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Introduction

In this note we consider the (linear) elastic wave equation, and construct
asymptotic expansions (solutions) of the waves reflected by boundaries.
The simple and typical equation of the wave phenomena is the d’Alembert
one. For this equation there are many results on construction of the
solutions, formulation of scattering theories, examination of the energy
decay, etc. The elastic equations are often regarded as an analogy to
the d’Alembert one containing alittle more complex phenomena, or as a
concrete example of general hyperbolic systems.

The elastic equations, however, seem to possess their own characteristic
properties diHerent from the d’Alembert one and the general systems, and
should be examined by methods suiting the elastic case. We know that in
the elastic waves there exist several modes of the body waves (e.g., P-wave,
$\mathrm{S}$-wave, etc), the surface waves (e.g., the Rayleigh wave, the evanescent
wave, etc.) and so on. In order to examine those waves, we should develop
methods suitable to the elastic waves.

To express behavior of the waves, we often employ asymptotic expan–
sions (solutions). Those expansions $u(t, x)$ mean functions of the form

(0.1) $u(t,x)$ $= \sum_{j=4}^{N}\rho j(t -\varphi(x))v^{j}(t,x)$ .

Here, $\varphi(x)$ (the phase function) and $\tau\dot{l}$ (the amplitude function) are chosen
so that $u$ satisfies the wave equation approximately. $m(s),\rho_{1}(s)$ , $\ldots$

$(s\in$
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R) are scalar-valued functions or distributions satisfying

$\frac{d\rho_{j}}{ds}(s)=\rho_{j-1}(s)$ $(j=1,2, \ldots)$ ,

e.g., $m(s)$ $=\delta(s)$ , $\rho_{1}(s)=h(s)$ (the Heaviside function) , .. . or $\rho \mathrm{o}(s)=$

$e^{\sigma s}.\cdot$ , $\rho_{1}(s)=(i\sigma)^{-1}e^{i\sigma s}$ , ... $(\sigma>0)$ . Many authors have made the aeymp-
totic solutions for elastic equations. Karal-Keller [1] made them (of the
type $\rho_{j}(s)=(i\sigma)^{-j}e^{\dot{l}\sigma s})$ for the isotropic equation in various cases of $\mathrm{r}\triangleright$

flection. Soga [5] has dealt with the anisotropic equation concerning the
$\Psi \mathrm{p}\mathrm{e}$ $\rho_{j}(s)=(i\sigma)^{-j}e^{\sigma s}$.

The main goal in this note is to construct the asymptotic solutions of
total reflection for the incident wave of the Dirac $\delta$-function type (see
Theorem 3.1 in \S 3). For the type $\rho_{j}(s)$ $=(i\sigma)^{-j}e^{\sigma s}$ those solutions have
been made in Soga [7]. Because of elasticity we can accomplish the con-
struction so that sum of the body wave and the evanescent wave coincides
with any incident wave on the boundaries. In general hyperbolic systems
this is not necessarily expected without aditional assumptions. For the
proof we apply the theory of complex functions to the symbol of the ela&
tic operator, which is developed in Soga [7], Kawashita-Ralston-Soga [2],
etc. The main part of the result is described in Soga [9].

\S 1. Equations and Assumptions

Let $\Omega$ be adomain in $\mathbb{R}^{n}$ , and consider the (lnear) elastic wave equation

(1.1) $(\partial_{t}^{2}-L(x, \partial_{x}))u(t, x)=0$ in $\mathbb{R}\mathrm{x}\Omega$,

where $u$ is the displacement vector and $L(x, \partial_{x})$ is of the form

$L(x, \partial_{x})=\sum_{\mathrm{j}=1}^{n}a_{\dot{\mathrm{a}}j}(x)\partial_{x}.\cdot\partial_{x_{\mathrm{j}}}+\sum_{\dot{l}=1}^{n}b:(x)\partial_{x}‘+c(x)$ .

The coefficients $\alpha_{j}.$ , $b_{\dot{0}}$ and $c$ are matrices whose components consist of
bounded real-valued $C^{\infty}$ functions with bounded derivatives. We $\ovalbox{\tt\small REJECT} \mathrm{e}$

that $a_{ij}(x)$ satisfy the following assumptions at each $x$ .
$’‘ \mathrm{A}.1)$ $\alpha_{j}.(x)={}^{t}a_{j_{\dot{l}}}(x)$ , $i,j=1,2$, $\ldots$ , $n$ .
$\mathrm{r}_{\mathrm{A}.2)}$

‘
$L_{0}(x,()$ $\equiv\sum_{=1}^{n_{\dot{O}}}\mathrm{h}.j(x)\xi_{}\xi_{j}$ is positive definite
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(A.3) The eigenvalues of $L_{0}(x, \xi)$ are of constant multiplicity
on $\mathbb{R}^{n}$ x $(\mathbb{R}^{n}-\{0\})$ .

There are several kinds of the elastic (body) waves, e.g., $\mathrm{P}$-wave and
$\mathrm{S}$-wave in the isotropic case, and they are classified by means of the eigen-
values of $L_{0}(x, \xi)$ . These kinds are called the modes. Rom the $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{I}\succ$

tions (A.2) and (A.3) we can denote the eigenvalues of $L_{0}(x, \xi)$ by the $C^{\infty}$

functions $\lambda_{j}(x,\xi)$ on $\mathbb{R}^{n}\mathrm{x}(\mathbb{R}^{n}-\{0\})$ satisfying

$(0<)\lambda_{1}(x, \xi)<\lambda_{2}(x, \xi)<\cdots<\lambda_{d}(x,\xi)$.

Here, we add an assumption on the eigenvalues: The slowness surface $\Sigma_{j}$

$=\{\xi : \lambda_{j}(x,\xi)=1\}$ satisfies:

(A.4) Every $\Sigma_{j}$ is convex and the Gaussian curvature does not vanish.

Prom this assumption it follows that for avector y7 $\in \mathbb{R}^{n}-\{0\}$ with
$\lambda_{j}.(x, \eta)<1$ and aunit vector $\nu$ normal to $\eta$ , there exist two roots $z$ $=$

$z_{\pm}^{J}(x, \eta)$ of the equation $\lambda_{j}(x, \eta+z\nu)$ $=1$ which satisfy

$\lambda_{j}(x,\eta+z_{\pm}(x,\eta)\nu)=1$ , $\pm\partial_{\nu}\lambda_{j}(x,\eta+\mathrm{a}(x, \eta)\nu)>0$ .

$z_{+}(x,\eta)(z_{-}(x,\eta))$ is called the outgoing (incoming) root with respect to
$\nu$ , which is connected with direction of the propagation of the waves. And
we say that $\eta$ is non-glancing if $\partial_{\nu}\lambda_{k}(x,\eta+z\nu)$ $\neq 0$ for all $k$ and real $z$

satisfying $\lambda_{k}(x,\eta+z\nu)$ $=1$ .

fi2. Procedures of Construction of Asymptotic Expansions

In this section, assuming that the conditions (A.1) $\sim(\mathrm{A}.4)$ are satisfied,
we describe the procedures of construction of the asymptotic expansions.
This is asummary of the procedures in the papers by Soga [5,6,8]. The
basic idea is similar to Lax’s [4] for general hyperbolic systems, but fairly
different concerning treatment of the amplitude functions, etc.

At first, we explain the basic profile functions (i.e., the functions $\rho j(s)$

in (0.1) $)$ .
(i) $\delta$-function type: Let $\delta(s)$ be the Dirac $\delta$-function, and set

(2.1) $\eta(s)=\delta(s)$ ,
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$\rho_{j}(s)=0$ $(s\leq 0)$ , $=s^{j-1}/(j-1)!$ $(s>0)$ for $j=1,2$ , $\ldots$

(ii) Oscillatory type: Let $\sigma$ be apositive parameter, and set

(2.2) $\rho_{j}(s)=(i\sigma)^{-j}e^{\sigma s}.\cdot$ $(j=0,1, \ldots)$ .

(iii) Logarithmic type: Extend the variable $s$ to the complex one $z=$

$s+ir$ $(s, r \in \mathbb{R})$ , and set

(2.3) $\tilde{\eta}(z)=(2\pi i)^{-1_{Z}-1}$ , $\tilde{\rho}_{1}(z)=(2\pi i)^{-1}\log z$ ,

$\tilde{\rho}_{j}(z)$ $=(2 \pi i)^{-1}\int_{0}^{z}\frac{(z-\zeta)^{j-2}}{(j-2)!},\log\zeta d\zeta$ $(j=2,3, \ldots)$ ,

where we take abranch (of $\log z$) connected with $\arg z=0$ when ${\rm Im}$

$z=0$ and ${\rm Re} z>0$ , and the integral on apath linking 0to $z$. We use the
notation pj instead of $\rho_{j}$ in the case of the logarithmic type.

In (2.1) and (2.3), the singularity of $\rho_{j}$ and $\tilde{\rho}_{j}$ at $s$ (and $z$) $=0$ is
smoother as $j$ increases. In (2.2), the order of multiplication of (ia)-1 is
larger when $j$ is larger, and then $|\rho_{j}|$ tends to 0faster as $\sigmaarrow\infty$ . Thus,
$|\rho j|$ is closer to 0in some senses when $j$ is larger.

In this note we consider the case that awave of the 5-function type hits
the boundary and is reflected totally. Then the reflected waves consist of
not only the $\delta$-function type but also the logarithmic type. Therefore, we
employ the logarithmic type.

Inserting the function (0.1) into $(\partial_{t}^{2}-L(x,\partial_{x}))u(t,x)$ , we can write it
in the following way.

$(\partial_{t}^{2}-L(x,\partial_{x}))u(t,x)=\rho_{\acute{\acute{0}}}(t-\varphi)\{I-L_{0}(x, \partial_{x}\varphi)\}v^{0}(t, x)$

(2.4) $+\rho_{0}’(t-\varphi)(\partial_{t}-H)v^{0}(t,x)$

$+\eta(t-\varphi)Lv^{0}(t, x)+\cdots$ ,

where $H= \sum_{p,q=1}^{n}(a_{m}+a_{w})(\partial_{x_{\mathrm{p}}}\varphi)\partial_{x_{q}}-\sum_{p=1}^{n}b_{\mathrm{p}}(\partial_{x_{\mathrm{p}}}\varphi)+(L\varphi-c)$ . We
choose the phase function $\varphi$ and the amplitude functions $v^{j}(t,x)$ induc-
tively so that each of terms multiplied by $\rho_{\acute{\acute{0}}},\rho_{0}’$ , .. .. vanishes (except the
last remainder term). Let us explain the procedure of this choosing.

To eliminate the term in (2.4) containing $\rho_{\acute{\acute{0}}}(t-\varphi(x))$ , we require

(2.3) $\det(I -L_{0}(x,\partial_{x}\varphi))=0$ , $v^{0}\in \mathrm{K}\mathrm{e}\mathrm{r}(I -b(x,\partial_{x}\varphi))$ ,
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where $\mathrm{K}\mathrm{e}\mathrm{r}(I-L_{0}(x, \partial_{x}\varphi))=\{v\in \mathbb{C}^{n};(I-L_{0}(x, \partial_{x}\varphi))v=0\}$. The former
in (2.5) implies that $\lambda_{l}(x, \partial_{x}\varphi)=1$ for some $l$ . This is solved by the
Hamilton-Jacobi method, as is well known. For avalue imposed on the
$(n -1)$-dimensional surface there exist two kinds of the solutions of this
equation which are called the outgoing and incoming ones corresponding
to the roots $\dot{d}_{+}$ and $i_{-}$ stated in \S 1 (in detail, see the paper of Soga [7]).
Thus the phase function $\varphi(x)$ is determined.

The amplitude functions $v^{j}(x)$ are constructed as folows. We denote
by $P_{l}=P_{l}(x,\partial_{x}\varphi)$ the projection to the eigenspace of $\lambda_{l}(x,\partial_{x}\varphi)$ . We
decompose $v^{j}$ into $v^{j}=P_{l}v^{j}+(I-P_{l})v^{j}$ and determine the following
parts inductively:

$(I -P_{l})v^{0}$ , $P_{l}v^{0}$ , $(I -P_{l})v^{1}$ , $P_{l}v^{1}$ , $\ldots$ .
Firstly, in view of (2.5) we set $(I -P_{l})v^{0}=0$ , and rewrite (2.4) as follows:

$(\partial_{t}^{\mathit{2}}-L(x,\partial_{x}))u(t, x)$

$=\rho_{0}’(t-\varphi)\{I-L_{0}(x, \partial_{x}\varphi)\}v^{0}(t, x)+\rho_{0}’(t-\varphi)P_{l}^{*}(\mathrm{a}-H)P_{l}v^{0}(t,x)$

$+m(t -\varphi)\{(I-P_{l}^{*})(I-L)(I-P_{l})v^{1}+(I -P_{l}^{*})(\mathrm{a}-H)P_{l}v^{0}\}$

$+\rho_{1}(t-\varphi)\{P_{l}^{*}(\mathrm{d}-H)P_{l}v^{1}+\cdots\}+\cdots$

Taking appropriate bases in $P/Rn$, we can reduce the equation for $P_{l}^{*}(\mathrm{a}-$

$H)P_{l}v^{0}$ to asymmetric hyperbolic system, and choose $P_{l}v^{0}$ so that $P_{l}^{*}(\mathrm{a}-$

$H)P_{l}v^{0}=0$ . Next, by the Cramer theorem we can solve the lnear alge-
braic equation $(I -P_{l})(I-L)(I-P_{l})v^{1}=-(I-P_{l}^{*})(\mathrm{a}-H)P_{l}v^{0}$ . And
we can determine $(I -P_{l})v^{1}$ so that the term containing $m(t-\varphi)$ van-
ishes. Repeating these processes, we can determine the further terms of
$(I -P_{l})\dot{\theta}^{-1}$ and $P_{l}v^{j}$ inductively.

\S 3. Waves of Total Reflection

In this section we add the Dirichlet boundary condition $u|m=0$ to
the equation (1.1), and consider the case that awave of the single mode
$\underline{\mathrm{h}\mathrm{i}}\mathrm{t}\mathrm{s}$ the boundary $\partial\Omega$ and is reflected. We take the total reflection into
consideration. In general, the reflected waves contain the modes different
from the incident one, i.e., mode- onversion happens. We assume that
the incident wave $u_{-}(t, x)$ is of $\delta$-function type and has an asymptotic
expansion of the form

$u_{-}(t, x)=\delta(t-\varphi_{-}(x))v_{-}^{0}(t,x)+h(t -\varphi_{-}(x))v_{-}^{1}(t,x)$ $+\cdots$ ,
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where $\varphi_{-}$ satisfies $\lambda_{k}(x, \partial_{x}\varphi-)=1$ for some $k$ , and the wave front goes
toward the boundary, which means that $(\partial_{\xi}\lambda_{k}(x, \partial_{x}\varphi_{-})|m)\cdot\nu$ $<0$ for the
unit outer normal vector $\nu$ on on $\cap U$, where $U$ is asmall neighborhood
$0 \mathrm{f}\bigcup_{t\in \mathrm{R}_{\dot{\theta}}\geq 0\sup \mathrm{p}[v_{-}^{j}(t,\cdot)]}$ .

We suppose that the reflected waves have the following asymptotic ex-
pansion with the phase functions $\varphi_{+}^{l}$ $(l =1, \ldots,d)$ determined by the
equation $\lambda_{l}(x, \partial_{x}\varphi_{+}^{l})=1$ and $(\partial_{\xi}\lambda_{l}(x, \partial_{x}\varphi_{+}^{l})|\partial\Omega)\cdot\nu$ $>0$ :

(3.1) $u_{+}(t, x)= \sum_{l=1}^{d}${ffl $(t-\varphi_{+}^{l}(x))v_{+}^{l0}(t, x)$

$+\rho_{1}(t-\varphi_{+}^{l}(x))v_{+}^{l1}(t,x)+\cdots\}$ .

Adding the boundary condition due to the original condition $(u_{-}|_{\mathfrak{W}}+$

$u_{+}|_{\partial\Omega}=0)$ , we solve the equations for the phase functions $\varphi_{+}^{l}$ and the
amplitude functions $v_{+}^{lj}$ (as is described in the previous section). These
processes can be accomplished if the $\mathrm{m}\mathrm{g}\mathrm{e}$ between $\partial_{x}\varphi-|_{\mathrm{f}\mathrm{f}1}$ and $-\nu$ is
close to 0on (M) $\cap U$ (in detail, see Soga [5]). When the angle is far from
0, however, the glancing phenomenon or the total reflection happens. And
in (3.1) we need to employ different forms.

Let us construct the asymptotic expansion in the case where total re-
flection happens. In this case, the non-real roots $z_{\pm}^{k’+1}$ , $\ldots$ , $z_{\pm}^{d’}$ appear in
the equation

$\det$ $(I -L_{0}(x’, d_{x}\varphi_{-}+z\nu))=0$ $(x’\in\partial\Omega)$ ,

where $\theta_{x}\varphi_{-}=\partial_{x}\varphi_{-}-(\partial_{x}\varphi_{-}\cdot\nu)\nu({\rm Im} z_{+}^{l}=-{\rm Im} z_{-}^{l}>0)$. Let the other
roots $z_{\pm}^{1}$ , $\ldots$ , $z_{\pm}^{k’}$ be all real. The part of the evanescent waves is connected
with the non-real roots $z_{\pm}^{k’+1}$ , $\ldots$ , $z_{\pm}^{d’}$ , and is added to (3.1). For the non-
real roots $z_{\pm}^{k’+1}$ , $\ldots$ , $z_{\pm}^{d’}$ we assume that for any $\eta$ near $\theta_{x}\varphi_{-}$

(A.5) multiplicity of $z_{\pm}^{l}$ is constant and coincides with
$m$.

$\mathrm{K}\mathrm{e}\mathrm{r}(I-L_{0}(d,\eta+z_{\pm}^{l}\nu))$ .

This assumption is satisfied in the isotropic case.
For the evanescent waves also we need to construct the (complex-valued)

phase functions $\tilde{\varphi}_{\pm}^{l}(x)$ satisfying $\tilde{\varphi}_{\pm}^{l}|_{\partial\Omega}=\varphi-|\partial\Omega$ , $\partial_{\nu}\tilde{\varphi}_{\pm}^{l}|\partial\Omega=z_{\pm}^{l}(d,\theta_{x}\varphi-)$

and $\det(I-L\mathrm{o}(x,\partial_{x}\tilde{\varphi}_{\pm}^{l}))=0$. But we cannot do so exactly, and only
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can solve the equation modulo $\{$dist ($x$ , $\partial\Omega$ ) $\}^{N}$ for any $N>0$ , which is
useful enough. Namely, for $l=k’+1$ , $\ldots$ , $d’$ we get the complex-valued
functions $\tilde{\varphi}_{\pm}^{l}(x)$ satisfying

(3.2) $\tilde{\varphi}_{\pm}^{l}(x’+r\nu)$ $\sim\varphi-(x’)+z_{\pm}^{l}(x’, \partial_{x}’\varphi-)r$ $+\cdots$

as $r$
$=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}$ $(x,\partial\Omega)arrow 0$ ,

$\det$ $(I -L_{0}(x,\partial_{x}\tilde{\varphi}_{\pm}^{l}))=0$ modulo $r^{N}$ ,

where $x’$ is apoint on $\partial\Omega$ with $r$ $=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x’, x)$ . The construction of these
functions $\tilde{\varphi}_{\pm}^{l}$ is described in \S 3 of Soga [7].

For the complex variable $z=s+ir$ $(s, r\in \mathrm{R})$ we set

$\tilde{\rho}_{0}(z)=(2\pi i)^{-1}z^{-1}$ , $\tilde{\rho}_{1}(z)=(2\pi i)^{-1}\log z$ ,

$\tilde{\rho}_{j}(z)$ $= \frac{1}{2\pi i(j-2)!}\int_{0}^{z}(z-\zeta)^{j-2}\log\zeta d\zeta(j=2,3, \ldots)$ ,

where we take abranch (of $\log z$) connected with $\arg z$ $=0$ when ${\rm Im}$

$z=0$ and ${\rm Re} z$ $>0$ , and the integral on apath linking 0to $z$ . Adding the
terms $\tilde{\rho}_{j}(\tilde{\varphi}_{\pm}^{l}(x)-t)\tilde{v}_{\pm}^{lj}(t, x)$ to the sum (3.1), we introduce an expansion
of the form

(3.3) $u_{+}(t,x)= \sum_{l=1}^{k’}\sum_{j=0}^{N}\rho j(t-\varphi_{+}^{l}(x))v_{+}^{lj}(t,x)$

$+ \sum_{l=k+1}^{d’},\sum_{j=0}^{N}\{\tilde{\rho}j(\tilde{\varphi}_{+}^{l}(x)-t)\tilde{v}_{+}^{lj}(t, x)+\tilde{\sqrt}j(\tilde{\varphi}_{-}^{l}(x)-t)\tilde{v}_{-}^{lj}(t,x)\}$ .

Then this can be the asymptotic expansion of the reflected wave:

Theorem 3.1. Let $\partial_{x}\varphi-be$ non-glaning on $U\cap \mathit{8}O$ , and assume that the
conditions (A.1) $\sim(\mathrm{A}.5)$ are satisfied. Then we can construct the asymp-
toke expansion of $u_{+}(t, x)$ of the form (3.3) so that it satisfies the required
boundary condition, $i.e.$ , $u_{-}|\mathfrak{W}+u_{+}|m=0$.

In the case where the expansions are of the oscillatory type $\sum_{j=4}^{\infty}e^{\sigma\varphi(x)}$

$\tau\dot{F}(x)(i\sigma)^{-\mathrm{j}}$ , we have obtained atheorem corresponding to Theorem 3.1
(cf. Theorem 3.1 in Soga [7]). $\mathrm{h}$ this case the evanescent waves decay
exponentially in distance from an while they do not do so in the above
Theorem 3.1.
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Proof of Theorem 3.1 is based on the folowing Lemma and Proposition.

Lemma 3.2. $\tilde{\rho}_{j}(s\pm ir)$ are continuous functions of $r\geq 0$ with the $value$

in the Sobolev space $H_{loc}^{j-1}(\mathbb{R}_{s}^{1})$ , $ond$ satisfy

$\tilde{\mu}_{1}(s\pm i0)=(4\pi i)^{-1}\mathrm{V}.\mathrm{P}$. $\frac{1}{s}\pm 2^{-1}\delta(s)$ ,
$\tilde{\rho}_{1}(s\pm i\mathrm{O})=(2\pi i)^{-1}\log|s|\pm 2^{-1}h(-s)$ ,

$\tilde{\rho}_{j}(s\pm i0)=\frac{1}{2\pi i}\int_{0}^{s}\frac{(s-\tilde{s})^{j-2}}{(j-2)!}\log|\tilde{s}|d\tilde{s}\pm\frac{1}{2(j-1)!}\dot{d}^{-1}h(-s)(j\geq 2)$ .

Proposition 3.3. Let ffie assumptions in Theorem 3.1 be satisfied, and
let $\varphi_{+}^{l}(x)$ and $\tilde{\varphi}_{+}^{l}(x)$ be the phase firnctioru determined earlier. Then we
have

$\sum_{l=1}^{k’}\mathrm{K}\mathrm{e}\mathrm{r}[I -L_{0}(x’,\partial_{x}\varphi_{+}^{l}(x’))]+\sum_{l=k+1}^{d’},\mathrm{K}\mathrm{e}\mathrm{r}[I -L_{0}(x’,\partial_{x}\tilde{\varphi}_{+}^{l}(x’))]$

$=\mathbb{C}^{n}$ for $x’\in\partial\Omega$ $\cap U$.

This proposition is obtained by Soga [7] (cf. Theorem 2.2 in [7]). We
shall describe an outlne of its proof in the next section. The method
of the proof is developed in Kawashita-Ralston-Soga [2], and is alittle
different from the one in Soga [7].

PROOF of Theorem 3.1. Noting that $\tilde{\rho}_{j+1}’(z)=\tilde{\rho}_{j}(z)(j\geq 0)$ , we insert
the expansion $u= \sum\tilde{\rho}_{j}(\tilde{\varphi}_{\pm}^{l}-t)\tilde{v}_{\pm}^{lj}$ into $(\partial_{t}^{2}-L)u$ . Then, in order to
eliminate each of the terms with $\tilde{\rho}_{j}’(\tilde{\varphi}_{\pm}^{l}-t)(j\geq 0)$, we have the equations
for $\tilde{v}_{\pm}^{lj}$ in the same way as in \S 2. But we cannot apply the same methods to
these equations since the coefficients are complex-valued. In the same way
as for $\tilde{\varphi}_{\pm}^{l}$ in (3.3), we solve them modulo $r^{N}$ for any $N>0$ considering
the boundary condition for $\tilde{\sqrt}j(\tilde{\varphi}_{\pm}^{l}(x)-t)\tilde{v}_{\pm}^{l}|ffl$.

Prom (3.2) and Lemma 3.2 we see that

$\tilde{\rho}_{j}(\tilde{\varphi}_{+}^{l}-t)|_{\partial\Omega}-\tilde{\rho}_{j}(\tilde{\varphi}_{-}^{l}-t)|m=\rho_{j}(t-\varphi_{-})|m$ .

Furthermore, the projections $P_{\pm}^{l}$ to $\mathrm{K}\mathrm{e}\mathrm{r}(I-L_{0}(x,\partial_{x}\tilde{\varphi}_{\pm}^{l}))$ satisfy $P_{+}^{l}\mathbb{C}^{n}=$

$P_{-}^{l}\mathbb{C}^{n}$ on $\partial\Omega$ . Therefore, setting $P_{+}^{l}\tilde{v}_{+}^{l}|_{\partial\Omega}=-P_{-}^{l}\tilde{v}_{-}^{l}|\partial\Omega$ , we have
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I $\rho_{j}(t-\varphi_{+}^{l})P_{l}v_{+}^{lj}|_{\partial\Omega}+\sum_{l=k+1}^{d’},\{\tilde{\rho}_{j}(\tilde{\varphi}_{+}^{l}-t)P_{+}^{l}\tilde{v}_{+}^{lj}+\tilde{\rho}_{j}(\tilde{\varphi}_{-}^{l}-t)P_{-}^{l}\tilde{v}_{-}^{lj}\}|_{\partial\Omega}$

$= \rho_{j}(t -\varphi_{-})\{\sum_{l=1}^{k’}P_{l}v_{+}^{lj}|_{\partial\Omega}+\sum_{l=k+1}^{d’},P_{+}^{l}\tilde{v}_{+}^{lj}|_{\partial\Omega}\}$ .

If we can make $\{\sum_{l=1}^{k’}P_{l}v_{+}^{lj}|\partial\Omega+\sum_{l=k}^{d’},{}_{+1}P_{+}^{l}\tilde{v}_{+}^{lj}|\partial\Omega\}$ coincide with any data,
we obtain the expansion equal to $-u_{-}|\partial\Omega$ modulo $r^{N}$ . This coincidence
follows from Proposition 3.3.

Thus we can determine $\varphi_{+}^{l}$ , $v_{+}^{lj}$ and $\tilde{\varphi}_{\pm}^{l},$
$v\sim lj\pm$ inductively so that the

expansion (3.3) satisfies the equation and the boundary condition modulo
$r^{N}$ . $\rho_{j}(t -\varphi_{+}^{l})(1\leq l \leq\#)$ and $\tilde{\rho}_{j}(\tilde{\varphi}_{\pm}^{l}-t)$ $(k’+1\leq l \leq d’)$ are $C^{j-2}$ on
$\overline{\Omega}\cap U$ . Furthermore, $r^{N}\tilde{\rho}_{j}(\tilde{\varphi}_{\pm}^{l}-t)$ $(k’+1\leq l \leq d’)$ is $C^{j+N-2}$ on $\overline{\Omega}\cap U$.
This implies that difference between the true solution and the expansion
(3.3) up to $j\leq N$, is $C^{j+N-2}$ on $\overline{\Omega}\cap U$ . Hence the theorem is proved.

\S 4. Analysis of the Symbol $L(x,\xi)$

In this section we prove Proposition 3.3 in \S 3 by means of the method in
Kawashita-Ralston-Soga [2], whose idea is due to $\mathrm{K}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{y}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{k}\mathrm{e}\succ \mathrm{S}\mathrm{h}\mathrm{k}\mathrm{a}\mathrm{l}\mathrm{k}\mathrm{o}\mathrm{v}$

[3]. This proposition has been shown of the more abstract form in [2] (cf.
Theorem 2.1 and Corolary 2.3 in [2] $)$ . The proof is based on complex
analysis for the symbol $L_{0}(x, \xi)$ . Let us give abrief explanation of the
proof.

It suffices to discuss the requirement locally (in $U\cup\Omega$). And by ap-
propriate local coordinates we transform $U\cup\Omega$ into aneighborhood of
the origin in the half-space $\mathbb{R}_{+}^{n}=\{x=(x’, x_{n});x_{n}>0\}$ . Hereafter we
fix $x$ arbitrarily and omit the letter $x$ in the notation $L_{0}(x,\xi)$ , etc., i.e.
$L\mathrm{o}(\xi)=L_{0}(x,\xi)$ , etc. In the symbol $L_{0}(\xi’, \xi_{n})(\xi=(\xi’, \xi_{n}))$ we vary $\xi_{n}$ in
the complex plane $\mathbb{C}$ and use the letter $z$ instead of $\xi_{n}$ .

The matrix $(I -L_{0}(\xi’, z))^{-1}$ becomes ameromorph$\mathrm{i}\mathrm{c}$ function on $\mathbb{C}$ and
has poles only at $z=z_{\pm}^{l}(\xi’)(l =1, \ldots,d’)$ . Furthermore we have

Lemma 4.1. Let the assumptions (A.1) $\sim(\mathrm{A}.5)$ be satisfied and let $\xi’$ be
non-glancing. Then all the poles of $(I -L_{0}(\xi’, z))^{-1}$ are simple. $R\iota\hslash her-$

more, if the pole $\tilde{z}$ is real, $(I -L_{0}(\xi’, z))^{-1}$ is of the following form near
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$(I -L_{0}( \xi’, z))^{-1}=-\frac{\{\partial_{\xi_{n}}\lambda_{l}(\xi’,\tilde{z})\}^{-1}}{z-\tilde{z}}P_{l}(\xi’,\tilde{z})+R(z)$ ,

where $R(z)$ is analytic near $\tilde{z}$ and $P_{l}(\xi’,\tilde{z})$ is the projection to the eigenspace
of the eigenvalue $\lambda_{l}(\xi’,\tilde{z})=1$ .

Let us note that $\partial_{\xi_{n}}\lambda_{l}(\xi’,\tilde{z})>0$ (resp. $<0$) is corresponding to the
outgoingness (resp. the incomingness) and that $\pm\partial_{\xi_{n}}\lambda_{l}(\xi’, z_{\pm}^{l}(\xi’))>0$ .
We can verify this lemma as folows.

It follows ffom (A.1) and (A.5) that rank of the cofactor $\mathrm{c}o\mathrm{f}[I-b(\xi’,\tilde{z})]$

is equal to to -(multiplicity of $\tilde{z}$). This implies that

$\partial_{z}^{\dot{1}}\mathrm{c}\mathrm{o}\mathrm{f}[I -L_{0}(\xi’, z)]|_{z=\tilde{z}}=0$ for $i=0$, $\ldots$ , $\alpha-2$ ,

if the multiplicity $\alpha$ of $\tilde{z}$ is larger than 2(i.e., $\alpha\geq 2$). ($d$. Lemma 2.3
and Remark 2.4 in Soga [7] $)$ . Noting that $(I -L_{0}(\xi’, z))^{-1}=(\det[I$ -

$L_{0}(\xi’, z)])^{-1}\mathrm{c}\mathrm{o}\mathrm{f}[I -L_{0}(\xi’, z)]$ , we can see that the pole $\tilde{z}$ is simple. The
simplicity is shown also in Kawashita-Ralston-Soga [2] (see Proposition
2.5 in [2] $)$ .

Next let $\tilde{z}$ be real. $L(\xi’, z)$ is areal symmetric matrix for real $z$ . where
fore, we have $L(\xi’, z)P_{j}(\xi’, z)=\lambda_{j}(\xi’, z)P_{j}(\xi’, z)$ and $I$ $= \sum_{j=1}^{d}P_{j}(\xi’, z)$

for real $z$ . This yields that

$(I -L_{0}( \xi’, z))\sum_{j=1}^{d}(1-\lambda_{j}(\xi’, z))^{-1}P_{j}(\xi’, z)$ $=I$ for real $z$ $(\neq\tilde{z})\mathrm{n}\mathrm{e}\mathfrak{N}\tilde{Z}$,

which implies that when $z$ varies in real values near $\tilde{z}$ , $(I -L_{0}(\xi’, z))^{-1}$ is
expressed in the form $(1-\lambda_{l}(\xi’, z))^{-1}P^{l}(\xi’,\tilde{z})+R(z)$ for a $C^{\infty}$ function
$R(z)$ . This proves the latter in Lemma 4.1.

To prove Proposition 3.3, we introduce the function

(4.1) $f_{v}(z)$ $=((I-L_{0}(\xi’, z))^{-1}v,$ $v)$ ,

where $v\in \mathbb{C}^{n}$ and $(\cdot, \cdot)$ is the inner product of Cn. Then we have

Lemma 4.2. If the pole $\tau$ of $(I -L_{0}(\xi’, z))^{-1}$ is simple and $v$ is orthog-
onal to $\mathrm{K}\mathrm{e}\mathrm{r}[I-L_{0}(\xi’,\overline{\tau})]$ , then $f_{v}(z)$ becomes analytic at $\tau$ .

This is verified in Kawashita-Ralston-Soga [2] (cf. Remark 3.3 in [2]).
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Proof of Proposition 3.3. We have only to show that $v$ is equal to 0
if $v$ is orthogonal to $\sum_{l=1}^{k’}\mathrm{K}\mathrm{e}\mathrm{r}[I -L\mathrm{o}(x’,\partial_{x}\varphi_{+}^{l}(d))]+\sum_{l=k’+1}^{d’}\mathrm{K}\mathrm{e}\mathrm{r}[I$ $-$

$L_{0}(x’, \partial_{x}\tilde{\varphi}_{+}^{l}(x’))]$ . For this $v$ we consider the function (4.1), and integrate
$z^{l}f_{v}(z)(l =0,1)$ on alarge circle $c_{r}=\{z : |z|=r\}$ . Then, by Lemma
4.2, we obtain

(4.2) $\frac{1}{2\pi i}\int_{c_{r}}z^{l}f(z)dz=\sum_{j=1}^{k’}\frac{1}{2\pi i}\int_{\dot{d}_{-}}$

where $d_{\overline{\pm}}$ is asmal circle surrounding the pole $d_{\pm}(\xi’)$ . Noting $f_{v}(z)=f_{v}(\overline{z})$

and $\dot{d}_{-}(\xi’)=d_{\overline{+}}(\xi’)(j=\nu +1, \ldots,d’)$ , we see that $d_{+}(\xi’)$ is not apole
of $f_{v}(z)$ if $d_{-}$

.
$(\xi’)$ is not so. Therefore, the integrals $\int_{c_{+}^{f}}z^{l}f(z)dz$ in (4.2)

are equal to 0for $j=k’+1$ , $\ldots$ , $d’$ . Hence, by means of the form of
$(I -L_{0}(\xi’, z))^{-1}$ stated in Lemma 4.1 we obtain

$\frac{1}{2\pi i}\int_{\mathrm{c}_{r}}z^{l}f(z)dz$ $= \sum_{j=1}^{k’}-\{\partial_{\xi_{n}}\lambda_{j}(\xi’, i_{-}(\xi’))\}^{-1}\dot{d}_{-}(\xi’)^{l}(P_{j}(\xi’,\dot{d}_{-}(\xi’))v,$ $v)$

for $l$ $=0,1$ .
Calculating the residue of $\oint(I -L_{0}(\xi’, z))^{-1}$ at $z$ $=\infty$ , for large $r>0$

we have

$\frac{1}{2\pi i}\int_{c_{r}}z^{l}f(z)dz=0$ when $\mathit{1}=0$ ,

$=-(a_{nn}^{-1}v, v)$ when $l$ $=1$ ,

where $a_{nn}$ is the coefficient of $L_{0}$ . Note that $a_{\mathrm{m}n}$ is positive definite (from
(4.2) $)$ . Thus we obtain

$(4.3) \sum_{j=1}^{k’}\{\partial_{\xi_{\pi}}\lambda_{j}(\xi’, i_{-}(\xi’))\}^{-1}\dot{d}_{-}(\xi’)^{l}(P_{j}(\xi’,$ $i_{-(\xi’))v,v)}$

$=l(a_{nn}^{-1}v,v)$ for $\mathit{1}=0,1$ .

Since $\partial_{\xi_{n}}\lambda_{j}(\xi’,\dot{d}_{-}(\xi’))<0$ for all $j=1$ , $\ldots$ , $k’$ , we have $(P_{j}(\xi’,\dot{d}_{-}(\xi’))v,v)$

$=0$ $(j=1, \ldots, k’)$ from (4.3) with $I$ $=0$ . Therefore, by (4.3) with $\mathrm{I}=1$ ,
we have $(a_{nn}^{-1}v,v)=0$. Hence, we obtain $v=0$, which proves Proposition
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