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We discuss various continuity properties, especially pointwise and se
quential continuity, in Bishop’s constructive mathematics; see [1, 2, 11] for
Bishop’s constructive mathematics and [3, 4, 5, 9] for various continuity
properties. We say that amapping $f$ between metric spaces $X$ and $\mathrm{Y}$ is
sequentially continuous $\mathrm{i}\mathrm{f}x_{n}arrow x$ implies that $f(xn)arrow f(x)$ ;pointwise con-
tinuous if for each $x\in X$ and $\epsilon>0$ there exists $\delta>0$ such that $d(x, y)<\delta$

implies $d(f(x),f(y))<\epsilon$ for all $y\in X$ . We first show the following theorem.

Theorem 1The following are equivalent.

1. Every sequentially continuous mapping of a separable metric space
into a metric space is pointwise continuous.

2. Every sequentially continuous mapping of a complete separable metric
space into a metric space is pointwise continuous.

3. BD-N. Every countable pseudO-bounded subset of $\mathrm{N}$ is bounded.

Here asubset $A$ of $\mathrm{N}$ is said to be pseudO-bounded if for each sequence
$\{a_{n}\}$ in $A$ , $a_{n}<n$ for all sufficiently large $n$ . Note that although BD-N
holds in classical mathematics, intuitionistic mathematics and constructive
recursive mathematics of Markov’s school, anatural recursivisation of BD-N
is independent of Heyting arithmetic [3, 5, 8, 10].

We also show that very important theorems in functional analysis -

Banach’s inverse mapping theorem, the open mapping theorem, the closed
graph theorem, the Banach-Steinhaus theorem and the Hellinger-Toeplitz
theorem -can be proved in Bishop’s constructive mathematics for sequen-
tially continuous linear mappings $[6, 7]$ . However it has emerged that the
theorems for pointwise continuous linear mappings are equivalent to BD-N
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