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Abstract
This note reports author’s current thoughts and observations in logic and

computer-science related to ludics.

1Motivations.
When we work in proof theory, our basic objects are proofs and formulas. Aproof
consists of aseries of inference rules: In order to successfully accumulate inference rules
up to the axioms, which is supposed to the goal, we normally develop aheuristics. It
is to become aproof-search algorithm. Such algorithms are often embedded into meta-
mathematical proofs for the completeness theorems. We can name some proof-search
algorithms, for example, resolution and unification for propositional and first-0rder
logic, Skolem’s theorem and Herbrand’s theorem for first-0rder logic, and focalization
for linear logic.

We would like to investigate such proof-search algorithms in terms of conputational
relevance. We like to develop some formal system in which these algorithms themselves
are to be investigated meta-mathematically. We expect such aformal system to provide

$\bullet$ amore general and abstract notion extending traditional notions in logic, and
$\bullet$ aconcretion of proof-search algorithms.

We could see A-calculus as such aformal system. Emphasized in aphrase “terms as
programs” , A-terms are not only an abstraction of mathematical functions, but also
concrete programs we know how to evaluate them. In summary, the A-terms are both

$\bullet$ amore general and abstract notion of ma thematical functions, and

$\bullet$ aconcretion of programs.
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We hope for asimilar formal system not for mathematical functions but for proof-
search algorithms. Based on this idea we study ludics introduced by Girard ([Gi]).
Our topics are organized as follows:

$\bullet$ Section 2: Inference rules.

$\bullet$ Section 3: Axioms.

$\bullet$ Section 4: Variables.

$\bullet$ Section 5: Proofs.

$\bullet$ Section 6: Formulas.

$\bullet$ Section 7: Normalization.

2Inference rules.

We started our discussion without mentioning any particular formal system. In order to
analyze proofs further, we choose one specific formal system, namely Sequent calculus.
Sequent calculus is equipped with an axiom scheme of simple form $A\vdash A$ , and inference
rules: the structural rules, and the left introduction and the right introduction rules
for the logical connectives. We simply refer the right introduction rule for alogical
connective as its inference rule.

Sequent calculus is preferred because of its internal completeness, namely the cut-
elimination theorem. Thanks to the theorem, the search space for proofs becomes
much smaller. An application of the last inference rule introduces the outermost
logical connective. Abottom-up proof-search in acut-free system boils down to find
the last rule. One step to find the last rule can be thought as apartial function which
provides an inference rule for agiven ordered sequence of inference rules up to the
current point. In fact, this idea leads us to the notion of innocent functions in game
semantics $([\mathrm{H}\mathrm{O}],[\mathrm{F}\mathrm{H}])$ . We discuss their work in the last section.

In linear logic, the logical connectives&, $P$ and $\forall$ are negative, while $\oplus$ , $\otimes \mathrm{a}\mathrm{n}\mathrm{d}$ $\exists$

are positive. Let us call an inference rule for anegative connective and for apositive
one by anegative rule and by positive one, respectively. The notion of the polarity
arises in the following aspects:

$\bullet$ The law of distributivity,

$\bullet$ the reversibility and determinism,

$\bullet$ focalization and the priority in proof-search algorithms.
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The law of distributivity holds:

$A\otimes(B\oplus C)\sim(A\otimes B)\oplus(A\otimes C)$

$\exists x(A\otimes B(x))\sim A\otimes\exists xB(x)$

$AP$ (B&C)\sim (AVB)k{AVC)
$\forall x(APB(x))\sim AP\forall B(x)$ .

In linear logic, the negative rules are deterministic and reversible: For case of&, the
inference rule is:

$\frac{\vdash A,\Gamma\vdash B,\Gamma}{\vdash A\ B,\Gamma}$ (&).
Conversely, we can prove each premise from the conclusion. In the following, premise
$\vdash A$ , $\Gamma$ is derived.

$\frac{\vdash A\ B,\Gamma\frac{\vdash A,A^{[perp]}}{A,\Gamma\vdash A,A^{[perp]}\oplus B^{[perp]}}}{\vdash}(Cut)(\oplus)$

.
For case of $\prime p$ , the inference rule is:

$\frac{\vdash A,B,\Gamma}{\vdash APB,\Gamma}(\mathcal{P})$

.

Similarly, we can prove the premise from the conclusion:

$\frac{\vdash APB,\Gamma\frac{\vdash A^{[perp]},A\vdash B^{[perp]},B}{A,B,\Gamma\vdash A,B,A^{[perp]}\otimes B^{[perp]}}}{\vdash}(Cut)(\otimes)$

.

For case of $\forall$,
$\frac{\vdash A[y/x],\Gamma}{\vdash\forall xA,\Gamma}(\forall)$

,

where variable $y$ is not free in $\Gamma$ . We can prove the premise from the conclusion.

$\frac{\vdash\forall xA,\Gamma\frac{\vdash A[y/x]^{[perp]},A[y/x]}{\vdash\exists xA^{[perp]},A[y/x]}}{\vdash A[y/x],\Gamma}(\ )( \exists)$

On the other hand, the positive rules are non-deterministic and irreversible.
The focalization allows us to treat acluster of negative rules, and acluster of

positive ones, as synthetic connectives. We give ahigher priority to the negative rules
than to the positive ones. Thus we have the following proof search algorithm
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e Choose one of the formulas in the conclusion and anegative rule: Apply the
rule and decompose the formula. Notice that this is deterministic, and the other
formulas in the context remain the same.

$\bullet$ Continue choosing anegative rule, until it is no longer available in the conclusion.

$\bullet$ Choose one of the formulas in the conclusion and apositive rule: Apply the rule
and decompose the formula. Notice that this is non-deterministic, the context
may split in anon-recoverable manner (in the case of $\otimes$ ), or one of the sub-
formulas may be lost (in the case of $\oplus$ ).

As for the negativity of the universal quantifier $\forall$ , let us consider aprovable formula
in first-0rder classical logic

$\exists x\forall y(P(x)arrow P(y))$ .

We build its cut-free proof in classical sequent calculus in abottom-up way. Then we
soon realize that we need to defer our irreversible choice to avoid making acrucial
error, instead, to apply the Contraction rule. Thus we eliminate 3in one of the two
formulas in the conclusion. Then we are left with two formulas, whose outermost
quantifiers are $\forall$ and $\exists$ , respectively:

$\frac{\vdash\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}{\frac{\vdash\exists x\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}{\vdash\exists x\forall y(P(x)arrow P(y))}}(Cont.)(R\exists)$

Which quantifier should we eliminate first, $\forall$ or $\exists$?Our proof-search algorithm above
tells us that we should choose anegative connective when possible, which is $\forall$ , in this
case. Thus we further proceed the derivation:

$\frac{\vdash P(x)arrow P(z),\exists x\forall y(P(x)arrow P(y))}{\vdash\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}(R\forall)$

$\overline{\frac{\vdash\exists x\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}{\vdash\exists x\forall y(P(x)arrow P(y))}}(Cont.)(R\exists)$

Introducing afresh variable $z$ in the top inference rule is very tricky; there seems no
particular reason to do this at this point. We think that this is an example of variables
used as an anonymous representative. We think that Sequent calculus does not have
acapacity to describe how to introduce afresh variable and to use it effectively.

After this crucial step, we need to eliminate $\exists$ in the left formula using the variable
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$z$ , which is again alittle tricky:

$\frac{\vdash P(x)arrow P(z),\forall y(P(z)arrow P(y))}{\vdash P(x)arrow P(z),\exists x\forall y(P(x)arrow P(y))}(R\exists)$

$\overline{\mathrm{F}\forall \mathrm{I}y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}(R\forall)$

$\frac{\overline\vdash\exists x\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}{\vdash\exists x\forall y(P(x)arrow P(y))}(R\exists)(Cont.)$

The last step is matching so that apair of $P(z)$ should later be used to supply an
axiom. Matching is completed by the positive rule for 3. This is an irreversible and
non-deterministic step, leading us to the successful end of the proof. Moreover, we can
interpret this step in agame semantic manner: The initial negative rule (Opponent)
offers afunction $P(z)$ , or options $P(z)$ (in the sense that different $z’ \mathrm{s}$ provide various
options), and the next positive rule (Player) responds to it by supplying $P(z)$ by a
suitable variable. Here the variable $z$ is chosen. Finally, we conclude our proof as
follows:

$\frac{\frac{P(z)\vdash P(z)}{P(x),P(z)\vdash P(z),P(y)}}{P(x)\vdash P(z),P(z)arrow P(y)}(Rarrow)(Weak.)$

$\overline{\vdash P(x)arrow P(z),P(z)arrow P(y)}(Rarrow)$

$\overline{\vdash P(x)arrow P(z),\forall y(P(z)arrow P(y))}(R\forall)$

$\overline{\vdash P(x)arrow P(z),\exists x\forall y(P(x)arrow P(y))}(R\exists)$

$\overline{\vdash\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}(W)$

$\overline{\vdash\exists x\forall y(P(x)arrow P(y)),\exists x\forall y(P(x)arrow P(y))}(R\exists)$

$\overline{\vdash\exists x\forall y(P(x)arrow P(y))}$
(Cont.)

It will be interesting to investigate further acomputational aspect of the polarity in
proof-search algorithms. In ludics, the inference rules are introduced not based on the
left or right, but based on the polarity.

$\bullet$ Daimon:
$\overline{\vdash\Lambda}$

\dagger

$\bullet$ Positive rule (one premise for each $i\in I$ , $\Lambda_{i}’ \mathrm{s}$ pairwise disjoint and included in
$\Lambda)$ :

$\ldots\frac{\xi i\vdash\Lambda_{i}}{\vdash\xi,\Lambda}\ldots(+, \xi, I)$

$\bullet$ Negative rule (one premise for each $J\in N$ , all $\Lambda_{J}’ \mathrm{s}$ included in $\Lambda$):

$\ldots\frac{\vdash\xi*J,\Lambda_{J}}{\xi\vdash\Lambda}$

,
$\cdots(-, \xi,N)$
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The basic objects in ludics are designs. Syntactically, designs are trees built from the
rules above.

3Axioms.
We observe the following two distinctive roles, syntactical and semantical, played by
axioms normally in any proof system:

$\bullet$ Syntactical: To denote the terminals or initials of accumulated sequences of
inference rules, and

$\bullet$ Semantical: To denote concepts taken for granted, such as valid formulas, typi-
cally the identity $A\vdash A$ .

The first property leads us to two positive designs interpreted as terminals in ludics:

$\bullet$ Daimon Dai, consisting of \dagger itself,

$\overline{\vdash\Lambda}\dagger$

,

which means convergence, while

$\bullet$ the partial design $\Omega$ , the empty set,

$\overline{\vdash\Lambda}\Omega$,

which means divergence.

Besides being designs themselves, each daimon and $\Omega$ can be used, just as an axiom,
as arule to end atree of inference rules at top of the tree.

The daimon \dagger and the partial design $\Omega$ are unique maximal and minimal designs
with respect to the observational order for the designs [Gi].(See also [C](p.15) for its
formal definition.)

Besides such an algebraic treatment, Curien emphasizes asimilarity between re-
coverable errors in computer science and daimon in ludics: Errors and daimon help
us to terminate computation and to interactively explore the behavior of programs or
proofs. Moreover, computation is stream-like, or demand-driven. This view helps us to
better understand the observational order $\preceq \mathrm{i}\mathrm{n}$ Girard’s notation, in such away that
for designs $\mathfrak{D}_{1}$ and O2, $\mathfrak{D}_{1}\preceq \mathfrak{D}_{2}$ holds iff $\mathfrak{D}_{2}$ is more likely to terminate or converge in
computation than $\mathfrak{D}_{1}$ is. Furthermore, the observational order allows us to analyze a
structural difference between the two designs it orders. For example, agreater design
$\mathfrak{D}_{2}$ can be obtained from $\mathfrak{D}_{1}$ by as follows; we replace eithe
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$\bullet$ an $\Omega$ in $\mathfrak{D}_{1}$ with a tree $\neq\Omega$ , or

$\bullet$ asub-tree in $\mathfrak{D}_{1}$ by a\dagger ,

to obtain $\mathfrak{D}_{2}$ .
However, replacing “axiom-like” objects freely by something else seems against the

second role of the axioms; namely, axioms denote something valid.
As for the gap we just mentioned, let us examine an example in semantics of

Intutionistic predicate logic, which is taken from atext by Ono ([O]).
Let $(M, \leq, U, \models)$ be aKripke model satisfying the following conditions:

1. $(M, \leq)$ is an ordered set,

2. $U$ : $Marrow P(W)$ is amap from $M$ to the power set of some set $W$ , satisfying
the two conditions;

(a) for any $a\in M$ , $U(a)\neq\emptyset$ holds,

(b) for any $a$ , $b\in M$ , $a\leq b$ implies $U(a)\subseteq U(b)$ .

3. $\models \mathrm{i}\mathrm{s}$ abinary relation between an element $a\in M$ and aclosed formula $A$ such
that

(a) $a\models P(\underline{u}_{1}, \cdots,\underline{u}_{m})\Leftrightarrow(\underline{u}_{1}, \cdots,\underline{u}_{m})\in P^{I(a)}$ ,
(b) $a\models A\wedge B\Leftrightarrow a\models A$ and $a\models B$ ,

(c) $a\models A\vee B\Leftrightarrow a\models A$ or $a\models B$ ,

(d) $a\models Aarrow B\Leftrightarrow\forall b$( $a\leq b\Rightarrow(b\#$ $A$ or $b\models B$)),

(e) $a\models\neg A\Leftrightarrow\forall b(a\leq b\Rightarrow b\# A)$ ,

(f) $a\models\forall xA\Leftrightarrow\forall b\forall u(a\leq b\Rightarrow(u\in \mathrm{U}(\mathrm{a})\Rightarrow b\models A[\underline{u}/x]))$,

(g) $a\models\exists xA\Leftrightarrow\exists u(u\in U(b)\Lambda a\models A[\underline{u}/x])$ ,

where $I(a)$ , for each $a\in M$ , of the interpretation of the predicate symbols I is
defined so that (1) $P^{I(a)}\subseteq U(a)^{m}$ and (2) $a\leq b$ implies $P^{I(a)}\subseteq P^{I(b)}$ ; and $\underline{u}$

stands for the name of $u$ .

Aformula $A$ is valid in the frame $(M, \leq, U)$ iff it is true in the Kripke model $(M,$ $\leq$

, $U,$ $\models)$ for any valuation $\models$ .
Let $M$ be aset satisfying the condition that for any $a\in M$ , there exists amaximal

element $a^{*}(\geq a)$ in $M$ . Then formula

$\forall x\neg\neg P(x)arrow\neg\neg\forall xP(x)$
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is valid in the frame $(M, \leq, U)$ . Let us demonstrate how to prove the validity of this
formula. Firstly,

(1) $b\models\forall x\neg\neg P(x)$

is equivalent to

(1)’ $\mathrm{V}\mathrm{c}\mathrm{V}\mathrm{u}\mathrm{V}\mathrm{d}3\mathrm{e}(6\leq c\Rightarrow(u\in U(c)\Rightarrow(c\leq d\Rightarrow(d\leq e\Lambda e\models P[\underline{u}/x]))))$ .

And
(2) $b\models\neg\neg\forall P(x)$

is equivalent to

(2)’ $\forall c\exists d\forall e\forall u(b\leq c\Rightarrow(c\leq d\Lambda(d\leq e\Rightarrow(u\in U(c)\Rightarrow e\models P[\underline{u}/x]))))$ .

We assume condition (1) and imply condition (2). The condition (2)’ is of prenex
form whose quantifiers are $\forall c\exists d\forall e\forall u$ , and for any $c$ instantiating the first quantifier
$\forall c$ , the second existential quantifier is ought to be instantiated by $c^{*}$ . Thanks to the
maximality of $c^{*}$ , the next $\forall$ is trivially instantiated only by $c^{*}$ . Thus the condition
(2)’ boils down to

(2)’ Vu(u $\in U(c^{*})\Rightarrow c’\models P[\underline{u}/x]$ ).

On the other hand, the condition (1)’ is of prenex form whose quantifiers are $\forall c\forall u\forall d\exists e$ ,
and the first quantifier $\forall c$ is ought to be instantiated by $c^{*}$ . Again, thanks to the
maximality of $c^{*}$ , the rest of the quantifiers are all trivially instantiated only by $c^{*}$ .
Therefore the condition (1)’ boils down to

(1)” Vu(u $\in U(c^{*})\Rightarrow c’\models P[\underline{u}/x]$ ).

Clearly (1)” and (2)” are identical, and we have shown the claim.
Notice that the role played by the maximal element $c^{*}$ reminds us the role of

daimon. It is maximal, and it stops further inquiries for instantiating quantifiers in a
non-trivial way. Moreover, instantiating auniversal quantifier in (1) and an existential
quantifier in (2) syntactically corresponds to $(\mathrm{L}\forall)$ and $(\mathrm{R}\exists)$ , respectively in Sequent
calculus: The polarities of these rule are both positive, as same as the polarity of
daimon. It will be interesting to study further proof-search algorithms to check the
validity of formulas in the Kripke frame, and to investigate its computational relevance.

Finally, the second role of the axiom leads us to adesign called Fax, intended as
the identity, or rather its infinite $\eta$-expansion in ludics. It plays arole of afunction
mapping one formula to the other isomorphic one. Fax $\mathrm{f}\mathrm{f}\alpha r_{\xi,\xi’}$ is the following design:

$.. \cdot.\cdot.\frac{\xi’*i\vdash\xi*i\mathrm{f}\mathrm{f}ap_{\xi’*\mathfrak{i}}}{\frac{\vdash\xi’,\xi*I}{\xi\vdash\xi}}.\cdot..,\cdot..\cdot.’.(\xi’, I)\xi*i(\xi,P_{f}(N))$

See Faggian et als. [FFDQ] for further discussions on Fax
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4Variables.
In [AC] by Amadio and Curien, it is explained that the categorical interpretation of
A-calculus in CCC can be seen as away of compiling alanguage with variables into a
languages without them. The slogan there is that variables are replaced by projections.
In other words, rather than giving asymbolic reference in the form of variable, one
provides apath for accessing acertain information in the context. This is the starting
point to define an abstract machine, which provides ahigh-level description of data-
structures and algorithms used to efficiently reduce A-terms.

In this section, we discuss awell-known partial algorithm to check the validity of a
formula based on Skolem’s and Herbrand’s theorems. We think that the combination
of two theorems provides us ausage of variables in logic, which seems to share the same
perspective mentioned in the slogan above. As for the formulations of the theorems,
we shall again count on the text by Ono ([O]).

In first-0rder predicate logic, Skolem’s theorem provides us, for agiven formula, a
prenex existential formula called Skolem normal for$7m$:It is valid iff so is the original
one, provided that we consider the former validity in the models for an extended
language with new constants and function symbols. Aformula

$\forall x\exists y\exists z\forall wP(x, y, z, w)$

has aSkolem normal form
$\exists y\exists zP(c, y, z, f(y, z))$ ,

In the Skolem normal form, the universal quantifiers in the original formula disappear,
and the quantified variables $x$ , $w$ are substituted for the terms made of newly intr0-
duced a0-ary constant $c$ and abinary function symbol $f$ , respectively. The parameters
of each $c$ and $f$ are determined by the variables existentially quantified, between the
one universally quantified at work and the another one, universally quantified on the
left, closest to the one at work.

Let $L$ afixed language containing at least one constant symbols. Let Herbrand
universe, denoted by $H_{\mathcal{L}}$ , be the collection of variable-free terms of L. Herbrand
structure $<H_{\mathcal{L}}$ , $J>\mathrm{f}\mathrm{o}\mathrm{r}$ language $\mathcal{L}$ is astructure such that for each variable-free term
$t$ in $L$ is, via $J$ , interpreted by term $t$ in $H_{L}$ itself. Notice that the former $t$ is to be
interpreted is asyntactical object, while the latter $t$ in $H_{E}$ is asemantical one. Thus
the notion of Herbrand structures introduces objects both syntactical and semantical.

Let $A$ be aquantifier-free predicate formula

$P(s)arrow(Q(s, t)$ $\vee P(t))$ ,

where $P$, $Q$ are predicate symbols unary and binary, respectively, and $s$ , $t$ are terms
without variables.
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Atomic predicates $P(s)$ and $Q(s, t)$ , containing different predicate symbols $P$ an
$Q$ respectively, are evaluated independently. In other words, each $P$ and $Q$ refers,
just as apointer, independently to avalue in the Herbrand structure. On the other
hand, if $s$ , $t$ are different terms, say, containing distinct function symbols, then they are
interpreted by distinct elements in the Herbrand universe. Therefore, predicates $P(s)$

and $P(t)$ are evaluated independently. In other words, each $s$ , $t$ refers via its function
symbols playing their role as apointer, independently to avalue in the Herbrand
structure.

The observation above reminds us the view presented earlier in this section, that
is, replacing asymbolic reference in the form of variable, one provides apath for ac-
cessing acertain information in the context. In our discussions, we replaced symbolic
references in the form of universally quantified variable by apath or apointer played
by function symbols, thanks to the Skolem normalization, referring mutually indepen-
dently to the values in the Herbrand universe, which is the context in our setting.

The proposition below introduces adecidable algorithm to check the validity of
any quantifier-free formula $A$ with no free variables.

Proposition 4.1 Let $A$ be a quantifier-free formula with no free variable in L. Then
$A$ is valid iff $A$ is true in any Herbrand structure for $\mathcal{L}$ . Moreover, $A$ is valid iff the
propositional for mula $\pi(A)$ is tautology; where $\pi(A)$ is obtained from $A$ by replacing
mutually distinct atomic predicates by corresponding mutually distinct propositional
variables.

5Proofs.
Aproof is built as tree of inference rules. Normally, aproof-search algorithm provides
us how to accumulate inference rules successfully up to the axioms, which is the goal.

Faggian and Hyland describe in [FH] that designs, the basic objects in ludics, are
both:

$\bullet$ an abstraction of formal proofs, and

$\bullet$ aconcretion of their semantical interpretation.

These two aspects of designs agree with our motivations presented in the first section:
That is, we are looking for:

$\bullet$ amore general and abstract notion of formal logic, and

$\bullet$ aconcretion of proof-search algorithms.

Let us remember Herbrand’s theorem: The theorem allows us to check the validity of
closed existential prenex formulas by means of apartial algorithm
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Theorem 5.1 (Herbrand) Let $3\mathrm{z}_{0}\cdots$ $.B be a closed existential prenex formula in
language Z, where formula B contains no quantifier symbol. Then $\mathrm{E}\mathrm{r}_{0^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}}\mathrm{x}_{\ovalbox{\tt\small REJECT} 1}\mathrm{B}$ is valid
iff there exists a natural number m $(\ovalbox{\tt\small REJECT}$1) and terms $t_{il}$ , \cdots , $t_{in}$ (i $\ovalbox{\tt\small REJECT}$1, \cdots $77)_{\ovalbox{\tt\small REJECT}})$ of
Herbrand universe such that

$B[t_{11}/x_{1}, \cdots,t_{1n}/x_{n}]\vee\cdots\vee B[t_{m1}/x_{1}, \cdots, t_{mn}/x_{n}]$

is true in any Herbrand structure for C.

The notions of the structures, the universe and the validity in the theorem definitely
suggest that the theorem be semantical. However, based on the theorem, we obtain a
partial algorithm to check the validity of aclosed formula: There is where, we believe,
semantics and proof-search algorithms meet. Agood algorithm is coupled with agood
data structure. In our view, agood data structure in the partial algorithm here is a
growing list of tuples of variable-free terms in the Herbrand universe: The list starts
as the empty set; and the list is added tuples of terms mentioned in the theorem in
the course of the partial algorithm up to the list:

$\frac{x_{1}\cdots x_{n}}{t_{11}\cdots t_{1n}}$

$t_{21}$ . . . $t_{2n}$

$t_{m1}$ . . . $t_{mn}$

When the list arrives at this stage, the given formula $3\mathrm{x}0\cdots xnB$ is shown to be valid.
It will be interesting to investigate how the above data structure is maintained by the
partial algorithm, and if and how it is related to Sequential algorithms due to Berry
and Curien ([AC]).

Thus we have started with aproof as atree of inference rules, and proposed a
“proof-search algorithms as semantics” view. In the next section, we shall discuss
another aspect of aproof, namely its syntax in Sequent calculus.

6Formulas.
Aproof in Sequent calculus is atree of sequents; and asequent contains formulas.
One role of formulas in aproof is to denote the location. However, aformula does not
simply denote alocation, but also denote aproof description, by which we can tell,
how to merge two disjoint proofs into one, preserving its correctness. For example, a
pair of cut-formulas indicate us how to merge two disjoint proofs via normalization.

The designs are supposed to be an abstraction of formal proofs, and the role of
formulas as aproof description in fact is played by designs, which itself is the counter-
part of proofs in ludics. In other words, the conceptual distinction between proofs and
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formulas are less clear in ludics than in the typed A-calculus, where emphasized are
“Formulas as types” and “Proofs as terms” in the Curry-Howard isomorphism.

We shall study the notion of types in ludics by means of filter models, that is, the
syntax of intersection types. (Chapter 3.3, p. 54. [AC]).

Definition 6,1 $(\mathrm{e}\mathrm{t}\mathrm{s}, \mathrm{p}. 55, [\mathrm{A}\mathrm{C}])$ Let $(D$ , $\bullet$ $)$ be an applicative structure. Consider
the following operation on subsets of $D$ :

$Aarrow B=\{d\in D : \forall e\in A (d\bullet e\in B)\}$ .

A subset of $P(D)$ is called an extended type structure ($ets$ for short) if it is closed
under finite set theoretical intersections and under the operation $arrow just$ defined.
An extended abstract type $st$ ucture (eats for short) is given by apreorder $(S, \leq)$ , called
the carrier whose elements are often called types: For the definition, refer to Definition
3.3.1 [AC]. The following lemma provides us ameans to obtain an eats from an ets
defined above.

Lemma 6.2 (Lemma 3.3.7, p. 55, [AC]) An $ets$, ordered by inclusion is an eats.

Afilter of an inf-semi-lattice $S$ can be defined in astandard way. (See Definition 3.3.8,
p. 56, [AC], for instance.) The filter domain of an eats $S$ is the set $\mathcal{F}(S)$ of filters of
$S$ , ordered by inclusion.

Lemma 6.3 (Lemma 3.3.10, $\mathrm{p}$ . 56, [AC]) If $S$ is an eats, then $F(S)$ is a complete
algebraic lattice.

In ludics, we have an applicative structure defined by the collection of designs de-
noted by $T$ , equipped with binary operation Plays(f); $\mathrm{G}$). As asubset of $P(T)$ , we
take behaviors, where abehavior is aset of designs equal to its biorthogonal As for
discussions on the behaviors, we follow [Gi].

The behaviors of the same base is closed under the set theoretical intersection.

Definition 6.4 (Inter, [Gi]) Let $\mathrm{G}_{k}$ be a family of behaviors of the same base. Then
we define $\bigcap_{k}\mathrm{G}_{k}$ as the intersection of the $\mathrm{G}_{k}$ .

The connective $\cap \mathrm{i}\mathrm{s}$ strictly commutative and associative.

Theorem 6.5 (Theorem 14, [Gi]) Let aand 2[ be negative and positive designs,
respectively. There there exists a unique design $(\mathrm{f}\mathrm{f})\mathfrak{U}_{f}$ such that for any positive design
$\mathfrak{B}_{f}$ the following holds.

$<<\mathrm{f}\mathrm{f}$ $|\mathfrak{U}\mathfrak{B}>>=\ll(\mathrm{f}\mathrm{f})\mathfrak{U}|\mathfrak{B}>>$
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In the theorem above, $\ovalbox{\tt\small REJECT} 2\mathrm{t}$ (E) Q3 is the commutative tensor product only defined for
positive designs (refer to Definition 31). The binary operation \yen for ets in ludics is
given by anegative behavior G $\ovalbox{\tt\small REJECT}$ H, which is defined as Gcxl H (Definition 34), for
two alien behaviors G positive and H negative. (As for alienation, see Definition 39.)

G $-\circ \mathrm{H}=\{\mathfrak{U}\mathfrak{B};\mathfrak{U}\in \mathrm{G}, 93\in \mathrm{H}^{[perp]}\}^{[perp]}$

Proposition 6.6 (Proposition 12, [Gi]) Let behaviors $\mathrm{G}$ and $\mathrm{H}$ be positive and
negative, respectively; then

ff $\in \mathrm{G}arrow \mathrm{H}\Leftrightarrow\forall \mathfrak{U}(\mathfrak{U}\in \mathrm{G}\Rightarrow(\mathrm{f}\mathrm{f})\mathfrak{U}\in \mathrm{H})$.

Furthermore,
ff $\in \mathrm{G}arrow \mathrm{H}\Leftrightarrow\forall 2\mathrm{L}(21\in \mathrm{H}^{[perp]}\Rightarrow(\mathrm{f}\mathrm{f}\mathrm{f})\mathfrak{U}\in \mathrm{G}^{[perp]})$.

It will be interesting to investigate further an eats structure of the behaviors $\mathrm{B}\mathrm{V}$ . We
discuss aconnection between filters of the behaviors and incarnations.

Let $\mathfrak{D}$ afixed design in G. Then the set of designs in $\mathrm{G}$ included in $\mathfrak{D}$ is anon-
empty family: The intersection of the family, called the incar nation, also belongs to
$\mathrm{G}$ , due to Closure theorem (Theorem 7).

Definition 6.7 (Incarnation, [Gi]) Let $\mathrm{G}$ and $\mathfrak{D}$ be a behavior and its design, re-
spectively. The incarnation $|\mathfrak{D}$ $|_{\mathrm{G}}$ is defined as follows:

| $\mathfrak{D}$ $|_{\mathrm{G}}=\cap$ { $\mathfrak{D}’;\mathfrak{D}’\subset \mathfrak{D}$ and $\mathfrak{D}’\in \mathrm{G}$ }.

The incar nation belongs to G.

Now the following proposition is immediate.

Proposition 6.8 (A filter by incarnation.) A collection $x_{\emptyset}$ of behaviours

$x_{\mathrm{D}}=\{\mathrm{G};|\mathfrak{D} |_{\mathrm{G}}\subset \mathfrak{D}\}$

forms a filter.
Proof. In order to show that $x_{\emptyset}$ is afilter, we check the following two conditions:

$\bullet$
$\mathrm{G}$ , $\mathrm{H}\in x_{D}\Rightarrow \mathrm{G}\cap \mathrm{H}\in x_{D}$ ,

\bullet G $\in x_{D}$ and G $\subset \mathrm{H}\Rightarrow \mathrm{H}\in x_{\mathrm{D}}$
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The first condition is due to Theorem 9on the intersection and incarnation: We obtain

$|\mathfrak{D}$ $|_{\mathrm{G}\cap \mathrm{H}}=|\mathfrak{D}$ $|_{\mathrm{G}}\cup|\mathfrak{D}$ $|_{\mathrm{H}}$ .

The second condition is due to the contravariance easily shown from the definition of
the incarnation, i.e.,

$\mathrm{G}\subset \mathrm{H}\Rightarrow|\mathfrak{D}$ $|_{\mathrm{H}}\subset|\mathfrak{D}$ $|_{\mathrm{G}}$ .

1

We conjecture that the filters $\mathrm{f}\mathrm{f}(\mathrm{B}\mathrm{V})$ on behaviors is acomplete algebraic lattice.
We note that there are maps between $ff(\mathrm{B}\mathrm{V})$ and the collection $\mathrm{T}$ of designs,

$x$ : $\mathrm{T}arrow \mathrm{f}\mathrm{f}(\mathrm{B}\mathrm{V})$

defined as $x(\mathfrak{D})=x_{\mathrm{D}}$ , and
$\mathfrak{D}$ : $\mathrm{f}\mathrm{f}(\mathrm{B}\mathrm{V})$ $arrow \mathrm{T}$

defined by
$\mathfrak{D}(x)=\cup|\mathfrak{D}\mathrm{G}\in x|_{\mathrm{G}}$

.

It will be interesting to further investigate these maps, acomplete algebraic lattice
structure in fff(BV), and its connection to one of the main results, stated in Theorem
10 of the additives in ludics:

$|$ G&H $|=|\mathrm{G}|\cross|\mathrm{H}|$ ,

where $|\mathrm{G}|$ is the collection of designs $\mathfrak{D}$ in $\mathrm{G}$ , satisfying $\mathfrak{D}$ $=|\mathfrak{D}$ $|_{\mathrm{G}}$ .

7Normalization.
Faggian and Hyland investigate ludics by means of HON game semantics in [FH], which
we follow closely in this section. Here we develop syntax of designs as an abstraction
of formal proofs. In particular, we pay attention to the following three roles of the
formulas.

$\bullet$ Alocation, relative and absolute.

$\bullet$ An initial sequent.

$\bullet$ Aclass of proofs characterized by normalization.

We have corresponding notions in ludics, respectively:

$\bullet$ An address
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$\bullet$ Abase.

$\bullet$ Abehavior.

An action is apair $(\xi)I)$ of an address $\xi$ , called afocus and I afinite set of natural
numbers. An action corresponds to the application of an inference rule. Abase is
asequent of addresses corresponding to the initial sequent of the derivation, or the
conclusion of the proof.

Thanks to the focalization, it suffices to consider only sequents of form $–\cup\vdash\Lambda$ , —
consisting at most one element and finite A.

Adesign is given by abase and atree of actions. Atree of actions can be thought
as aset of Sequent calculus branches [FH]. The precise definition is given by aset of
mutually coherent chronicles, where our intentions are

$\bullet$ Chronicles: Aformal branch in afocalized sequent calculus derivation.

$\bullet$ Coherence: Acondition to let aset of chronicles all belong to the same proof.

Definition 7.1 (Chronicles, [FH]) A chronicle of $base—\vdash\Lambda$ is a sequence of ac-
tions $<\kappa_{0}$ , $\kappa_{1}$ , $\cdots$ , $\kappa_{n}>such$ that:

$\bullet$ Altemation.

$\bullet$ Positive and Negative focuses.
$\bullet$ Destruction of focuses.
$\bullet$ Daimon. Daimon can only appear as the last action.

Definition 7.2 (Coherence, [FH]) The chronicles $\mathrm{c}_{1}$ , $\mathrm{c}_{2}$ are coherent when

$\bullet$ Comparability. Either one extends the other, or they first differ on negative
actions,

$\bullet$ Propagation. If $\mathrm{c}_{1}$ , $\mathrm{c}_{2}$ first differ on $\kappa_{1}$ , $\kappa_{2}$ with distinct focuses, then all ulterior
focuses are distinct.

Definition 7.3 (Designs, [Gi]) $)$ A design 7) of $base–\cup\vdash\Lambda$ is a set of chronicles of
$base—\vdash \mathrm{A}$ such that:

$\bullet$ Arborescence. $\mathfrak{D}$ is closed under restriction.

$\bullet$ Coherence. The chronicles of $\mathfrak{D}$ are pairwise coherent

$\bullet$ Positivity. If $\mathbb{C}$
$\in \mathfrak{D}$ has no extension in $\mathfrak{D}$ , then its last action is positive
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$\bullet$ Totality. If the base is positive, then $\mathfrak{D}$ is non-empty.

The actions and interactions of designs correspond to moves and plays in the game
semantic setting. For the simplicity, the bases of designs $\mathfrak{D}$ and $\epsilon$ are $\vdash<>\mathrm{a}\mathrm{n}\mathrm{d}<>\vdash$ ,
respectively.

Definition 7.4 (Linear positions, [FH]) A sequence of actions $s$ is a linear posi-
tion or a play, it it satisfies the following conditions:

$\bullet$ Alternation. Parity alternates.

$\bullet$ Justification. Each action is either initial or is justified by an earlier action.

$\bullet$ Linearity. Any address appears at most once.

$\bullet$ Daimon. Daimon can only appear as the last action.

The notions of chronicles and linear positions are very close.

Definition 7.5 (Plays (binary), [FH]) We define a play $P$ denoted as Plays(D; C)
as follows:

$\epsilon\in P$

$p\in P$ is a $P$ to play position and\lceil p\rceil $P\kappa\in \mathfrak{D}$ , then $p\kappa\in \mathcal{P}$

$p\in P$ is an 0to play position and\lceil p\rceil $\mathit{0}_{\kappa}\in\epsilon$ , then $p\kappa\in P$

We note that Plays(D; C) is totally ordered by the initial segment. Thus we denote
the $\sup$ of Plays(l); G) by $[\mathfrak{D}arrow-\mathrm{C}]$ , which is possibly infinite.

Definition 7.6 (Dispute, Convergence, [FH]) A sequence of actions $[\mathfrak{D}-arrow \mathrm{C}]$ is
called $a$ dispute, if it is finite and terminated with a Daimon. The normalization
between designs $\mathfrak{D}$ and $\epsilon$ converges, if $[\mathfrak{D}arrow-\mathrm{C}]$ is a dispute, and diverges, otherwise.

Definition 7.7 (Orthogonality, [FH]) A design $\mathfrak{D}$ is called orthogonal to $\epsilon_{\mathrm{Z}}$ when
the normalization between them converges. The design $\epsilon$ is called a counter-design of

$\mathfrak{D}$ .

Alegal position is alinear position satisfying the visibility condition (Def.7, [FH]).

Proposition 7.8 (Chronicles, Fact 2, Prop.l [FH]) Let $p$ be a linear position in
Plays $(\mathfrak{D}; \mathrm{C})$ . Then,

$\bullet$ for any $q\subseteq r^{P}\subseteq p$ , $\lceil q\rceil^{P}$ is a chronicle of $\mathfrak{D}$ , and similarly,

$\bullet$ for any $q\subseteq r^{O}\subseteq p$, $\lceil q\rceil^{O}$ is a chronicle of C.
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$\bullet$ Moreover $p$ is a legal position.

Due the last statement in the proposition above, any dispute is alegal position. Thus
the chronicles in ludics correspond to the linear positions in game semantics; and the
plays or disputes correspond to the legal positions.

Thus from asequence of actions $p$ in Plays(f); $\mathrm{G}$), the chronicles of $\mathfrak{D}$ and $\epsilon$

are obtained by view operations $\lceil\rceil^{P}$ , $\lceil\rceil^{O}$ , respectively. Conversely, for agiven finite
legal position $p$ on the universal arena, we can extract adesign and acounter-design
such that the dispute between them is $p$ and minimal among such pairs of designs.
(Proposition 2, [FH]).

Definition 7.9 (Plays (unary), [FH]) For a given design $\mathfrak{D}$ , we define a unary
Plays as:

Plays(O) $=\cup$ {Plays(D; $\mathrm{C});Cis$ a counter-design}

The following proposition explains Plays(S) $)$ in terms of Plays $(\mathfrak{D};\not\in)$ and O.

Proposition 7.10 (Designs, Facts 3,4,5, [FH]) Let $\mathfrak{D}$ , $\epsilon$ be a pair of a design and
a counter-design. Then,

\bullet Plays(D)\cap Plays(\epsilon ) $=Plays(\mathfrak{D};\not\in)$ ,

\bullet $\mathfrak{D}$ $\subseteq Plays(\mathit{6}D)$ ,

$\bullet$ Plays(D) $=\{p$ : $p$ is a legal position; and for all $q(\subseteq r^{+}\subseteq p)$ satisfies $\lceil q\rceil\in$

$\mathfrak{D}\}$ .

An abstract notion characterizing Plays(Z) $)$ is the notion of strategies (Def. 9, [FH]).
In particular, Plays(V) $)$ is an innocent strategy (Def. 10, [FH]).

Definition 7.11 (Views, Def. 11, [FH]) Let $S$ be an $X$-strategy. We define
Views{S) $=\{\lceil q\rceil^{X} : q\subseteq r^{+}, r\in S\}$ .

The following proposition summarizes the relationship between Views and Plays.

Proposition 7.12 (Fact 11, [FH]) Let $\mathfrak{D}$ be a design, and $S$ be an innocent strategy
satisfying propagation. Then,

$\bullet$ View(S) is a design, and

Plays{Views{S)) $=S$,

$\bullet$ Plays $(\mathfrak{D})$ is the smallest innocent strategy containing $\mathfrak{D}_{f}$ and

Views(Plays(I)) $)=\mathfrak{D}$ .
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As we mentioned earlier, Plays(D) is an innocent strategy. Hence, we apply construc-
tion Views to Plays ( $\ovalbox{\tt\small REJECT} \mathit{5}C\ovalbox{\tt\small REJECT}$ , and we obtain

Views(Plays(f)) $)$ $=\{\lceil q\rceil : q\subseteq r^{+}, r\in Plays(\mathit{6}C)\}$ .

The proposition above implies

Views(Plays(I)) $)=\mathfrak{D}$ .

Due to the proposition above, we have thus obtained the following characterization of
designs in terms of plays.

Proposition 7.13 (Designs, Prop. 3, [FH])

$\mathfrak{D}$ $=\{\lceil q\rceil : q\subseteq r^{+}, r\in Plays(\mathfrak{D})\}$.

Let us remind the idea presented by Amadio and Curien $(\mathrm{p}.43, [\mathrm{A}\mathrm{C}])$ , that the meaning
of aterm should be the collection of properties it satisfies in asuitable logic. In fact,
the filter models of A-calculus is based on this idea.

In this note, we have presented two characterizations of designs as collections, the
one based on chronicles, and the other based on plays. Adesign thought as aterm in
ludics, its characterization as acollection, can be taken as ameaning defined by the
properties it satisfies in asuitable logic, in the above sense.

$\bullet$ Which characterization is better, the one based on chronicles, or the one on
plays.

Faggian and Hyland prefer the characterization based on plays. The plays are an
interactive notion: So are the behaviors.

$\bullet$ What is the relationship between the chronicles in the plays and the behaviors?

$\bullet$ Does the notion of chronicles correspond to the notion of types in the filter
models in some way7

These questions remind us the discussions in the previous section.

$\bullet$ What is the relationship between the designs and the filters of behaviors?

According to the theory of HON game semantics, the collection of innocent strategies
ordered by inclusion is a $\mathrm{d}\mathrm{I}$-domain;aconsistently complete, algebraic CPO which is
coprime algebraic and satisfies axiom: Every compact element dominates only finitely
many elements. (See [AC], [HO]). It will be interesting to investigate the duality for
algebraic dcpo’s in the collection of designs
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