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Abstract

This note reports author’s current thoughts and observations in logic and
computer-science related to ludics.

1 Motivations.

When we work in proof theory, our basic objects are proofs and formulas. A proof
consists of a series of inference rules: In order to successfully accumulate inference rules
up to the axioms, which is supposed to the goal, we normally develop a heuristics. It
is to become a proof-search algorithm. Such algorithms are often embedded into meta-
mathematical proofs for the completeness theorems. We can name some proof-search
algorithms, for example, resolution and unification for propositional and first-order
logic, Skolem’s theorem and Herbrand’s theorem for first-order logic, and focalization
for linear logic.

We would like to investigate such proof-search algorithms in terms of conputational
relevance. We like to develop some formal system in which these algorithms themselves
are to be investigated meta-mathematically. We expect such a formal system to provide

e a more general and abstract notion extending traditional notions in logic, and
e a concretion of proof-search algorithms.

We could see A-calculus as such a formal system. Emphasized in a phrase “terms as
programs”, A-terms are not only an abstraction of mathematical functions, but also
concrete programs we know how to evaluate them. In summary, the A-terms are both

e a more general and abstract notion of mathematical functions, and

e a concretion of programs.
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We hope for a similar formal system not for mathematical functions but for proof-
search algorithms. Based on this idea we study ludics introduced by Girard ([Gi]).
Our topics are organized as follows:

e Section 2: Inference rules.

Section 3: Axioms.

Section 4: Variables.

Section 5: Proofs.

Section 6: Formulas.

Section 7: Normalization.

2 Inference rules.

We started our discussion without mentioning any particular formal system. In order to
analyze proofs further, we choose one specific formal system, namely Sequent calculus.
Sequent calculus is equipped with an axiom scheme of simple form A - A, and inference
rules: the structural rules, and the left introduction and the right introduction rules
for the logical connectives. We simply refer the right introduction rule for a logical
connective as its inference rule.

Sequent calculus is preferred because of its internal completeness, namely the cut-
elimination theorem. Thanks to the theorem, the search space for proofs becomes
much smaller. An application of the last inference rule introduces the outermost
logical connective. A bottom-up proof-search in a cut-free system boils down to find
the last rule. One step to find the last rule can be thought as a partial function which
provides an inference rule for a given ordered sequence of inference rules up to the
current point. In fact, this idea leads us to the notion of innocent functions in game
semantics ([(HOJ,[FH]). We discuss their work in the last section.

In linear logic, the logical connectives &, P and V are negative, while &, ® and 3
are positive. Let us call an inference rule for a negative connective and for a positive
one by a negative rule and by positive one, respectively. The notion of the polarity
arises in the following aspects:

e The law of distributivity,
e the reversibility and determinism,

¢ focalization and the priority in proof-search algorithms.
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The law of distributivity holds:

AR(BaC)~(A®B)d(ARC(C)
Jz(A® B(z)) ~ A® 3z B(z)
AP(B&C) ~ (APB)&(APC)

Vz(APB(z)) ~ APYB(z).

In linear logic, the negative rules are deterministic and reversible: For case of &, the
inference rule is:
AT +B,T

F A&B,T

Conversely, we can prove each premise from the conclusion. In the following, premise
A, T is derived.

(&)

FA AL @)
FA&B,I' A, At o B+
FAT (Cut)
For case of P, the inference rule is:
A BT
4B, 7).

Similarly, we can prove the premise from the conclusion:

AL A +BLB

FAPB,I' + A B, At® Bt (®)
FABT (Cut),
For case of V, w/a
FAly/z],T
FVzA, T (\7’)’

where variable y is not free in I'. We can prove the premise from the conclusion.
- Aly/z]*, Aly/z]

&)
FVzA, T+ 3zAt, Ajy/z]
F Aly/z],T (&) :

On the other hand, the positive rules are non-deterministic and irreversible.

The focalization allows us to treat a cluster of negative rules, and a cluster of
positive ones, as synthetic connectives. We give a higher priority to the negative rules
than to the positive ones. Thus we have the following proof search algorithm:
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e Choose one of the formulas in the conclusion and a negative rule: Apply the
rule and decompose the formula. Notice that this is deterministic, and the other
formulas in the context remain the same.

e Continue choosing a negative rule, until it is no longer available in the conclusion.

e Choose one of the formulas in the conclusion and a positive rule: Apply the rule
and decompose the formula. Notice that this is non-deterministic, the context
may split in a non-recoverable manner (in the case of ®), or one of the sub-
formulas may be lost (in the case of ®).

As for the negativity of the universal quantifier V, let us consider a provable formula
in first-order classical logic
JzVy(P(z) — P(y)).

We build its cut-free proof in classical sequent calculus in a bottom-up way. Then we
soon realize that we need to defer our irreversible choice to avoid making a crucial
error, instead, to apply the Contraction rule. Thus we eliminate 3 in one of the two
formulas in the conclusion. Then we are left with two formulas, whose outermost
quantifiers are V and 3, respectively:

+ Vy(P(z) — P(y)), 3zVy(P(z) — P(y))
t+ 3zVy(P(z) — P(y)), 3zVy(P(z) — P(y))
F 3zVy(P(z) — P(y))

(R3)
(Cont.)

Which quantifier should we eliminate first, V or 37 Our proof-search algorithm above
tells us that we should choose a negative connective when possible, which is V, in this
case. Thus we further proceed the derivation:

F P(z) — P(z),3zVy(P(z) — P(y))
Yy (P(z) — P(y)), 3zVy(P(z) — P(y))
- 32y (P(z) — P(y)), IzVy(P(z) — P(y))
F 3zVy(P(z) — P(y))

(Rv)
(R3)
(Cont.)

Introducing a fresh variable z in the top inference rule is very tricky; there seems no
particular reason to do this at this point. We think that this is an example of variables
used as an anonymous representative. We think that Sequent calculus does not have
a capacity to describe how to introduce a fresh variable and to use it effectively.
After this crucial step, we need to eliminate 3 in the left formula using the variable
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z, which is again a little tricky:

F P(z) — P(z),Vy(P(z) — P(y))
F P(z) — P(z),3zVy(P(z) — P(y))
= Vy(P(z) = P(y)), JzVy(P(z) — P(y))
- 3zVy(P(z) — P(y)), 3zVy(P(z) — P(y))
F 3zvy(P(z) — P(y))

(R3)

(BV)
(R3)
(Cont.)

The last step is matching so that a pair of P(z) should later be used to supply an
axiom. Matching is completed by the positive rule for 3. This is an irreversible and
non-deterministic step, leading us to the successful end of the proof. Moreover, we can
interpret this step in a game semantic manner: The initial negative rule (Opponent)
offers a function P(2), or options P(2) (in the sense that different 2’s provide various
options), and the next positive rule (Player) responds to it by supplying P(z) by a
suitable variable. Here the variable z is chosen. Finally, we conclude our proof as

follows:
P(z) + P(2)

P(z), P(z) F P(2), P(y)
P(z) - P(z), P(z) — P(y
- P(z) — P(2), P(2) — P(y)
- P(z) — P(z), Vy(P(z) = P(y))
F P(z) — P(z),3zVy(P(z) — P(y))
k- Vy(P(z) — P(y)), JzVy(P(z) — P(y))
b 3zvy(P(z) — P(y)), 3zVy(P(z) — P(y))
F 3zvVy(P(z) — P(y))
It will be interesting to investigate further a computational aspect of the polarity in

proof-search algorithms. In ludics, the inference rules are introduced not based on the
left or right, but based on the polarity.

(Weak.)

] (R—)

(R—)

(RY)

(R3)

(RY)
(R3)
(Cont.)

e Daimon:

et

e Positive rule (one premise for each ¢ € I, A;’s pairwise disjoint and included in
A):
i Ay
}_ 6, A (+’ 57 I)

e Negative rule (one premise for each J € N, all A;’s included in A):

s b Ex T Ay,
fi—A ("»&N)
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The basic objects in ludics are designs. Syntactically, designs are trees built from the
rules above.

3 Axioms.

We observe the following two distinctive roles, syntactical and semantical, played by
axioms normally in any proof system:

e Syntactical: To denote the terminals or initials of accumulated sequences of
inference rules, and

¢ Semantical: To denote concepts taken for granted, such as valid formulas, typi-
cally the identity A - A.

The first property leads us to two positive designs interpreted as terminals in ludics:

e Daimon Dai, consisting of 1 itself,

>
>
L~

which means convergence, while

e the partial design €1, the empty set,

FA &

which means divergence.

Besides being designs themselves, each daimon and 2 can be used, just as an axiom,
as a rule to end a tree of inference rules at top of the tree.

The daimon t and the partial design {2 are unique maximal and minimal designs
with respect to the observational order for the designs [Gi].(See also [C](p.15) for its
formal definition.)

Besides such an algebraic treatment, Curien emphasizes a similarity between re-
coverable errors in computer science and daimon in ludics: Errors and daimon help
us to terminate computation and to interactively explore the behavior of programs or
proofs. Moreover, computation is stream-like, or demand-driven. This view helps us to
better understand the observational order < in Girard’s notation, in such a way that
for designs ®; and D3, D1 <X D3 holds iff Dy is more likely to terminate or converge in
computation than ®; is. Furthermore, the observational order allows us to analyze a
structural difference between the two designs it orders. For example, a greater design
D, can be obtained from ©; by as follows; we replace either
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e an in ®; with a tree # Q, or
e a sub-tree in D, by a {,

to obtain D,.
However, replacing “axiom-like” objects freely by something else seems against the

second role of the axioms; namely, axioms denote something valid.
As for the gap we just mentioned, let us examine an example in semantics of

Intutionistic predicate logic, which is taken from a text by Ono ([O}).
Let (M, <,U, |=) be a Kripke model satisfying the following conditions:

1. (M, <) is an ordered set,

2. U: M — P(W) is a map from M to the power set of some set W, satisfying
the two conditions;
(a) for any a € M, U(a) # @ holds,
(b) for any a,b € M, a < b implies U(a) C U(d).
3. | is a binary relation between an element a € M and a closed formula A such
that
(a') a "_‘ P(glv"'vgm) — (ula""um) € PI(a):
(b)) aF AAB<=a Aanda [ B,
(c) aEAVB<=afEAorafkE B,
(d aEA—B<>Vb(a<b= (b, Aorbk B)),
(e) a = —A <> Vbla<b=b} A),
(f) a = VzA < VbVu(a < b= (u € U(b) = b = Alu/z])),
(g) a = 3zA <= Fu(u € U(b) Aa = Aly/z)),
where I(a), for each a € M, of the interpretation of the predicate symbols I is
defined so that (1) PI® C U(a)™ and (2) a < b implies PI® € PI®; and u
stands for the name of w.

A formula A is valid in the frame (M, <, U) iff it is true in the Kripke model (M, <

,U, =) for any valuation f=.
Let M be a set satisfying the condition that for any a € M, there exists a maximal

element a*(> a) in M. Then formula

Vz--P(z) — -~~Vz P(z)
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is valid in the frame (M, <,U). Let us demonstrate how to prove the validity of this
formula. Firstly,
(1) bk Vz——P(x)
is equivalent to A
(1) VevuvdIe(b< c= (u € U(c) = (¢ < d = (d < e Ae = Plu/z])))).

And
(2) b VP(z)

is equivalent to
(2)' VcddVeVu(b<c= (c<dA (d<e= (u € U(c) = e = Plu/x])))).

We assume condition (1) and imply condition (2). The condition (2)’ is of prenex
form whose quantifiers are Yc3dVeVu, and for any c instantiating the first quantifier
Ve, the second existential quantifier is ought to be instantiated by ¢*. Thanks to the
maximality of ¢*, the next V is trivially instantiated only by ¢*. Thus the condition
(2)’ boils down to
(2)" Vu(u € U(c*) = ¢* = Plu/z]).

On the other hand, the condition (1)’ is of prenex form whose quantifiers are VcvVuVdde,
and the first quantifier Vc is ought to be instantiated by c*. Again, thanks to the
maximality of c*, the rest of the quantifiers are all trivially instantiated only by c*.
Therefore the condition (1)’ boils down to

(1) Vu(u € U(c*) = " = Plu/z]).

Clearly (1)” and (2)” are identical, and we have shown the claim.

Notice that the role played by the maximal element c¢* reminds us the role of
daimon. It is maximal, and it stops further inquiries for instantiating quantifiers in a
non-trivial way. Moreover, instantiating a universal quantifier in (1) and an existential
quantifier in (2) syntactically corresponds to (L V) and (R 3), respectively in Sequent
calculus: The polarities of these rule are both positive, as same as the polarity of
daimon. It will be interesting to study further proof-search algorithms to check the
validity of formulas in the Kripke frame, and to investigate its computational relevance.

Finally, the second role of the axiom leads us to a design called Faz, intended as
the identity, or rather its infinite 7-expansion in ludics. It plays a role of a function
mapping one formula to the other isomorphic one. Fax Fare ¢ is the following design:

. Farerien
s E ki E Xy €. 1)
Rl ExT ’
Er¢ (g’Pf(N))

See Faggian et als. [FFDQ)] for further discussions on Fax.
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4 Variables.

In [AC] by Amadio and Curien, it is explained that the categorical interpretation of
A-calculus in CCC can be seen as a way of compiling a language with variables into a
languages without them. The slogan there is that variables are replaced by projections.
In other words, rather than giving a symbolic reference in the form of variable, one
provides a path for accessing a certain information in the context. This is the starting
point to define an abstract machine, which provides a high-level description of data-
structures and algorithms used to efficiently reduce A-terms.

In this section, we discuss a well-known partial algorithm to check the validity of a
formula based on Skolem’s and Herbrand’s theorems. We think that the combination
of two theorems provides us a usage of variables in logic, which seems to share the same
perspective mentioned in the slogan above. As for the formulations of the theorems,
we shall again count on the text by Ono ([O]).

In first-order predicate logic, Skolem’s theorem provides us, for a given formula, a
prenex existential formula called Skolem normal form: It is valid iff so is the original
one, provided that we consider the former validity in the models for an extended
language with new constants and function symbols. A formula

Vr3yI2VwP(z,y, 2, w)

has a Skolem normal form
Jy3zP(c,y, 2, f(y, 2)),

In the Skolem normal form, the universal quantifiers in the original formula disappear,
and the quantified variables z,w are substituted for the terms made of newly intro-
duced a 0-ary constant ¢ and a binary function symbol f, respectively. The parameters
of each ¢ and f are determined by the variables existentially quantified, between the
one universally quantified at work and the another one, universally quantified on the
left, closest to the one at work. »

Let £ a fixed language containing at least one constant symbols. Let Herbrand
universe, denoted by Hg, be the collection of variable-free terms of £. Herbrand
structure < Hg, J > for language £ is a structure such that for each variable-free term
t in £ is, via J, interpreted by term ¢ in Hg itself. Notice that the former ¢ is to be
interpreted is a syntactical object, while the latter ¢ in Hg is a semantical one. Thus
the notion of Herbrand structures introduces objects both syntactical and semantical.

Let A be a quantifier-free predicate formula

P(s) = (Q(s,t) v P(t)),

where P,(Q are predicate symbols unary and binary, respectively, and s,¢ are terms
without variables.
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Atomic predicates P(s) and @(s,t), containing different predicate symbols P an
Q respectively, are evaluated independently. In other words, each P and @ refers,
just as a pointer, independently to a value in the Herbrand structure. On the other
hand, if s, ¢ are different terms, say, containing distinct function symbols, then they are
interpreted by distinct elements in the Herbrand universe. Therefore, predicates P(s)
and P(t) are evaluated independently. In other words, each s, refers via its function
symbols playing their role as a pointer, independently to a value in the Herbrand
structure. :

The observation above reminds us the view presented earlier in this section, that
is, replacing a symbolic reference in the form of variable, one provides a path for ac-
cessing a certain information in the context. In our discussions, we replaced symbolic
references in the form of universally quantified variable by a path or a pointer played
by function symbols, thanks to the Skolem normalization, referring mutually indepen-
dently to the values in the Herbrand universe, which is the context in our setting.

The proposition below introduces a decidable algorithm to check the validity of
any quantifier-free formula A with no free variables.

Proposition 4.1 Let A be a quantifier-free formula with no free variable in £. Then
A is valid iff A is true in any Herbrand structure for £. Moreover, A is valid iff the
propositional formula w(A) is tautology; where w(A) is obtained from A by replacing
mutually distinct atomic predicates by corresponding mutually distinct propositional
variables.

5 Proofs.

A proof is built as a tree of inference rules. Normally, a proof-search algorithm provides
us how to accumulate inference rules successfully up to the axioms, which is the goal.

Faggian and Hyland describe in [FH] that designs, the basic objects in ludics, are
both:

e an abstraction of formal proofs, and
e a concretion of their semantical interpretation.

These two aspects of designs agree with our motivations presented in the first section:
That is, we are looking for:

e a more general and abstract notion of formal logic, and
e a concretion of proof-search algorithms.

Let us remember Herbrand’s theorem: The theorem allows us to check the validity of
closed existential prenex formulas by means of a partial algorithm.
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Theorem 5.1 (Herbrand) Let 3z¢---z,B be a closed existential prenex formula in
language L, where formula B contains no quantifier symbol. Then 3z - - xn,B is valid
iff there ezists a natural number m (> 1) and terms ti1,---,tin (2 = 1,---m) of
Herbrand universe such that

Bltii/z1,- - tin/Tn] V -+ V Bltm1/T1, - -, tmn/Zn]
is true in any Herbrand structure for L.

The notions of the structures, the universe and the validity in the theorem definitely
suggest that the theorem be semantical. However, based on the theorem, we obtain a
partial algorithm to check the validity of a closed formula: There is where, we believe,
semantics and proof-search algorithms meet. A good algorithm is coupled with a good
data structure. In our view, a good data structure in the partial algorithm here is a
growing list of tuples of variable-free terms in the Herbrand universe: The list starts
as the empty set; and the list is added tuples of terms mentioned in the theorem in
the course of the partial algorithm up to the list:

:Bl o s xn
tiz - tin
tor -+ lon
tml st tmn

When the list arrives at this stage, the given formula 3z¢ - - - z, B is shown to be valid.
It will be interesting to investigate how the above data structure is maintained by the
partial algorithm, and if and how it is related to Sequential algorithms due to Berry
and Curien ([AC]).

Thus we have started with a proof as a tree of inference rules, and proposed a
“proof-search algorithms as semantics” view. In the next section, we shall discuss
another aspect of a proof, namely its syntax in Sequent calculus.

6 Formulas.

A proof in Sequent calculus is a tree of sequents; and a sequent contains formulas.
One role of formulas in a proof is to denote the location. However, a formula does not
simply denote a location, but also denote a proof description, by which we can tell,
how to merge two disjoint proofs into one, preserving its correctness. For example, a
pair of cut-formulas indicate us how to merge two disjoint proofs via normalization.
The designs are supposed to be an abstraction of formal proofs. and the role of
formulas as a proof description in fact is played by designs, which itself is the counter-
part of proofs in ludics. In other words, the conceptual distinction between proofs and
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formulas are less clear in ludics than in the typed A-calculus, where emphasized are
“Formulas as types” and “Proofs as terms” in the Curry-Howard isomorphism.

We shall study the notion of types in ludics by means of filter models, that is, the
syntax of intersection types. (Chapter 3.3, p. 54. [AC]).

Definition 6.1 (ets, p. 55, [AC]) Let (D,e) be an applicative structure. Consider
the following operation on subsets of D: '

A—B={deD:Vec A(dee€ B)}.

A subset of P(D) is called an extended type structure (ets for short) if it is closed
under finite set theoretical intersections and under the operation — just defined.

An extended abstract type structure (eats for short) is given by a preorder (S, <), called
the carrier, whose elements are often called types: For the definition, refer to Definition
3.3.1 [AC]. The following lemma provides us a means to obtain an eats from an ets
defined above.

Lemma 6.2 (Lemma 3.3.7, p. 55, [AC]) An ets, ordered by inclusion is an eats.

A filter of an inf-semi-lattice S can be defined in a standard way. (See Definition 3.3.8,
p. 56, [AC], for instance.) The filter domain of an eats S is the set F(S) of filters of
S, ordered by inclusion.

Lemma 6.3 (Lemma 3.3.10, p. 56, [AC]) IfS is an eats, then F(S) is a complete
algebraic lattice.

In ludics, we have an applicative structure defined by the collection of designs de-
noted by T, equipped with binary operation Plays(®D; €). As a subset of P(T), we
take behaviors, where a behavior is a set of designs equal to its biorthogonal. As for
discussions on the behaviors, we follow [Gi].

The behaviors of the same base is closed under the set theoretical intersection.

Definition 6.4 (Inter, [Gi]) Let Gy be a family of behaviors of the same base. Then
we define [, G as the intersection of the Gy.

The connective [ is strictly commutative and associative.

Theorem 6.5 (Theorem 14, [Gi]) Let § and A be negative and positive designs,
respectively. There there ezists a unique design (F)2, such that for any positive design
5B, the following holds.

LKF|IAOB>=<xFA|B>
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In the theorem above, A ® B is the commutative tensor product only defined for
positive designs (refer to Definition 31). The binary operation —o for ets in ludics is
given by a negative behavior G — H, which is defined as G <1 H (Definition 34), for
two alien behaviors G positive and H negative. (As for alienation, see Definition 39.)

G-oH={A0%B;9cG,BecH}

Proposition 6.6 (Proposition 12, [Gi]) Let behaviors G and H be positive and
negative, respectively; then

FeGoHeVAReG= (FAcH).

Furthermore, :
F€eGoHeVAAecH = (5)AcGh.

It will be interesting to investigate further an eats structure of the behaviors BV . We
discuss a connection between filters of the behaviors and incarnations.

Let © a fixed design in G. Then the set of designs in G included in D is a non-
empty family: The intersection of the family, called the incarnation, also belongs to
G, due to Closure theorem (Theorem 7). '

Definition 6.7 (Incarnation, [Gi]) Let G and D be a behavior and its design, re-
spectively. The incarnation | D |g is defined as follows:

|D |e=[ DD CD andD € G}.
The incarnation belongs to G.
Now the following proposition is immediate.
Proposition 6.8 (A filter by incarnation.) A collection o of behaviours
zp = {G;| D |cC D}
forms a filter.
Proof. In order to show that zg is a filter, we check the following two conditions:
e GHEz9p = GNH € zp,

e Gezpgand GCH=HE zp
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The first condition is due to Theorem 9 on the intersection and incarnation: We obtain
|Dleru=|D|lcU|D|u.

The second condition is due to the contravariance easily shown from the definition of

the incarnation, i.e.,
GCH=|9|uC|?|c.

We conjecture that the filters F(BV) on behaviors is a complete algebraic lattice.
We note that there are maps between F(BV) and the collection T of designs,

z: T — FBV)

defined as z(D) = zp, and
D:§BV) — T

defined by
D)= Dle.

Ger

It will be interesting to further investigate these maps, a complete algebraic lattice
structure in F(BV), and its connection to one of the main results, stated in Theorem
10, of the additives in ludics:

|G&H [=| G | x |H|,

where | G | is the collection of designs D in G, satisfying © =| D |g.

7 Normalization.

Faggian and Hyland investigate ludics by means of HON game semantics in [FH], which
we follow closely in this section. Here we develop syntax of designs as an abstraction
of formal proofs. In particular, we pay attention to the following three roles of the
formulas.

o A location, relative and absolute.

e An initial sequent.

e A class of proofs characterized by normalization.
We have corresponding notions in ludics, respectively:

e An address.

88



e A base.
e A behavior.

An action is a pair (§,I) of an address £, called a focus and I a finite set of natural
numbers. An action corresponds to the application of an inference rule. A base is
a sequent of addresses corresponding to the initial sequent of the derivation, or the
conclusion of the proof.

Thanks to the focalization, it suffices to consider only sequents of form Z F A, =
consisting at most one element and finite A.

A design is given by a base and a tree of actions. A tree of actions can be thought
as a set of Sequent calculus branches [FH]. The precise definition is given by a set of
mutually coherent chronicles, where our intentions are

e Chronicles: A formal branch in a focalized sequent calculus derivation.

o Coherence: A condition to let a set of chronicles all belong to the same proof.

Definition 7.1 (Chronicles, [FH]) A chronicle of base = A is a sequence of ac-
tions < Ko, K1, -, Kn > such that:

e Alternation.
e Positive and Negative focuses.

Destruction of focuses.

Daimon. Daimon can only appear'as the last action.

Definition 7.2 (Coherence, [FH]) The chronicles ¢;, ¢y are coherent when

o Comparability. Either one extends the other, or they first differ on negative
actions,

o Propagation. If ¢i, ¢y first differ on k1, ko with distinct focuses, then all ulterior
focuses are distinct.

Definition 7.3 (Designs, [Gi])) A design D of base =+ A is a set of chronicles of
base EF A such that:

e Arborescence. © is closed under restriction.
e Coherence. The chronicles of © are pairwise coherent.

o Positivity. If c € D has no extension in D, then its last action is positive.
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e Totality. If the base is positive, then D is non-empty.

The actions and interactions of designs correspond to moves and plays in the game
semantic setting. For the simplicity, the bases of designs ® and & are <> and <>F,
respectively.

Definition 7.4 (Linear positions, [FH]) A sequence of actions s is a linear posi-
tion or a play, it it satisfies the following conditions:

e Alternation. Parity alternates.
o Justification. Each action is either initial or is justified by an earlier action.
e Linearity. Any address appears at most once.
e Daimon. Daimon can only appear as the last action.
The notions of chronicles and linear positions are very close.

Definition 7.5 (Plays (binary), [FH]) We define a play P denoted as Plays(D; €)
as follows:

ecP
p € P is a P to play position and[p|*k € D, thenpk € P
p € P is an O to play position and[p]®k € €, thenpk € P

We note that Plays(D; €) is totally ordered by the initial segment. Thus we denote
the sup of Plays(®; €) by [D = €], which is possibly infinite.

Definition 7.6 (Dispute, Convergence, [FH]) A sequence of actions [D = €] is
called a dispute, if it is finite and terminated with a Daimon. The normalization
between designs D and € converges, if [D = €] is a dispute, and diverges, otherwise.

Definition 7.7 (Orthogonality, [FH]) A design © is called orthogonal to &€, when
the normalization between them converges. The design € is called a counter-design of
D.

A legal position is a linear position satisfying the wvisibility condition (Def.7, [FH]).

Proposition 7.8 (Chronicles, Fact 2, Prop.1 [FH]) Let p be a linear position in
Plays(D; €). Then,

e for any g C rF Cp, [q]F is a chronicle of D, and similarly,

e for any q C r° C p, [q]° is a chronicle of €.
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o Moreover p s a legal position.

Due the last statement in the proposition above, any dispute is a legal position. Thus
the chronicles in ludics correspond to the linear positions in game semantics; and the
plays or disputes correspond to the legal positions.

Thus from a sequence of actions p in Plays(D; €), the chronicles of ® and &
are obtained by view operations [|¥, []9, respectively. Conversely, for a given finite
legal position p on the universal arena, we can extract a design and a counter-design
such that the dispute between them is p and minimal among such pairs of designs.
(Proposition 2, [FH]).

Definition 7.9 (Plays (unary), [FH]) For a given design ®©, we define a unary
Plays as:
Plays(D) = U{Plays(@; €); €is a counter-design}

The following proposition explains Plays(®) in terms of Plays(®; €) and D.

Proposition 7.10 (Designs, Facts 3,4,5, [FH]) Let D, € be a pair of a design and
a counter-design. Then, '

e Plays(D) N Plays(€) = Plays(D; €),
e D C Plays(D),

® Plays(®) = {p : p is a legal position; and for all q(C r* C p) satisfies [q] €
D}. v

An abstract notion characterizing Plays(D) is the notion of strategies (Def. 9, [FH]).
In particular, Plays(®) is an innocent strategy (Def. 10, [FH]).

Definition 7.11 (Views, Def. 11, [FH]) Let S be an X-strategy. We define
Views(S) = {[q]* : ¢ T r*,r € S}.
The following proposition summarizes the relationship between Views and Plays.

Proposition 7.12 (Fact 11, [FH]) Let® be a design, and S be an innocent strategy
satisfying propagation. Then,

o View(S) is a design, and

Plays(Views(S)) = S,

e Plays(®) is the smallest innocent strategy containing ©, and

Views(Plays(D)) =D.



As we mentioned earlier, Plays(®) is an innocent strategy. Hence, we apply construc-
tion Views to Plays(®), and we obtain

Views(Plays(D)) = {[q] : ¢ C rt,r € Plays(D)}.
The proposition above implies
Views(Plays(D)) = D.
Due to the proposition above, we have thus obtained the following characterization of

designs in terms of plays.
Proposition 7.13 (Designs, Prop. 3, [FH])

D = {[q]: g Er*,r € Plays(D)}.

Let us remind the idea presented by Amadio and Curien (p.43, [AC]), that the meaning
of a term should be the collection of properties it satisfies in a suitable logic. In fact,
the filter models of A-calculus is based on this idea.

In this note, we have presented two characterizations of designs as collections, the
one based on chronicles, and the other based on plays. A design thought as a term in
ludics, its characterization as a collection, can be taken as a meaning defined by the
properties it satisfies in a suitable logic, in the above sense.

e Which characterization is better, the one based on chronicles, or the one on
plays.

Faggian and Hyland prefer the characterization based on plays. The plays are an
interactive notion: So are the behaviors.

e What is the relationship between the chronicles in the plays and the behaviors?

e Does the notion of chronicles correspond to the notion of types in the filter
models in some way?

These questions remind us the discussions in the previous section.
e What is the relationship between the designs and the filters of behaviors?

According to the theory of HON game semantics, the collection of innocent strategies
ordered by inclusion is a dI-domain; a consistently complete, algebraic CPO which is
coprime algebraic and satisfies axiom: Every compact element dominates only finitely
many elements. (See [AC], [HO]). It will be interesting to investigate the duality for
algebraic dcpo’s in the collection of designs.
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