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Semi-classical asymptotics in magnetic Bloch bands
James Ralston, UCLA

This talk is a report on joint work with Mouez Dimassi and Jean-Claude Guillot
which will appear in Journal of Physics A. We give a simple method for deriving
“semi-classical” dynamics. The semi-classical approximation in solid state physics
refers to dynamics for electrons in slowly varying perturbations of periodic fields.
Here we are going to construct wave packets for the Schrédinger equation for a
periodic electric potential and a constant magnetic field perturbed by slowly varying
electric and magnetic potentials. This corresponds to finding asymptotic solutions
to

9 . 2
R [(**5; +2925 A(ez,et)> + Vo(z) + V(ez, fﬂ] U

where w is the constant unperturbed magnetic field and V; is the periodic unper-
turbed electric potential. We assume that Vo(z +7) = Vo(z) for all 7y in the lattice
[y in R3. The perturbations A and V are assumed to be smooth, and we are look-
ing for solutions which are asymptotic to true solutions to any given order in € on
any given time interval —Tp <t < Tp.

Magnetic Band Functions

The construction depends on hypotheses on the band structure in the spectrum
of the unperturbed problem. The unperturbed Hamiltonian is (in units which make
mass and charge for the electron as well as Planck’s constant equal 1)

.0 wXxz
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)% + Vo(z).

This Hamiltonian commutes with the “magnetic translation operators” T%', v € I'o,
given by '
WX
TS u(z) = T Mz — a).

These operators satisfy-
TeTy = e—%(w,aXﬁ)T:+ﬁ = e““‘“""‘ﬁ)T‘ﬁ"Tc‘;’.

We will assume that the lattice I'g has a sublattice I" such that e~ 5waxB) — 1 for
all o, 8 € ". This is a rationality condition on the magnetic field w and the lattice
['o. Then by Bloch-Floquet theory one can decompose H acting on L?(R3) as the
direct integral of H restricted to the subspaces D(k), defined by T5'u = et 7y for
all ¥ € I'. These restrictions are self-adjoint with compact resolvents, and hence
have the eigenvalues

Ey(k) < Ex(k) < -+

Since D(k +v*) = D(k) for all v* € I'*, the dual lattice to I', E,(k+7*) = En(k)‘,
and we can restrict the E,, to a fundamental domain, M*, for I'*.
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For the constructions that we give here the following assumption is essential:
(A) There is an [ such that E;(k) is simple for all k € M* i.e.

Ei_1(k) < Ey(k) < Epga(k), k€ M*

With this assumption we can choose normalized ¥(z, k) in D(k), depending real
analytically on k such HY(-, k) = Ey(k)¥(-,k) and ¥(z,k + v*) = ¥(z,k). As
in ordinary Bloch theory it will be more convenient to work with the function
®(z, k) = e~***¥(z, k) which satisfies T¥¥ = ¥ for all v € I and

wXxT
2

Ho(k)®(x) =gef. [(—i% + k)2 + Vo(:z:)] &(z) = Ei(k)®(z).

The Ansatz

We have the time-dependent Schrédinger equation with perturbed magnetic and
electric potentials:

2
_i@ = [(—22 + ¥ Xz + A(exz, et)) + Vo(z) + V(ex,et)jl u.

ot 0z 2
With the change of variables
s = et (adiabatic scale) and y = ex(long spatial scale),

this becomes

. Ou .0 wxy 2 Y
16— = [(—ZE@ + % + A(y, S)) + %(E) + V(y3 S)] u.

For asymptotics as € — 0 we will use the method of two scale expansions: using z,
Y, t and s as independent variables, we consider

2
—ie£ = [(—-z’e% - zga—c + 2 ; T4 A(y, s)) + Vo(z) + V(y, s)} v. (%)

Note that a solution v(z,y, s, €) of (*) evaluted at y = ez and s = t/e becomes a
solution of the original Schrédinger equation. Note also that by assuming that v
does not depend on the fast time variable t we are considering the adiabatic regime.
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We will look for solutions of (*) in the form
vz, v, 5,€) = €90 m(z,y, 5,¢),

where
m($, Y, S, 6) = mO(:E,y) S) + e"7'7'1(:1;1 Y, S) + -

and m satisfies T%m = m for T acting on the = variable. Substituting the Ansatz
into (*), we get

2
= [(—ie(% - z‘a% + Ao(z) + k(y,s)) + Vo(z) + V(y, 3)] m

_ [(—i% + Ao(z) + k(, s)) + Vo(z) + V(, s)] m

ie[2 (—z§+Ao(x)+k(y,s>) 2+ g b s)| m—aym,

where k(y, s) is given by:

k(y,s) = A(y,s) + ay(y,

Requiring that the coefficients of powers of € in this expression vanish individually,
we get the sequence of equations:

00 o = Ho (k(y,)) + V(y, )] mo, (©)
[0 (50, 0+ Vi) = G200 ma = Koo =, @

g .
[HO (k(y, S)) + V(y’ 8) - a_i(:% 3)] m; = ij—l + Aymj'-Z) J=2,3,.., (GJ)

Here

K= [8Ho

O (k) 30+ 3o k(8 8) = 5]
Eichonal equation for ¢ and semi-classical dynamics

Since we have assumed that Ej(k) is simple, the equation “(¢?)” holds if and
only if

20 tvos) = Bt (400, 5) + 52(0,9) ) + V) and

mo(.’L', Y, s) = fO(yy s)@(x, k(y1 S))



This implies that these packets will propagate along the trajectories of the Hamil-
tonian

Hsc(y7 $,1, U) =0— EZ(A(y) S) + 7]) - V(y: S)'

If one makes the substitution k£ = A(y, s)+n)—V (y, s), these Hamiltonian equations
take the form
8El

y=- (k) §=1

S av
k= -y X B(y, S) + 'a_s'(y, 3) + _a?(y;s)'

Here B = V, x A(y, s) is the magnetic field corresponding to A(y,s). This gives
the velocity of a wave packet in terms of the gradient of the function Ej(k) in
momentum space, and says that the momentum k of a packet is governed by the
classical equation of motions associated with the perturbations A(y, s) and V(y, s).

Transport equations

To solve the equations “(¢/)”, 7 = 1,2,..., one only needs to observe that, by
the Fredholm alternative, these equations are solvable if and only if their right hand
sides are orthogonal to

ke [ (k) + V)= 52

which is spanned by ®(z, k(y, s)). For j = 1 this condition is given by

_ 3mo_aHo_amo___a_-

After a few pages of compﬁtation, making heavy use of the relation

L [aE, %]@

[H" "E’] 9k Lok ok

which one obtains by differentiating Hy(k)® = E;®, the equation (T) simplifies to

36]:;) 8Ez(k( y,8 )).__0_%(%.gf(k(y,s))fo+(zL B+ (®,%))fo =0, (To)
Here
- (- 38 280 - 1 20 - ) 28, 92

and, as the notation suggests, it can be interpreted as an angular momentum. The
term L - B has appeared elsewhere, and it is called the Rammal-Wilkinson term.
Note that it will contribute to the evolution of the phase of the packet. The term
& is derivative of ®(-, k(y, s)) along the trajectories, and it contributes the “Berry
phase” evolution.
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When (T) holds, the equation “(e')” can be solved modulo a multiple of @, i.e.

ml(x1y,s) = fl(y,s)@(:c, k(y) 3)) + m%(x, Y, 3)1

with
(®(-, k(y, s)),mi(z,y,s)) =0.

The function f; must be chosen so that the right hand side of “(e?)” satisfies the
compatibility condition. Continuing in this way one finds a sequence of linear first
order equations which determine the terms in the expansion of m = mo+em;+---.

Gaussian beams

To construct solutions which concentrate on a single trajectory of the effective
Hamiltonian H,. we will choose the phase ¢ complex-valued with Im{¢} > 0. This
is the method of “Gaussian beams” or “coherent states”. One chooses a single
trajectory (y(r),r,n(r),o(r)) of the flow of H,. and requires

(@y(y(r),7), 85 (y(r), 7)) = (n(r), a(r)).

Requiring that ekonal equation hold to high order on y = {(y(r),r) : —00 < r < 00}
then leads to differential equations for the derivatives of ¢ along <. In particular,
the Hessian of ¢ satisfies a matrix Ricatti equation.

Choosing the initial data of the phase function ¢ so that

Im{¢(y(0),0)} > 0, Im{¢(y(0),0)} = 0, and

Im{¢y, }(¥(0),0) is positive definite,

the conservation laws for Ricatti equations arising from eikonal equations imply
that Im{@,, }(y(r),r) is positive definite for all 7. This localizes the packet to a
tubular neighborhood of v which has radius O(€'/2) and is the basis for the rigorous
asymptotics of the packets. As a consequence of this localization, it suffices for the
eikonal and transport equations to hold to sufficiently high order on <y for the
asymptotics to be valid to any given order. We make these equations hold to the
desired orders simply by solving the ODEs for derivatives of ¢ along 7y — these are
linear for the derivatives of order greater than two — and the linear ODEs along vy
for the derivatives of m.
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