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We discuss various continuity properties, especially pointwise and se-
quential continuity, in Bishop’s constructive mathematics; see [1, 2, 11] for
Bishop’s constructive mathematics and [3, 4, 5, 9] for various continuity
properties. We say that a mapping f between metric spaces X and Y is
sequentially continuous if z,, — « implies that f(z,) - f(z); pointwise con-
tinuous if for each z € X and € > 0 there exists § > 0 such that d(z,y) < 6
implies d(f(z), f(y)) < efor all y € X. We first show the following theorem.

Theorem 1 The following are equivalent.

1. Every sequentially continuous mapping of a separable metrié space

into a metric space is pointwise continuous.

2. Every sequentially continuous mapping of a complete separable metric
space into a metric space is pointwise continuous.

3. BD-N. Every countable pseudo-bounded subset of N is bounded.

Here a subset A of N is said to be pseudo-bounded if for each sequence
{a.} in A, a, < n for all sufficiently large n. Note that although BD-N
holds in classical mathematics, intuitionistic mathematics and constructive
recursive mathematics of Markov’s school, a natural recursivisation of BD-N
is independent of Heyting arithmetic [3, 5, 8, 10].

We also show that very important theorems in functional analysis —
Banach’s inverse mapping theorem, the open mapping theorem, the closed
graph theorem, the Banach-Steinhaus theorem and the .Hellinger-Toeplitz
theorem — can be proved in Bishop’s constructive mathematics for sequen-
tially continuous linear mappings [6, 7]. However it has emerged that the
theorems for pointwise continuous linear mappings are equivalent to BD-N
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