock waves may induce the turbulent streaming
motion as shown in [6]. In what follows we assume A =~ 1. Equation (1) can then be
rewritten into ’

u=\/M%sin:z:sint+-~-, p=l+\/M-i—cosxcost+---. 3)

From the standard boundary layer analysis, we have the so-called limiting velocity
at the outer edge of the boundary layer,

ﬂ:—UosinZ:z:, ﬁ:()’ Uo=%[%+%]’ (4)

where the bar denotes a time average, ~y the ratio of specific heats, and Pr the Prandtl
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Acoustic streaming velocity is usually defined as a time-averaged mass flux density
vector. We introduce a streaming velocity normalized by U,

t+2n7 t+2n
U—l/ 'm”dt —1/ ””dt (5)

Then, the governing equations for the streaming outside the boundary layer are
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where a slow scale time 7 and the streaming Reynolds number Re are defined as
- _ M3, VP -1 _ VVoWw
r=Ut, Re=2L [8 + ] (e - ——VCO). )

In the definition of Re, € represents the ratio of acoustic boundary layer thickness
to a typical wavelength. In the present study, we assume
Ww

e€<KM<«]1 and e<w= 7=, 8)

where W is the width of the box. Condition (8) supports Eq. (1) and enables large
Reynolds number flows. We shall emphasize that the momentum equations in (6) have

no driving force terms because the sound wave is unattenuated; this is also supported by
condition (8).

NUMERICAL ANALYSIS

We shall numerically solve the incompressible Navier-Stokes equations in a two-
dimensional box with the boundary condition (see Fig. 2),

U=—sin2c, V=0aty=0andy=w, U=0, V=0atz=0andz=2m (9)

The solution method is the standard projection (MAC) method with accuracy of
first order in time and second order in space. A regular even-spaced 512 x 128 grid points
are mainly used. The time step is changed from 5 x 10~ to 7 x 10~°. The normalized
box width w is fixed to 27/5.

FIGURE 2. The 2D box for simulation.

170




1e-01]
1e-03;
1e-05,
1e-07]
1e-09;
le-11]
le-13] total vorticity

PO W Wl A PO By B
le-15] . N
Fad \! 'N‘v'ﬂ' .'.‘ At

1e-17{ ¢
0 200 400 600
normalized time
FIGURE 4. Residual error and total vorticity (Re = 280).
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FIGURE 5. Total kinetic energy.

A typical example of convergence and accuracy check is shown in Fig. 4. The
time evolution of a residual error denoted by the bold curve has a minimum at about
T = 120, when the flow pattern is similar to that shown in Fig. 3(b). However, the
classical symmetric flow is unstable at Re = 280, and hence the residual error grows
until 7 = 300 and thereafter decreases again. Finally, at about 7 = 600, the flow field
converges to a new steady state, where the flow pattern is similar to that shown in Fig.
6(b). The dashed curve in Fig. 4 represents the fluctuation of total vorticity, which should
be zero due to the restriction from boundary condition (9).
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Figure 5 shows the coexistence of various steady flows. For Re < 130, the
classical flow is the unique stable steady solution. Note that the classical flow has two
types of symmetry, i.e., a mirror symmetry about * = 7 and a rotational symmetry
around (z,y) = (m,w/2). Beyond Re = 130, another steady solution emerges, the
flow pattern of which loses the rotational symmetry [see Figs. 6(a), 6(b), and 6(g)]. At
Re = 240, the classical flow becomes unstable but even after that it continues to be a
steady (unstable) solution of the problem. At Re = 180, another new steady solution
appears, whose flow pattern no longer has symmetry [see Figs. 6(c), 6(d), and 6(h)].
At Re = 700, a further new steady solution appears, which possesses the rotational
symmetry but loses the mirror symmetry [see Figs. 6(e) and 6(f)].
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FIGURE 6. Streamlines of various steady flows. (a): Re = 140, (b): Re = 230, (c): Re = 180, (d):
Re = 240, (e): Re = 700, (f): Re = 1000, (g): Re = 1000, (h): Re = 1000.

The mirror image and the rotational image of a solution of boundary value problem
(6) and (9) are also solutions of the same problem. Accordingly, the number of stable
steady solutions changes as 1 — 3 — 7 — 6 — 8 with the increase of Re (< 2000). The
type of bifurcation seems to be subcritical, although we have not yet verified.
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