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1Introduction.

It is well known that aone-dimensional Schr\"odinger operator

$- \frac{d^{2}}{dx^{2}}+q(x)$

with potential $q$ satisfying $\lim_{-\cdot 1_{--}}q(x)=\infty$ has apurely discrete spectrum. If, on the

other hand, $\lim q(x)=-\infty$ , the situation is entirely different. By aclassical result,
$xarrow\infty$

obtained independently by Hartman [6] and Shnol’ [17], the spectrum is then purely
absolutely continuous, filling the whole real line, if $|q(x)|=o(x^{2})(xarrow\infty)$ . In the
limiting case $|q(x)|=O(x^{2})(xarrow\infty)$ this is no longer true, as shown by Halvorsen [5]

in a counterexample for which the essential spectrum has gaps. For potentials tending
$\mathrm{t}\mathrm{o}-\infty$ faster than $O(x^{2})$ , the singular end-point $\infty$ , in the limit-point case in the above
situations, changes its behaviour to an (oscillatory) limit-circle case, giving rise to a
purely discrete spectrum again.

The relativistic counterpart of the Schr\"odinger operator is the Dirac operator

$h=-i\sigma_{2^{\frac{d}{dx}}}+m(x)\sigma_{3}+q(x)$

with Pauli matrices

$\sigma_{2}=$ $(\begin{array}{ll}0 -ii 0\end{array})$ , $\sigma_{3}=$ $(\begin{array}{ll}1 00 -1\end{array})$ ,

and locally integrable coefficients $m$ , $q$ . The coefficient $m$ , corresponding to the mass of
the particle, is often taken to be constant.
In many situations the Dirac operator has qualitatively similar spectral properties to

the Schrodinger operator, but it generally differs in essential aspects. Thus it is alway
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unbounded below, and in the limit-point case at $\infty$ . For constant or at least essentially
bounded $m$ , its spectrum is never purely discrete (see appendix of [12]). Furthermore,
its main part is unitarily equivalent to its negative,

$- \cdot\sigma\frac{d}{dx}+m\sigma_{3}-q\cong-(-\dot{\iota}\sigma_{2^{\frac{d}{dx}}}+m\sigma_{3}+q)$ ,

and therefore the potentials $q\mathrm{a}\mathrm{n}\mathrm{d}-q$ give rise to spectra of the same qualitative struc-
ture. The usual interpretation of this fundamental difference to the Schrodinger operator
is that the Dirac operator describes aparticle-antiparticle pair rather than asingle par-
ticle. In other words, the confinement of particles between high potential walls, familiar
ffom nonrelativistic quantum mechanics, is absent ffom the Dirac theory, as the Dirac
particle can penetrate any potential barrier by turning into an antiparticle.

The Dirac system with adivergent potential $\lim_{xarrow\infty}q(x)=\infty$ (or, equivalently, $-\infty$ ) was
first studied by Plesset [8] in the case of polynomial $q$ , showing that the spectrum is
purely (absolutely) continuous filling the whole real line. Rose and Newton [10] extended
this observation to general eventually non-decreasing potentials; as shown below, this
is correct although their proof contains afatal error, as it incorrectly assumes that the
presence of the mass term $m\sigma_{3}$ does not significantly change the asymptotics of the
solutions of the eigenvalue equation for $h$ .
Roos and Sangren [9] classified the qualitative spectral properties of one-dimensional
Dirac operators in various situations, stating ‘continous spectrum $-\infty<\lambda<\infty$’if
$\lim q(x)=\infty$ . This would indeed appear plausible in view of the fact that the somewhat

$xxarrow\infty$

analogous Schrodinger operator with $\lim \mathrm{q}(\mathrm{x})=-\infty$ has this spectral structure except
for potentials growing extremely fast, $\vec{\mathrm{a}}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\infty$ to the point of the loss of the limit-point
property at $\infty$ , and such anatural growth limit does not exist for the Dirac system.
Nevertheless, $\lim$ $q(x)=\infty$ by itself is consistent both with the existence $0\dot{\mathrm{f}}$ eigenvalues

$xarrow\infty$

and of gaps in the essential spectrum, as demonstrated by examples in [13] and [14].
Acloser look at the proof of Roos and Sangren reveals that they essentially assume a
further condition on the potential of the type

$q\in C^{2}(\cdot, \infty)$ , $\int^{\infty}(\frac{q^{\prime 2}}{q^{3}}+\frac{|q’|}{q^{2}})<\infty$ .

Thus their criterion for purely (absolutely) continuous spectrum covering the whole
real line is effectively identical with that given by Titchmarsh [18]. It was subsequently
simplified by Erdelyi [2] to

$q\in AC_{1\mathrm{o}\mathrm{c}}(\cdot, \infty)$ , $\int^{\infty}\frac{|q’|}{q^{2}}<\infty$.
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The regularity condition on q can mildly be weakened to the requirement that q be
locally of bounded variation, i.e. that

$\sup\sum_{j=1}^{n}|q(x_{j})-q(x_{j-1})|<\infty$

where the supremum is taken over all finite collections $x0<x_{1}<\cdots<x_{n}$ in the
domain of $q$ , $n\in \mathrm{N}$ . Indeed, denoting by

$Pf(x):= \sup\sum_{j=1}^{n}(f(x_{j})-f(x_{j-1}))_{+}$

the positive variation of afunction $f$ : $[c, \infty)arrow \mathrm{R}$ of locally bounded variation (where

the supremum is taken over all partitions with $x_{0}=c$ , $x_{n}=.x$), we have (cf. [13])

Proposition 1. Let $m=1$ , $q=w+r$, $w\in BV_{1\mathrm{o}\mathrm{c}}[c, \infty),\mathrm{h}.\mathrm{m}w(x)xarrow\infty=\infty$ , $r/w\in$

$L^{1}[c, \infty)$ . Then $h$ has purely absolutely continuous spectrum filling the real line if $1/w$

has bounded positive variation.

If $q\in AC_{1\mathrm{o}\mathrm{c}}$ , then $P(1/q)= \int_{\mathrm{c}}$

.
$\frac{(q’)-}{q^{2}}$ , recovering Erd\’elyi’s result.

If $\mathrm{g}$ , not necessarily continuous, is eventually non-decreasing, its positive variation is
eventually constant, which vindicates the Rose-Newton conjecture.

The above criterion can be made quantitative to yield a $\mathrm{s}\mathrm{u}$ fficient condition for the
absence of eigenvalues (while permitting the possibility of gaps in the essential spectrum)

-cf. [3], [15].

Proposition 2. Let $q=w+r$, $w \in BV_{1\mathrm{o}\mathrm{c}}[c, \infty),\lim_{xarrow\infty}w(x)=\infty$ , $r\in L_{1\mathrm{o}\mathrm{c}}^{1}[c, \infty)$ ,
such that

$\lim_{xarrow}\sup_{\infty}\frac{1}{\log x}(P(1/w)(x)+\int_{\mathrm{c}}^{x}\frac{|r|}{w})<\frac{1}{2}$ .

Then the eigenvalue equation $(-i\sigma_{2^{\frac{d}{dx}}}+\sigma_{3}+q)u=\lambda u$ has no non-trivial $L^{2}(\cdot$ , $\infty)-$

solution for any A $\in \mathrm{R}$ .

In the following, we shall present an approach which yields atransparent proof under
minimal hypotheses for results of the above type
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2ACentral Theorem.

Theorem. Let M, $M_{1}$ , Q, $Q_{1}\in L_{1\mathrm{o}\mathrm{c}}^{1}$ be real-valued functions such that M $\geq 0$ ,
$\lim_{xarrow\infty}Q(x)=\infty$,

$\lim_{xarrow}\sup_{\infty}\frac{M(x)}{Q(x)}<1$ , and $\frac{M}{Q-M}\in BV_{1\mathrm{o}\mathrm{c}}[c, \infty)$.

Let $\alpha$ be the non-decreasing function

$\alpha(x):=P(\frac{M}{Q-M})(x)+\int_{\mathrm{c}}^{x}\frac{|QM_{1}-MQ_{1}|}{Q-M}$ $(x\in[c, \infty))$ .

Consider the equation

$(-\dot{i}\sigma_{2^{\frac{d}{dx}}}+(M+M_{1})\sigma_{3}+Q-Q_{1})u=0$. $(*)$

$a)(*)$ has no non-trivial solution $u\in L^{2}(\cdot, \infty)$ if $\int_{\mathrm{c}}^{x}e^{-2\alpha}=\infty$ .
$b)$ All non-trivial solutions tt of $(*)$ have $\log|u|$ bounded if $\mathrm{a}(\mathrm{o}\mathrm{o})<\infty$ .

Remark. Taking Af $=1$ , $M_{1}=0$ , $Q=w$ –Aand $Q_{1}=r$ , we find that $\log|u|$ is
bounded for all non-trivial solutions of

$(-\cdot\sigma_{2^{\frac{d}{dx}}}+\sigma_{3}+(w+r))u=\lambda u$

for any A $\in \mathrm{R}$ if

$P( \frac{1}{w-\lambda-1})+\int_{\mathrm{c}}$

.
$\frac{|r|}{w-\lambda-1}$ ,

or equivalently,
$P( \frac{1}{w})+\int_{\mathrm{c}}$

.
$\frac{|r|}{w}$ ,

is bounded. In particular, there are no subordinate solutions in the sense of Gilbert-
Pearson theory ([4], [1] for Dirac systems; asimple proof for the special case needed here
can be found in [13] $)$ , and it follows that purely absolutely continuous spectrum covers
all of $\mathrm{R}$ , thus proving Proposition 1above, which in turn entails all previous criteria.

The same choice $\mathrm{o}\mathrm{f}M$ , $M_{1}$ , $Q$ and $Q_{1}$ proves Proposition 2. Indeed, under the hypotheses
of Proposition 2, there is $x_{0}\geq c$ such that $\mathrm{a}(\mathrm{x})\leq\frac{1}{2}\log x(x \geq x_{0})$ , and hence

$\int_{\mathrm{c}}^{\infty}e^{-2\alpha}\geq\int_{x_{\mathrm{O}}}^{\infty}\frac{dx}{x}=\infty$ .
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The proof of our central Theorem uses the following Gronwall-type lemma for Stieltjes
integrals, which can be proved mimicking the proof of [7] Theorem 1.4.

Lemma 1. Let cr : $[c, \infty)$ be non-decreasing, $\alpha(c)=0$ , and $f$ : $[c, \infty)arrow[0, \infty)$

continuous such that

$f(x) \leq C+\int_{\mathrm{c}}^{x}f(t)d\alpha(t)$ $(x\geq \mathrm{c})$

for some $C>0$ . Then $f(x)\leq Ce^{\alpha(x)}(x\geq c)$ .

Proof of the central Theorem.
Let $u$ , $v$ be linearly independent, $\mathrm{R}^{2}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ solutions of $(*)$ ;then

$(v_{1}^{2})’=2v_{1}v_{2}(M+M_{1}-Q-Q_{1})$ , $(v_{2}^{2})’=2v_{1}v_{2}(M+M_{1}+Q+Q_{1})$ .

The key to the problem is the function

$R:=|v|^{2}+2v_{1}^{2} \frac{M}{Q-M}\in BV_{1\mathrm{o}\mathrm{c}}[c, \infty)$

which can be interpreted geometrically as the square of the major radius of the ellipse
in the $(v_{1}, v_{2})$-plane on which the solution would move if the coefficients of the equation
$(*)$ were frozen to their momentary values.
By the formula for integration by parts for Stieltjes integrals, we find

$R(x)-R(c)= \int_{\mathrm{c}}^{x}(|v|^{2})’+\int_{\mathrm{c}}^{x}2\frac{M}{Q-M}(v_{1}^{2})’+\int_{\mathrm{c}}^{x}2v_{1}^{2}d(\frac{M}{Q-M})$

$\leq\int_{\mathrm{c}}^{x}4v_{1}v_{2}(M+M_{1}+\frac{M}{Q-M}(M+M_{1}-Q-Q_{1}))$

$+ \int_{c}^{x}2v_{1}^{2}dP(\frac{M}{Q-M})$

$\leq\int_{\mathrm{c}}^{x}2|v|^{2}\frac{|QM_{1}-MQ_{1}|}{Q-M}+\int_{\mathrm{c}}^{x}2|v|^{2}dP(\frac{M}{Q-M})$ ;

and hence $|v(x)|^{2} \leq R(x)\leq R(c)+\int_{\mathrm{c}}^{x}2|u|^{2}d\alpha$ .
By Lemma 1, this implies $|v(x)|^{2}\leq R(c)e^{2\alpha(x)}(x\geq c)$ .
Now if $W$ is the Wronskian of the fundamental system $(u, v)$ , then $|u|^{2}|v|^{2}=W^{2}+$

$(u_{1}v_{1}+u_{2}v_{2})^{2}\geq W^{2}$ , and we conclud

$|u(x)|^{2} \geq\frac{W^{2}}{R(c)}e^{-2\alpha(x)}$ $(x\geq c)$ . $\square$
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3Angular Momentum.

The above results can be extended to three-dimensional spherically symmetric Dirac
operators

$H=-i\alpha\cdot\nabla=m(|\cdot|)\beta+q(|\cdot|)$ ,

where $\alpha_{1}$ , $\alpha_{2}$ , $\alpha_{3}$ and $\beta=\alpha_{0}$ are symmetric 4 $\cross 4$ Dirac matrices satisfying the anti-
commutation relations $\alpha_{\dot{*}}\alpha_{j}+\alpha_{j}\alpha_{*}$

. $=0$ .
By separation of variables in spherical polar coordinates, $H$ is unitarily equivalent to
the direct sum of one- imensional Dirac operators

$h_{k}=-i \sigma_{2^{\frac{d}{dx}}}+\sqrt{1+\frac{k^{2}}{x^{2}}}\sigma_{3}+q+\frac{k}{2(x^{2}+k^{2})}$ $(x\in(0, \infty))$ ,

$k\in \mathbb{Z}$ $\backslash \{0\}$ .
In the literature, the radial Dirac operator traditionally appears in the form

$- \cdot\sigma_{2^{\frac{d}{dx}}}+\sigma_{3}+\frac{k}{x}\sigma_{1}+q$,

where $\sigma_{1}=(\begin{array}{ll}0 11 0\end{array})$ , but this operator is unitarily equivalent to the above $h_{k}$ (which

has better behaviour at $\infty$) by virtue of the following observation (cf. [11] Lemma 3).

Lemma 2. Let $I\subset \mathrm{R}$ be an $intemal_{f}$ $q\in L_{1\mathrm{o}\mathrm{c}}^{1}(I)$ , $m$ , $l\in AC_{1\mathrm{o}\mathrm{c}}(I)$ , $m>0$ . Then, with
$\theta:=\arctan l/m$ and

$A:=$ ( $-\sin\theta/2\cos\theta/2$ ),
we have

$A^{*}(-i \sigma_{2}\frac{d}{dx}+m\sigma_{3}+l\sigma_{1}+q)A\cong-i\sigma_{2^{\frac{d}{dx}}}+\sqrt{m^{2}+l^{2}}\sigma_{3}+q+\frac{lm’-l’m}{2(m^{2}+l^{2})}$ .

Under the hypotheses of Proposition 1or Proposition 2, we can apply our central The-
orem to $h_{k}$ , choosing $M=1$ , $M_{1}=\sqrt{1+(k}/x)^{2}-1\leq k^{2}/x^{2}$ , $Q=w$ –Aand
$Q_{1}=r+k/2(x^{2}+k^{2})$ ;then

$\alpha(x)=P(\frac{1}{q-\lambda-1})(x)+\int_{\mathrm{c}}^{x}\frac{|(q(t)-\lambda)(\sqrt{1+\frac{h^{2}}{x^{2}}}-1)-r(t)-\frac{k}{2(t^{2}+k^{2})}|}{q(t)-\lambda-1}dt$

$\leq P(\frac{1}{q-\lambda-1})(x)+\int_{c}^{x}\frac{|r|}{q-\lambda-1}+\int_{\mathrm{c}}^{x}(\frac{q(t)-\lambda}{q(t)-\lambda-1}k^{2}+\frac{|k|}{2})\frac{dt}{t^{2}}$ .
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The last integral remains bounded as x $arrow\infty$ . We thus obtain the following analogues
of Propositions 1and 2, with constant m $=1$ .

Proposition $1^{a}$ . Under the hypotheses of Proposition 1, $h_{k}$ has purely absolutely con-
tinuous spectrum filling the real line, for all $k\neq 0$ . As a consequence, $H$ has the same
spectral structure.

Proposition $2^{a}$ . Under the hypotheses of Proposition 2, the eigenvalue equation

$(- \dot{\iota}\sigma_{2}\frac{d}{dx}+\sigma_{3}+\frac{k}{x}\sigma_{3}+q(x))u=:\lambda u$

has no non-tr ivial $L^{2}(\cdot, \infty)$ solution for any lambda $\in \mathrm{R}$ , $k\neq 0$ . Consequently, $H$ has
no eigenvalues.

Remarks.
1. For more general perturbations $l\sigma_{1}$ instead of $\frac{k}{x}\sigma_{1}$ , the above choice of $M$, $M_{1}$ , $Q$ , $Q_{1}$

does not always yield the best possible result for analogues of Proposition $2^{a}$ ;see [15]
Corollary 1.4., where ageneralisation of the Evans-Harris criterion is obtained by choos-
ing $M=\sqrt{1+l^{2}}$, $M_{1}=0$ .
2. In [16] analogues of Proposition $1^{a}$ were obtained for sphericaly symmetric Dirac
operators with avariable mass term $m$ which is either assumed to be dominated by $q$

near infinity, or equal to $q$ . Such variable-mass Dirac systems have been proposed in the
physical literature as models of quark conffiement.
It turned out that for best results in this case it is advisable not to consider the above
$h_{k}$ , but to treat the angular momentum term in the usual representation by generalising
the central Theorem to equations of the type

$(-\dot{\iota}\sigma_{2^{\frac{d}{dx}}}+M\sigma_{3}+L\sigma_{1}+Q)u=0$

(see Proposition 2of [16]).
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