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Abstract The large amplitude standing wave excited in aresonator induces acoustic
streaming ofRayleigh $\mathrm{t}\mathrm{y}\mu$ outside the acoustic boundary layer on the wall of the resonator.
For the case that the resonator is atw0- imensional rectangular box, the streaming motion
with large Reynolds number is examined numerically. The tw0- imensional incompressible
Navier-Stokes equations with no external force are used as the governing equations for
the streaming velocity, which is defined by atime-averaged mass flux density vector. The
steady velocity component at the outer edge of the acoustic boundary layer, which induces
Rayleigh type streaming, is employed as the boundary condition for the Navier-Stokes
equations. By using afinite-difference method, we shall show the existence of multiple
steady solutions.

INTRODUCTION

FIGURE 1. The schematic of the model.

Recently, one of the present authors has numerically studied the resonant gas
oscillation with aperiodic shock wave in aclosed tube by solving the system of
compressible Navier-Stokes equations [6]. The result has suggested the occurrence
of turbulent acoustic streaming when astreaming Reynolds number is sufficiently
large. However, the direct numerical simulation of viscous compressible flow is an
extraordinarily hard task if one tries to resolve all phenomena ffom an initial stat
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of uniform and at rest to an almost steady oscillation state throughout the flow field
including the boundary layer. In the present paper, we shall adopt asimple model based
on the linear standing wave solution and boundary layer theory, and thereby execute
anumber of numerical simulations to clarify how the classical symmetric streaming
pattern changes into different flow patterns as the streaming Reynolds number increases.

FORMULATION

We shall consider the streaming motion induced by resonant gas oscillations in a
tw0-dimensional rectangular box filled with an ideal gas (see Fig. 1). The box, whose
length is $L$ and width is $W$ , is closed at one end by asolid plate and the other by apiston
(sound source) oscilating harmonically with an amplitude $a$ and angular frequency $\omega$ .

In the case that the excitation at the sound source is moderately weak and the
dissipation effect is sufficiently small outside the boundary layer, the wave motion in the
body of the fluid is aplane standing wave accompanied with small correction terms due
to nonlnear and dissipation effects,

u $=M \frac{\sin(x-b)}{\sin b}\sin t+\cdots$ , $\rho=1+M\frac{\cos(x-b)}{\sin b}\cos t+\cdots$ , (1)

where $x=x^{*}\omega/c_{0}$ is anormalized axial coordinate, $t=\omega t^{*}$ is anormalized time, $u=$

$u^{*}/c_{0}$ is the $x$ component of normalized fluid velocity, $\rho=\rho^{*}/\rho_{0}$ is normalized density,
$M=a\omega/c_{0}(\ll 1)$ is the acoustic Mach number at the sound source, and $b=L\omega/\mathrm{q}_{1}$ is a
normalized box length or anormalized angular frequency ($\mathrm{q}_{1}$ is the speed of sound in an
initial undisturbed state of density $\rho_{0}$).

We shall assume that the oscillation is near the second mode resonance, i.e.,

b $=2\pi+\sqrt{M}\Delta$, (2)

where Ais nondimensional parameter which measures the detuning. $\mathrm{I}\mathrm{f}|\Delta|=O(\sqrt{M})$ ,
then the oscillation includes two periodical shock waves as long as the dissipation effect
is sufficiently small. The formation of shock waves may induce the turbulent streaming
motion as shown in [6]. In what foUows we assume $\Delta\approx 1$ . Equation (1) can then be
rewritten into

u $= \sqrt{M}\frac{1}{\Delta}\sin x\sin t+\cdots$ , $\rho=1+\sqrt{M}\frac{1}{\Delta}\cos x\cos t+\cdots$ . (3)

From the standard boundary layer analysis, we have the s0-called limiting velocity
at the outer edge of the boundary layer,

$\overline{u}=-U_{0}\sin 2x$ , $\overline{v}=0$ , $U_{0}= \frac{M}{\Delta^{2}}[\frac{3}{8}+\frac{\sqrt{\mathrm{P}\mathrm{r}}(\gamma-1)}{4(\mathrm{E}+1)}]$ , (4)

where the bar denotes atime average, $\gamma$ the ratio of specific heats, and Pr the Prandt
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Acoustic streaming velocity is usually defined as atime-averaged mass flux density
vector. We introduce astreaming velocity normalized by $U_{0}$

$U= \frac{1}{2\pi}\int_{t}^{t+2\pi}\frac{pu}{U_{0}}\mathrm{d}t$ , $V= \frac{1}{2\pi}\int_{t}^{t+2\pi}\frac{\rho v}{U_{0}}\mathrm{d}t$. (5)

Then, the governing equations for the streaming outside the boundary layer are

$\frac{\partial U}{\partial x}+\frac{\partial V}{\partial\frac{\partial Vy}{\partial\tau}}=0,\frac{\partial U}{\partial\tau}+U\frac{\partial U}{\frac{\partial x\partial p}{\partial y}}+V\frac{\partial U}{,\mathrm{R}\mathrm{e}1\partial y},=(\frac{\partial^{2}U}{\partial x^{2}}+\frac{\partial^{2}U}{\partial y^{2}})+U\frac{\partial V}{\partial x}+V\frac{\partial V}{\partial y}+=\frac,(\frac{+\frac{\partial p}{x^{2}\partial xV}\partial^{2}}{\partial}+\frac{\partial^{2}\frac{1}{V{\rm Re}}}{\partial y^{2}}),’\}$ (6)

where aslow scale time $\tau$ and the streaming Reynolds number ${\rm Re}$ are defined as

$\tau=U_{0}t$ , ${\rm Re}= \frac{M}{\epsilon^{2}\Delta^{2}}[\frac{3}{8}+\frac{\sqrt{\mathrm{P}\mathrm{r}}(\gamma-1)}{4(\mathrm{R}+1)}]$ $( \epsilon=\frac{\sqrt{\nu_{0}\omega}}{c_{0}})$ . (7)

In the definition of Re, $\epsilon$ represents the ratio of acoustic boundary layer thickness
to atypical wavelength. In the present study, we assume

$\epsilon^{2}\ll M<<1$ and $\epsilon\ll w=\frac{W\omega}{c_{0}}$ , (8)

where $W$ is the width of the box. Condition (8) supports Eq. (1) and enables large
Reynolds number flows. We shall emphasize that the momentum equations in (6) have
no driving force terms because the sound wave is unattenuated; this is also supported by
condition (8).

NUMERICAL ANALYSIS

We shall numerically solve the incompressible Navier4tokes equations in atw0-
dimensional box with the boundary condition (see Fig. 2),

U $=-\sin 2x$ , V $=0$ at y $=0$ and y $=w$ , U $=0$, V $=0$ at x $=0$ and x $=2\pi$ . (9)

The solution method is the standard projection (MAC) method with accuracy of
first order in time and second order in space. Aregular even-spaced $512\cross 128$ grid points
are mainly used. The time step is changed from $5\cross 10^{-4}$ to $7\cross 10^{-5}$ . The normalized
box width $w$ is fixed to $2\pi/5$ .

FIGURE 2. The $2\mathrm{D}$ box for simulation
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FIGURE 3. Streamlines for the classical symmetric flows, (a): ${\rm Re}=1\propto 1$ , (b): ${\rm Re}=230$.
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FIGURE 4. Residual error and total vorticity $({\rm Re}=280)$.
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FIGURE 5. Total kinetic energy.

Atypical example of convergence and accuracy check is shown in Fig. 4. The
time evolution of aresidual error denoted by the bold curve has aminimum at about
$\tau=120$, when the flow pattern is similar to that shown in Fig. $3(\mathrm{b})$ . However, the
classical symmetric flow is unstable at ${\rm Re}=280$, and hence the residual error grows
until $\tau=3W$ and thereafter decreases again. Finally, at about $\tau=\mathit{6}tD$, the flow field
converges to anew steady state, where the flow pattern is similar to that shown in Fig.
$6(\mathrm{b})$ . The dashed curve in Fig. represents the fluctuation of total vorticity, which should
be zero due to the restriction from boundary condition (9)
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Figure 5shows the coexistence of various steady flows. For ${\rm Re}<130$ , the
classical flow is the unique stable steady solution. Note that the classical flow has two
types of symmetry, i.e., amirror symmetry about $x=\pi$ and arotational symmetry
around $(x, y)=(\pi, w/2)$ . Beyond ${\rm Re}=130$, another steady solution emerges, the
flow pattern of which loses the rotational symmetry [see Figs. $6(\mathrm{a})$ , $6(\mathrm{b})$ , and $6(\mathrm{e})$]. At
${\rm Re}=240$, the classical flow becomes unstable but even after that it continues to be a
steady (unstable) solution of the problem. At ${\rm Re}=180$, another new steady solution
appears, whose flow pattern no longer has symmetry [see Figs. $6(\mathrm{c})$ , $6(\mathrm{d})$ , and $6(\mathrm{e})$ ].
At ${\rm Re}=7\mathfrak{X}$ , afurther new steady solution appears, which possesses the rotational
symmetry but loses the mirror symmetry [see Figs. $6(\mathrm{e})$ and $6(\mathrm{D}$].

FIGURE 6. Streamlines of various steady flows. (a): ${\rm Re}=140$ , (b): ${\rm Re}=230$, (c): ${\rm Re}=180$, (d):
${\rm Re}=240$, (e): ${\rm Re}=7\propto$), (f): ${\rm Re}=1000$, (g): ${\rm Re}=1000$ , (b): ${\rm Re}=1000$ .

The mirror image and the rotational image of asolution ofboundary value problem
(6) and (9) are also solutions of the same problem. Accordingly, the number of stable
steady solutions changes as $1arrow 3arrow 7arrow 6arrow 8$ with the increase of ${\rm Re}(<2\propto)0)$ . The
type of bifurcation seems to be subcritical, although we have not yet verified.
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