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Abstract

In this talk, we study the structure of the approximate spectra of analytic elementary

operators and characterize the solvability of several types of operator equation. Moreover, we
prove the spectral mapping theorems for the approximate spectra of bounded linear operators

on Banach spaces.

It has been aproblem of essential importance to study the spectral properties of elementary

operators.

Let $x$ be acomplex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear

operators on X. We denote the spectrum of an operator $T\in \mathcal{L}(\mathrm{X})$ by $\sigma(T)$ , that is, the

set of all complex numbers Asuch that $\lambda I-T$ fails to be invertible, where I stands for the

identity operator on I.

An elementary operator on $\mathcal{L}(X)$ is defined by

$\Phi_{\mathrm{A},\mathrm{B}}(X):=\sum_{j=1}^{n}$ AjXBj $(X\in \mathcal{L}(X))$ ,

where $\mathrm{A}=(A_{1}, \ldots, A_{n})$ and $\mathrm{B}=(B_{1}, \ldots, B_{n})$ are both $n$-tuples of mutually commuting op-

erators in $\mathcal{L}(X)$ . $\Phi_{\mathrm{A},\mathrm{B}}$ is abounded linear operator on $\mathcal{L}(X)$ (i.e., $\Phi_{\mathrm{A},\mathrm{B}}\in \mathcal{L}(\mathcal{L}(X))$ ) and this

operation was first introduced in order to solve the following tyPe of operator equation:

$A_{1}XB_{1}+A_{2}XB_{2}+\cdots+A_{n}XB_{n}=\mathrm{Y}$. (0.1)
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Here, $\mathrm{Y}$ is any fixed operator in $\mathcal{L}(X)$ and the problem is exactly to find solutions $X\in \mathcal{L}(\mathfrak{X})$

to (0.1). However, since $\mathcal{L}(X)$ is anon-commutative algebra whenever $\dim X\geq 2$ , this problem

in its full generality is far from tractable even though Iis finite dimensional. Therefore it has

been amatter of significance to characterize the solvability of the equation (0.1). The most

desirable case must be the case where (0.1) has aunique solution $X$ for each given $\mathrm{Y}$ , and this

statement is equivalent to the statement $0\not\in\sigma(\Phi \mathrm{A},\mathrm{B})$ (i.e., $\Phi_{\mathrm{A},\mathrm{B}}$ is an invertible operator on
$\mathcal{L}(X))$ . For such reasons, the solvability problem of the equation (0.1) comes back to the analysis

of the spectrum of the corresponding elementary operator.

Incidentally, the most important operator equation in terms of application is of the form

$AX-XB=\mathrm{Y}$ and hence the corresponding elementary operator $\delta_{A,B}(X):=AX-XB$ has

been much studied by many mathematicians. In particular, the next theorem by Rosenblum

and Kleinecke is famous.

Theorem 1([12, Corollary 3.3], [11, Theorem 10]).

$\sigma(\delta_{A,B})=\{\alpha-\beta|\alpha\in\sigma(A), \beta\in\sigma(B)\}$ .

This Rosenblum-Kleinecke theorem tells us the fact that the operator equation $AX-XB=$

$\mathrm{Y}$ has aunique solution $X$ for each given $\mathrm{Y}$ if and only if $\sigma(A)\cap\sigma(B)=\emptyset$ . This simple

characterization of the solvability of $AX-XB=\mathrm{Y}$ is useful in connection with many topics in

operator theory, including the similarity problem of $2\cross 2$ operator matrices, the commutativity

properties of operators, and so forth. See [1].

In 1959, Lumer and Rosenblum [11] succeeded in extending Theorem 1to the case of analytic

elementary operators.

For every $T\in \mathcal{L}(X),$ $A(\sigma(T))$ stands for the algebra of all complex-valued functions $f$

analytic on $\sigma(T)$ , and $f(T)$ means the standard analytic functional calculation of $T$ by $f$ .

An elementary operator $\Phi_{\mathrm{A},\mathrm{B}}$ is said to be analytic if there exist operators $A,$ $B\in \mathcal{L}(X)$ and

$\mathrm{A}=(A_{1}, \ldots, A_{n})$ (resp. $\mathrm{B}=(B_{1},$
$\ldots,$

$B_{n})$ ) is generated by $A$ (resp. $B$ ) in the following sense:

$A_{j}=fj(A)$ for some $fj\in A(\sigma(A))$

and

$B_{j}=gj(B)$ for some $gj\in A(\sigma(B))$
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for $j=1,$ $\ldots,$
$n$ . By the definition, this operation is of the form

$\Psi(X)=\sum_{j=1}^{n}fj(A)Xgj(B)(X\in \mathcal{L}(X))$

and in this case, $A$ and $B$ are said to be the generating operators of V. Lumer and Rosenblum

completely determined the spectrum of $\Psi$ in terms of the spectra of the generating operators $A$

and $B$ .

Theorem 2([11, Theorem 10]).

$\sigma(\Psi)=\{\sum_{j=1}^{\mathrm{n}}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma(A),\beta\in\sigma(B)\}$ . (0.2)

Theorem 2is aconsiderable extension of Theorem 1and the formula (0.2) claims that the

following analytic type operator equation

$f_{1}(A)Xg_{1}(B)+f_{2}(A)Xg_{2}(B)+\cdots+f_{n}(A)Xg_{n}(B)=\mathrm{Y}$ (0.3)

has aunique solution $X$ for each given $\mathrm{Y}$ if and only if the complex-valued function $H$ of two

variables of the form $H(z, w)=f_{1}(z)g_{1}(w)+\cdots+f_{n}(z)g_{n}(w)$ has no zeros on the Cartesian

product $\sigma(A)\mathrm{x}\sigma(B)$ .
In this article, we analyze the structure of certain parts of the spectrum of an analytic

elementary operator $\Psi$ , in order to aPPly those structures to the solvability problem of the

operator equation (0.3).

For every $T\in \mathcal{L}(X)$ ,

$\sigma_{\mathrm{a}\mathrm{p}}(T):=$ { $\lambda\in \mathbb{C}|\lambda I-T$ is not bounded below}

is called the approximate point spectrum of $T$ . (Here, $S\in \mathcal{L}(X)$ is said to be bounded below if

there exists aconstant $c>\mathrm{O}$ such that $||Sx||\geq c||x||$ for all $x\in X.$ ) On the other hand,

$\sigma_{\mathrm{a}\mathrm{d}}(T):=$ { $\lambda\in \mathbb{C}|\lambda I-T$ is not surjective}

is called the approximate defect spectrum of T. $\sigma_{\mathrm{a}\mathrm{p}}$ and $\sigma_{\mathrm{a}\mathrm{d}}$ are referred to as the approximate

spectra of operators. The main topic of this article is the analysis of the structure of these

spectra of analytic elementary operators.

Our first result is the following.

136



Theorem 3([9, Theorem 1]).

$\sigma_{\mathrm{a}\mathrm{p}}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\mathrm{a}\mathrm{p}}(A),$ $\beta\in\sigma_{\mathrm{a}\mathrm{d}}(B)\}$

and

$\sigma_{\mathrm{a}\mathrm{d}}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\mathrm{a}\mathrm{d}}(A),$ $\beta\in\sigma_{\mathrm{a}\mathrm{p}}(B)\}$ .

An operator $T\in \mathcal{L}(X)$ is said to satisfy the condition $(\alpha)$ if $\sigma(T)=\sigma_{\mathrm{a}\mathrm{p}}(T)=\sigma_{\mathrm{a}\mathrm{d}}(T)$ holds.

As adirect consequence of Theorem 3and the Lumer-Rosenblum theorem (Theorem 2), we can

obtain the following characterizations for the solvability of the operator equation (0.3).

Theorem 4(([10, Theorem 3.2 and Corollary 3.3])). Suppose that $A,$ $B\in \mathcal{L}(X)$ both satisfy the

condition $(\alpha)$ . Then the following three statements on the operator equation (0.3) are mutually

equivalent:

(i) There exists aunique solution $X$ to (0.3) for each $\mathrm{Y}$ ;

(ii) There exists at least one solution $X$ to (0.3) for each $\mathrm{Y}$ ;

(iii) There exists aconstant $c>\mathrm{O}$ such that, if $X_{1}$ (resp. $X_{2}$ ) is asolution to (0.3) for $\mathrm{Y}_{1}$ (resp.

Y2) then $||\mathrm{Y}_{1}-\mathrm{Y}_{2}||\geq c||X_{1}-X_{2}||$ .

Moreover, in [10], we succeeded in showing the following spectral mapping theorems for

the approximate spectra of bounded linear operators on Banach spaces, by means of the semi-

continuity properties of those spectra and Runge’s theorem.

Theorem 5(([10, Theorem 1.2])). For any T $\in \mathcal{L}(X)$ and any f $\in A(\sigma(T))$ , the following

equations hold.

$\sigma_{\mathrm{a}\mathrm{p}}(f(T))=f(\sigma_{\mathrm{a}\mathrm{p}}(T))$

and

$\sigma_{\mathrm{a}\mathrm{d}}(f(T))=f(\sigma_{\mathrm{a}\mathrm{d}}(T))$ .
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As acorollary of Theorem 5, we can obtain the following inclusion relations for the approx-

imate spectra of an analytic elementary operator $\Psi$ . This is aslight progress for getting the

condition for that the inclusion relations in Theorem 3 hold with equality.

Corollary 6(([10, Theorem 3.4])).

$\sigma_{\mathrm{a}\mathrm{p}}(\Psi)\subseteq\{\sum_{j=1}^{n}f_{j}(\alpha_{j})g_{j}(\beta_{j})|\alpha_{j}\in\sigma_{\mathrm{a}\mathrm{p}}(A),$ $\beta_{j}\in\sigma_{\mathrm{a}\mathrm{d}}(B)\}$ .

If x is aHilbert space, then

$\sigma_{\mathrm{a}\mathrm{d}}(\Psi)\subseteq\{\sum_{j=1}^{n}f_{j}(\alpha_{j})g_{j}(\beta_{j})|\alpha_{j}\in\sigma_{\mathrm{a}\mathrm{d}}(A),$ $\beta_{j}\in\sigma_{\mathrm{a}\mathrm{p}}(B)\}$ .
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