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1Introduction

In nature, many kinds of spatial $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ temporal patterns are observed, some of
them are simple and the others are complicated. To understand theoretically the
dynamics of such patterns, many model equations have been proposed and analyzed.
Among them, some sort of reaction- diffusion systems are one of the most familar
classes.

Recently, several reaction-diffusion model equations have been known as examples
exhibiting various complicated behaviors of solutions; self-replicating behavior of pulses
([9] and its references), refleciton of pulses ([5]), the behavior of pulses like elastic
objects (e.g. [7], [6], [11], [10]).

In this report, we consider reaction-diffusion systems

(1.1) $u_{t}=D\Delta u+\mathrm{F}\{\mathrm{u})$ , $t>0$ , $x\in\Omega\in R^{n}$ ,

where $D:=diag(d_{1}, \cdots, d_{N})$ , $u\in R^{N}$ and $F:R^{N}arrow R^{N}$ and suppose they possess
pulse-like localized solutions, say $S(x)$ with $S(x)arrow 0$ as $|x|arrow\infty$ as in Figl.

As the examples of such reaction-diffusion systems, we can show the following
systems.

First, we can mention the Gierer-Meinhardt model (G-M).

(1.2) $\{$

$u_{t}$
$=d_{1} \Delta u-u+\frac{u^{p}}{v^{q}}$ ,

$\tau v_{t}$
$=d_{2} \triangle v-v+\frac{u^{r}}{v^{s}}$ .

If $d_{1}$ is sufficiently small, (L2) has apulse-like solution for $\Omega\subset R$ or $R^{2}$ as in Fig2.
We can also mention the Gray-Scott model as the similar examples to (1.2).

On the other hand, there is an example which shows atraveling pulse- like solution
as follows. In [6], following reaction-diffuison systems which has amoving localized
solution in two dimensional space was proposed:

(1.3) $\{$

$\sigma u_{\mathrm{t}}$ $=$ $\epsilon\Delta u$ $+\epsilon^{-1}f(u, v, w)$ ,
$v_{t}$ $=$ $\Delta v+u-v+h_{1}$ ,

$\tau w_{t}$ $=$ $d\Delta w+u-w+h_{2}$ ,
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$S(x)arrow 0$ $(|x$ $|arrow\infty)$

Figure 1: Pulse-like localized patterns

Figure 2: Pulse-like localized patterns for G-M in 1D.
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Figure 3: Pulse-like localized patterns for G-M in $2\mathrm{D}([4])$ .

where $/(\mathrm{u}, v, w)=ru-u^{3}-k_{1}v-k_{2}w$ . They showed numerically the existence of a
moving localized solution, say travelling spot , under suitable conditions (Fig.4).

Here, we consider how the dynamics of such pulse like localized solutions is if there
exist many pulses.

For the dynamics of interacting pulses, the repulsiveness of spike solutions of (1.2)
and the self-replicating dynamics of the Gray-Scott model have been analyzed by using
weak interaction techniques ([4], [3]).

In this report, we specially consider the following particle-like dynamics of traveling
spot solution ([2]).

In [6], the interaction like elastic objects between multi travelling spots was numer-
ically shown (Fig.5).

Very recently, such particle like dynamics have been also observed in real experi-
ments and several model equations which exhibit similar dynamics have been proposed
([8], [1]).

In order to understand such complicated phenomena, we first consider the existence
of atravelling spot in two dimensional space near acritical point. That is, we assume
the existence of stable (radially)symmetric stationary solutions and when it loses the
stability, we construct atravelling spot as the bifurcating solutions from it.

Secondly, we analyze their interactions when there exist multiple travelling spots.
As aconsequence, we can derive ODEs describing the particle like dynamics. The

reduced ODEs show how pulses interact and reflection occur
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Figure 4: spatial profiles of atravelling spot. Parameter values are $\epsilon=0.1$ , $\sigma=0.04$ ,
$r=1.5$ , $k_{1}=1.0$ , $k_{2}=5.0$ , $h_{1}=1.0$ , $h_{2}=0.8$ , $\tau=0.01$ , $d=7.0$ .

2Construction of travelling spot

Let us consider general types of reaction-diffusion systems with bifurcation param-
eter $k$ ;

(2.1) $u_{t}=\mathcal{L}(u;k)$ , $x\in R^{2}$ , $t>0$ ,

where $\mathcal{L}(u;k)=D\Delta u+F(u;k)$ , $u\in R^{N}$ and $D$ is adiagonal matrix with elements
$\{d_{j}\}$ $(j=1, 2, \cdots, N)$ . We assume following assumptions.

$\mathrm{H}\mathrm{I})$ There exist aradially symmetric standing solution $S(x)$ such that $\mathcal{L}(S(x);k)=0$

and $S(x)arrow 0$ as $|x|arrow\infty$ , where $0=(0, \cdots, 0)\in R^{N}$ .

Let $X=\{L^{q}(R^{2})\}^{N}(q>2)$ and let $L(k)=\mathrm{C}(\mathrm{S}(\mathrm{x});k)$ be the linearized operator of
(2.1) with respect to $S(x)$ and $\Sigma(k)$ be the spectrum of $L(k)$ . Note that $L(k)S_{j}=0(j=$

$1$ , 2) hold and 0is necessarily eigenvalue of $L(k)$ , where $S_{\mathrm{j}}= \frac{\partial S}{\partial x_{j}}$ for $x=(x_{1}, x_{2})$ .

H2) There exists $k=k_{\mathrm{c}}$ such that $\Sigma_{c}=\Sigma(k_{\mathrm{c}})$ consists of two sets $\Sigma_{0}=\{0\}$ and
$\Sigma_{1}\subset\{z\in C;Re\{z)<-\gamma_{0}\}$ for positive constant $\gamma_{0}$ . The generalized eigenspace
corresponding to $\Sigma_{0}$ , say Xo, is given by $X_{\mathrm{O}}=span\{Sj, \Psi j\}$ $(j=1,2)$ , where $\Psi_{j}$ are
functions satisfying $L_{\mathrm{C}}\Psi j$ $=-Sj(j=1,2)$ .

Let $Q_{\mathrm{c}}$ and $R_{c}$ be projections at $k=k_{c}$ with respect to $L_{\mathrm{c}}$ corresponding to the spectral
sets $\Sigma_{0}$ and $\Sigma_{1}$ , respectively. Define afunction $U(x;P, \langle)$ $=S(x-P)+ \sum_{j=1}^{2}\zeta j\Psi j$ for
$P$ , $\zeta=(\zeta_{1}, \zeta_{2})\in R^{2}$ and aset $\mathcal{M}=\{S(x-P);P\in R^{2}\}$ .

We consider (2.1) in the neighborhood of the parameter $k=k_{\mathrm{c}}$ . To do so, we put
$k=k_{c}+\eta$ and rewrite (2.1) as

(2.2) $u_{t}=\mathcal{L}_{c}(u)$ $+\eta g(u)$ ,
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Figure 5: Particle like behavior of travelling spots. Each spot corresponds to the
location of each travailing spot.
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where $\mathcal{L}_{c}(u)=\mathcal{L}(u;k_{c})=D\Delta u+F(u;k_{\mathrm{c}})$ and Cc(u) $=\eta g(u;k)=\mathcal{L}(u;k)-\mathcal{L}_{c}(u)$ .
Then, we have the theorem:

Theorem 2.1 If the initial data $\mathrm{w}(0)$ is in the neighborhood of $\mathcal{M}$ in $\{H^{2}(R^{2})\}^{N}$ ,
then the solution $u(t)$ of (2.2) satisfies

$||u(t)-U(\cdot, P(t),$ $\zeta(t))||_{\infty}=O(|\zeta(t)|^{2}+|\eta|)$

as long as $|\zeta|<\zeta^{*}and|\eta|<\eta^{*}for$ constants ($’>0$ and $\eta^{*}>0$ . $P$ and $\langle$ are estimated
by

$\dot{P}=O(|\zeta(t)|+|\eta|^{2}),\dot{\zeta}=O(|\zeta(t)|^{2}+|\eta|^{2})$ .
To obtain more accurate dynamics of $P$ and $\langle$ , we have to know the explicit form of
the projection Qc. In fact, the equation governing $P$ and $\langle$ is formally derived in the
similar manner to [4] as

(2.3) $Q_{\mathrm{c}} \frac{d}{dt}U=Q_{\mathrm{c}}\mathcal{L}(U;k_{c}+\eta)+h.\mathit{0}.t.$ ,

which is in general very difficult to calculate in explicit way.
In the following, we obtain the explicit form of $Q_{\mathrm{c}}$ under suitable assumptions and

show the dynamics of $P$ and (;.
Since the standing solution $S(x)$ is radially symmetric, we write it as $S(x)=S(r)$ ,

where $r=|x|$ . Define the functional space consisting of radially symmetric functions

by $X_{R}=\{L^{2}(0, \infty)\}^{N}$ with the inner product $\langle u, v\rangle_{R}=\int_{0}^{\infty}r$ $\langle u(r), v(r)\rangle dr$ for $u$

and $v\in X_{R}$ .
Let $L_{R}(k)$ be the restriction of the linearized operator $L(k)$ on $X_{R}$ , that is,

$L_{R}(k)u=D \{u_{\mathrm{r}\mathrm{r}}+\frac{1}{r}u,\}+F’(S(r);k)u$

for $u\in D_{R}=\{u \in H^{2}(0, \infty)\cap X_{R};u_{f}(0)=0\}$ .

H3) The spectrum of $L_{R}(k)$ in $X_{R}$ is uniformly apart from the imaginary axis in the
left hand side for the parameter $k$ in the neighborhood of $k_{c}$ .

Define an operator $\tilde{L}(k)$ on $X_{R}$ by

$\overline{L}(k)u=D\{u_{r}+\frac{1}{r}u\}_{f}+F’(S(r);k)u$

for $u\in\tilde{D}=\{u\in H^{2}(0, \infty)\cap X_{R};u(0)=0\}$ . Here, we note that $\tilde{L}(k)S_{\mathrm{r}}=0$ holds
while $L_{R}(k)S_{\mathrm{r}}\neq 0$ . This means 0is necessarily an eigenvalue of $\tilde{L}(k)$ . Let $\tilde{L}_{\mathrm{c}}=\tilde{L}(k_{c})$

and $\tilde{\Sigma}_{\mathrm{c}}$ be the spectrum of $\tilde{L}_{\mathrm{c}}$ .

H4) $\tilde{\Sigma}_{\mathrm{c}}$ consists of two sets $\tilde{\Sigma}_{0}=\{0\}$ and $\tilde{\Sigma}_{1}\subset\{z\in C;Re(z)<-\gamma_{1}\}$ for apositive
constant $\gamma_{1}$ . The generalized eigenspace corresponding to $\tilde{\Sigma}_{0}$ , say $\tilde{X}_{0}$ , is given by
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$\overline{X}_{0}=span\{S_{r}, \psi\}$ , where $\psi$ is afunction satisfying $\tilde{L}_{c}\psi=-S_{\mathrm{r}}$ .

Let $\tilde{L}_{c}^{*}$ be the adjoint operator of $\tilde{L}_{c}$ in $X_{R}$ . Note that it is given by

$\overline{L}_{c}^{*}u=D\{u_{f}+\frac{1}{r}u\}_{f}+{}^{t}F’(S(r);k_{c})u$.

$\tilde{L}_{c}^{*}$ has also similar properties to $\tilde{L}_{c}$ , that there exist eigenfunctions $\phi^{*}$ and $\psi^{*}$ in
$X_{R}$ satisfying $\tilde{L}_{\mathrm{c}}^{*}\phi^{*}=0$ and $\tilde{L}_{\mathrm{c}}^{*}\psi^{*}=-\phi^{*}$ .

Proposition 2.1 Eigenfunctions $\psi$ , $\phi^{*}$ and $\psi^{*}$ are uniquely determined by the nor-
malization

$\langle \psi, S_{f}\rangle_{R}=\langle\psi, \psi^{*}\rangle_{R}=0$ , $\langle S_{\mathrm{r}}, \psi^{*}\rangle_{R}=1$ .

We assume eigenfunctions are normalized according to the proposition. Put

$\Psi(r)=\int_{0}^{f}\psi(r)dr-\int_{0}^{\infty}\mathrm{f}(\mathrm{r})\mathrm{d}\mathrm{r}$ $\Phi^{*}(r)=\int_{0}^{f}\phi^{*}(r)dr-\int_{0}^{\infty}\phi^{*}(r)dr$ ,

$\Psi^{*}(r)=\int_{0}^{f}\psi^{*}(r)dr-\int_{0}^{\infty}\psi^{*}(r)dr$ .

Then, it is easily checked that

$L_{c}\Psi_{j}=-S_{j}$ , $L_{\mathrm{c}}^{*}\Phi_{j}^{*}=0$ , $L_{c}^{*}\Psi_{j}^{*}=-\Phi_{j}^{*}$

hold for $j=1,2$, where $\Psi_{j}=\frac{\partial\Psi}{\partial x_{j}}$ and so on. By this, we have

Proposition 2.2 The projection $Q_{\mathrm{c}}$ is given by

$\pi Q_{\mathrm{c}}u$ $=$ $\int_{0}^{2\pi}$ $\langle u, \phi^{*}\rangle_{R}\cos\theta d\theta\cdot\Psi_{1}+\int_{0}^{2\pi}$ $\langle u, \psi^{*}\rangle_{R}\cos\theta d\theta\cdot$ $S_{1}$

$+ \int_{0}^{2\pi}$ $\langle u, \phi^{*}\rangle_{R}\sin\theta d\theta\cdot\Psi_{2}+\int_{0}^{2\pi}$ $\langle u, \psi^{*}\rangle_{R}\sin\theta d\theta\cdot S_{2}$

for $u$ $=u(r, \theta)\in X$ .

By using this expression of $Q_{c}$ , we can obtain the explicit dynamics of $P$ and (;.

Theorem 2.2 Under assumptions $HI$) -H4), $P(t)$ and $\zeta(t)$ in theorem 2.1 satisfy

$\{$

$\dot{P}$

$=$ $\zeta+O(|\zeta(t)|^{3}+|\eta|^{\frac{\mathrm{s}}{2}})$ ,
$\dot{\zeta}$

$=$ $-\nabla W+O(|\zeta(t)|^{4}+|\eta|^{2})$

as long as $|\zeta(t)|<\zeta^{*}$ and $|\eta|<\eta^{*}$ , where $W=W( \zeta)=\frac{1}{4}M_{1}|\zeta|^{4}+\frac{1}{2}M_{2}\eta|\zeta|^{2}$ for
constants $M_{1}$ and $M_{2}$ .
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Remark 2.1 The values of constants $M_{J}$ in Theorem 2.2 are obtained in explicit forms
while we will not show them in this report, which will be written in $[?]$. For (1.3), it is
numerically checked that both $M_{1}$ and $M_{2}$ are positive.

Remark 2.2 Theorem 2.2 suggests that $\langle$ denotes the velocity of the spot $S$ because $P$

denotes the location of the spot. $\langle$ also stands for the deformation from radial symmetry
of spot since the solution $u(t, x)$ is close to the function $U(x;P(t), \zeta(t))$ as in Theorem
2.1.

Corollary 2.1 Suppose $M_{1}$ and $M_{2}$ are positive. If $\eta>0$ , there exists a stable standing
spot with profile $S(x)+O(|\eta|)$ while if $\eta<0$ , there exists a travelling spot with velocity

$(|\zeta(t)|=)\sqrt{\frac{-2M_{2}\eta}{M_{1}}}(1+o(1))$ .

3Interaction of two spots

Let us consider how two travelling spots interact.

H5) The standing spot $S(x)$ has an aysmptotic form $S(r) arrow\frac{1}{\sqrt{r}}e^{-\alpha \mathrm{r}}a(rarrow\infty)$ for a

constant $\alpha>0$ and anonzero vector $a\in R^{N}$ .

Remark 3.1 The asymptotic form in $H\mathit{5}$) is true for many model equations in $R^{2}$

such as the Gierer-Meinhardt model ([4]) and the Gray-Scott model ([12]).

Define afunction

$\mathrm{U}(\mathrm{x};P_{1}, P_{2}, \zeta_{1}, \zeta_{2})=\sum_{j=1}^{2}\{S(x-Pj)+\langle\zeta_{j}, \nabla_{x}\Psi(x-Pj))\}$

for $P_{j}$ , $\zeta_{j}\in R^{2}$ and define aset

$\mathrm{u}(\mathrm{t},\mathrm{x})=\{S(x-P_{1})+S(x-P_{2});|P_{1}-P_{2}|=h>h^{*}\}$ .
Theorem 3.1 There exists a sufficiently large $h^{*}>0$ such that if the initial data $u(0)$

is sufficiently close to the set $\mathcal{M}(h^{*})$ , then the solution $u(t)$ of (2.2) keeps close to
$U(x;P_{1}, P_{2}, \zeta_{1}, \zeta_{2})$ with

$u(t)=U(x;P_{1}, P_{2}, \zeta_{1}, \zeta_{2})+O(e^{-\alpha h}+|\zeta_{1}|^{2}+|\zeta_{2}|^{2}+|\eta|)$

and for $j=1,2$

(3.1) $\{$

$\dot{P}_{j}$ $=$ $\zeta_{j}\mp M_{0}\frac{1}{\sqrt{h}}e^{-\alpha h}e+O(e^{-2\alpha h}+|\zeta_{1}|^{3}+|\zeta_{2}|^{3}+|\eta|^{\frac{3}{2}})$ ,

$\dot{\zeta}_{j}$ $=$ $- \nabla W(\zeta_{j})\mp\overline{M}_{0}\frac{1}{\sqrt{h}}e^{-\alpha h}e+O(e^{-2\alpha h}+|\zeta_{1}|^{4}+|\zeta_{2}|^{4}+|\eta|^{2})$

hold as long as $h>h^{*}$ , $|\zeta_{j}(t)|<\zeta^{*}$ and $|\eta|<\eta^{*}$ for constants $M_{0}$ and $\overline{M}_{0}$ , where

$h=|P_{2}-P_{1}|$ and $e= \frac{1}{h}(P_{2}-P_{1})$ .
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Remark 3.2 Constants $M_{0}$ and $\overline{M}_{0}$ are obtained in explicit way as constants $M_{1}$ and
$M_{2}$ stated in Remark 2.1 while we will not show them in this report, which will be
written in $\Gamma.$]. For $(\mathit{1}.\mathit{3})_{f}$ it is numerically checked that both $M_{0}$ and $\overline{M}_{0}$ are positive.

In the rest of this report, we will intuitively consider the dynamics of $P_{j}$ and $\zeta_{j}$ in
the case of $\eta<0$ (the case of the existence of atravelling spot). Suppose both $M_{0}$ and
$\overline{M}_{0}$ are positive. To understand the dynamics of $\zeta_{j}$ intuitively, we consider asimplified
ODE

(3.2) $\dot{\zeta}_{1}=-\nabla W(\zeta_{1})-Ke$

for apositive constant $K$ . Since the right hand side of (3.2) is written $\mathrm{b}\mathrm{y}-\nabla W_{1}(\zeta_{1})$ ,
where $W_{1}(\zeta)=W(\zeta)+K$ $\langle\zeta, e\rangle$ , (3.2) has one stable equilibrium with a $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}-\beta e$

for $\beta>0$ . Thus, $\zeta_{1}$ is pushed toward the direction $\mathrm{o}\mathrm{f}-e$ .
Similarly in (3.1), $\zeta_{1}$ is pushed toward the direction $\mathrm{o}\mathrm{f}-e$ and $\zeta_{2}$ is done toward

the direction of $e$ . As aconsequence, approaching two spots push each other toward
opposite directions and they eventually part from each other (Fig.6).
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Figure 6: Movements of $P_{1}(t)$ and $P_{2}(t)$ which is the solution of ODE consisting of the
principal parts of (3.1). Each dot stands for $P_{j}(t)$ in every time unit
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