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1 Introduction
The purpose of this paper is mostly expository. We first review the axiomatic frame-
work recently proposed by Abramsky, Haghverdi and Scott [1] for Girard’s Geometry
of Interaction [3] in terms of traced symmetric monoidal categories. We then work
out in some detail how the new proposal captures Girard’s original formulation.

The Geometry of Interaction is introduced by Girard as the mathematical model
of the dynamics of cut-elimination. It is formulated in terms of operator algebra,
and the cut-elimination is represented by asingle execution formula. This is very
much interesting, but the intuitive meaning of this mathematical model does not
seem to be perfectly clear.

Abramsky and Jagadeesan [2] proposed their own formulation of Geometry of
Interaction, which is very much similar to their game semantics of linear logic. The
machinery is fairly simple and clear, but the precise relationship to the original
formulation is not fully explicated.

The axiomatic framework of Geometry of Interaction proposed by Abramsky,
Haghverdi and Scott is supposed to fill the gap between the two formulations. In
any case it gives us avery clear and intuitive picture. The framework is based
on atraced symmetric monoidal category, and it yields acertain compact closed
category as amodel of linear combinatory algebra, covering as much as Girard’s
original formulation works.

The precise relationship of this framework to the original Geometry of Interaction
is, however, only claimed in Abramsky, Haghverdi and Scott [1] and sketched in
Haghverdi [4]. It may be obvious to them, but we find it helpful to work it out in
some detail. This is what we intend to do in the present paper.

数理解析研究所講究録 1318巻 2003年 160-187

160



2The axiomatic framework

2.1 Traced symmetric monoidal categories
Atraced symmetric monoidal category $\mathbb{C}$ is asymmetric monoidal category en-
hanced with the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ operations $\mathrm{T}\mathrm{r}_{X,Y}^{U}(f)$ from $\mathbb{C}(X\otimes U, Y\otimes U)$ to $\mathbb{C}(X, Y)$ , rep
resented by the diagrams:

$\mapsto$

$\mathrm{T}\mathrm{r}_{X,Y}^{U}(f)$ must satisfy the following conditions. To simplify the presentation we
assume that $\mathbb{C}$ is astrict monoidal category.

1. $\mathrm{T}\mathrm{r}_{X,Y}^{U}(f)g=\mathrm{T}\mathrm{r}_{X,Y}^{U},(f(g\otimes 1_{U}))$ for $f$ : $X\otimes Uarrow Y\otimes U$ and $g:X’arrow X$ :

2. $g\mathrm{T}\mathrm{r}_{X,Y}^{U}(f)=\mathrm{T}\mathrm{r}_{X,Y’}^{U}((g\otimes 1_{U})f)$ for $f$ : $X$ ($\ Uarrow Y$ (&Uancl $g:Yarrow Y’$ :

3. $\mathrm{T}\mathrm{r}_{X,Y}^{U}((1_{Y}\otimes g)f)=\mathrm{T}\mathrm{r}_{X,Y}^{U}(f(1_{X}\otimes g))$ for $f$ : $X\otimes Uarrow Y$OU’ and $g$ : $U’arrow U$ :
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4. $\mathrm{T}\mathrm{r}_{X,Y}^{I}(f)=f$ and $\mathrm{T}\mathrm{r}_{X,Y}^{U\otimes V}(g)=\mathrm{T}\mathrm{r}_{X,Y}^{U}(\mathrm{T}\mathrm{r}_{X\otimes U,Y\otimes U}^{V}(g))$ for f : X $arrow Y$ , where
$X\otimes I=X$ and $Y\otimes I=Y$ , and g: $X\otimes U\otimes Varrow Y\otimes U\otimes V$:

5. $g\otimes \mathrm{T}\mathrm{r}_{X,Y}^{U}(f)=\mathrm{T}\mathrm{r}_{W\otimes X,Z\otimes Y}^{U}(g$ (&f) for $f$ : $X\otimes Uarrow Y\otimes U$ and $g:Warrow Z$ :

6. $\mathrm{T}\mathrm{r}_{U,U}^{U}(\sigma_{U,U})=1_{U}$ , where $\sigma_{U,U}$ is the canonical morphism for symmetry;

For traced symmetric monoidal categories $\mathbb{C}$ and $\mathrm{D}$ , amonoidal functor $(F, \phi, \phi_{I})$

from $\mathbb{C}$ to I[$)$ is called traced if it is symmetric and it satisfies

$\mathrm{T}\mathrm{r}_{FX,FY}^{FU}(\phi_{Y,U}^{-1}(Ff)\phi_{X,U})=F(\mathrm{T}\mathrm{r}_{X,Y}^{U}(f))$

for $f$ : $X\otimes Uarrow Y\otimes U$ .

162



2.2 The Geometry of Interaction construction
Given atraced symmetric monoidal category $\mathbb{C}$ , we construct acompact closed
category $\mathcal{G}(\mathbb{C})$ , which gives abasic framework for the Geometry of Interaction.

The objects of $\mathcal{G}(\mathbb{C})$ are the pairs $(A^{+}, A^{-})$ of objects of C. Morphisms $f$ from
$(A^{+}, A^{-})$ to $(B^{+}, B^{-})$ are the morphisms $f$ : $A^{+}\otimes B^{-}arrow A^{-}\otimes B^{+}$ of $\mathbb{C}$ :

The identity for an object $(A^{+}, A^{-})$ is given as the canonical morphism $\sigma_{A}+,A-$ :
$A^{+}\otimes A^{-}arrow A^{-}\otimes A^{+}$ for symmetry in C. Sometimes it is helpful to add extra
subscripts to distinguish occurrences of objects. We then write $\sigma_{AA^{-}}+,$ : $A_{1}^{+}\otimes A_{2}^{-}arrow$

$A_{1}^{-}\otimes A_{2}^{+}$ to indicate that it is amorphism from $(A_{1}^{+}, A_{1}^{-})$ to $(A_{2}^{+}, A_{2}^{-})$ .
The composition $gf$ : $(A^{+}, A^{-})arrow(C^{+}, C^{-})$ of morphisms $f$ : $(A^{+}, A^{-})arrow$

$(B^{+}, B^{-})$ and $g$ : $(B^{+}, B^{-})arrow(C^{+}, C^{-})$ in $\mathcal{G}(\mathbb{C})$ is defined as

$\mathrm{T}\mathrm{r}_{A+}^{B^{-}\otimes B^{+}}(\otimes C^{-},A^{-}\otimes c+\beta(f\otimes g)\alpha)$

in $\mathbb{C}$ , where $\alpha=(1_{A+}\otimes 1_{B}-\otimes\sigma_{C^{-},B}+)(1_{A}+\otimes\sigma_{C^{-},B^{-}}\otimes 1_{B+})$ and $\beta=(1_{A}-\otimes 1_{C}+\otimes$

$\sigma_{B}+,B-)(1_{A}-\otimes\sigma_{B}+,c+\otimes 1_{B}-)(1_{A}-\otimes 1_{B}+\otimes\sigma_{B}-,c+)$ , represented by the diagram:

Since the coherence of the symmetric monoidal category allows us to permute the
tensor products in $\mathbb{C}$ through the canonical morphisms in any order, we can make
the use of permutations implicit and depict the above diagram more intuitively:
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$\mathcal{G}(\mathbb{C})$ is equipped with the tensorial structure. The tensor product of $(A^{+}, A^{-})$

and $(B^{+}, B^{-})$ is given by $(A^{+}\otimes B^{+}, A^{-}\otimes B^{-})$ , $i.e$ . by taking the tensor products
in $\mathbb{C}$ pointwise. The unit is the pair $(I, I)$ of the unit I in C.

The tensor product of $f\otimes g:(A^{+}\otimes C^{+}, B^{-}\otimes D^{-})arrow(A^{-}\otimes C^{-}, B^{+}\otimes D^{+})$ of
$f$ : $(A^{+}, A^{-})arrow(B^{+}, B^{-})$ and $g:(C^{+}, C^{-})arrow(D^{+}, D^{-})$ is given by

$f\otimes g=(1_{A}-\otimes\sigma_{B}+,c-\otimes 1_{D}+)(f\otimes g)(1_{A}+\otimes\sigma_{C,B}+-\otimes 1_{D}-)$

in $\mathbb{C},$ $i.e$ . by taking the tensor product of $f$ and $g$ in $\mathbb{C}$ and composing it with the
appropriate permutations, represented by the diagram:

$\mathcal{G}(\mathbb{C})$ has the structure of acompact closed category as well. The left adjoint
$(A^{+}, A^{-})^{*}$ of $(A^{+}, A^{-})$ is given by $(A^{-}, A^{+}),$ $i.e$ . by exchanging the two components.
Then the unit y7 : $(I, I)arrow(A^{+}, A^{-})\otimes(A^{+}, A^{-})^{*}$ should be amorphism from the
unit object $(I, I)$ to $(A^{+}\otimes A^{-}, A^{-}\otimes A^{+})$ , which is in turn amorphism from $A^{-}\otimes A^{+}$

to $A^{+}\otimes A^{-}$ in C. In fact we can simply take $\sigma_{A^{-},A+}$ in $\mathbb{C}$ as the unit $\eta$ :

The counit $\delta$ : $(A^{+}, A^{-})^{*}\otimes(A^{+}, A^{-})arrow(I, I)$ can be similarly given by $\sigma_{A^{-},A}+$ :
$A^{-}\otimes A^{+}arrow A^{+}\otimes A^{-}$ in C.

2.3 The GoI Situation
To yield amodel of intuitionistic linear logic, the traced symmetric monoidal cate-
gory $\mathbb{C}$ needs to have an extra structure, which is summarized as a $\mathrm{G}\mathrm{o}\mathrm{I}$ Situation.

Let us recall that $A$ is aretract of $B$ when there exists morphisms $f$ : $Aarrow B$

and $g$ : $Barrow A$ such that $gf=1_{A}$ . In such acase we call $(f, g)$ aretraction and
write $f$ : $A\triangleleft B$ : 9. The $GoI$ Situation is atriple $(\mathbb{C}, T, U)$ , where $\mathbb{C}$ is atraced
symmetric monoidal category, $T$ is atraced symmetric monoidal functor on $\mathbb{C}$ with
the following retractions as monoidal natural transformations:

1. $e$ : $TT\triangleleft T$ : $e’$ (Comultiplication),

2. $d$ : $\mathrm{I}\mathrm{d}\triangleleft T$ : $d’$ (Dereliction),
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3. c : $T\otimes T\triangleleft T$ : $c’$ (Contraction),

4. $w:\mathcal{K}_{I}\triangleleft T:w’$ (Weakening), where $\mathcal{K}_{I}$ is the constant I functor;

and $U$ is arefiexive object in $\mathbb{C}$ with the retractions:

1. $j$ : $U\ U\triangleleft U$ : $k$ ,

2. 1: $I\triangleleft U$ : $m$ ,

3. $u$ : $TU\triangleleft U$ : $v$ .

The functor $T$ is intended to induce the exponential operator 1of linear logic in
$\mathcal{G}(\mathbb{C})$ , as suggested by the names of the retractions.

For any categories $\mathbb{C},$
$\mathrm{D}$ and functors $F,$ $G$ : $\mathbb{C}arrow \mathrm{D}$ , we say that afamily of

morphisms $m_{A}$ : $FAarrow GA$ is apointwise natural transformation from $F$ to $G$ if
the naturality condition holds only for morphisms $f$ : $Iarrow A,$ $i.e$ . the diagram

$FAarrow m_{A}GA$

$Ff\uparrow$ $\uparrow Gf$

$FIarrow m_{I}GI$

commutes for any such $f$ .
Given a $\mathrm{G}\mathrm{o}\mathrm{I}$ Situation $(\mathbb{C}, T, U)$ , the compact closed category $\mathcal{G}(\mathbb{C})$ becomes a

weakly linear category, in the sense that the standard maps for the exponential are
only pointwise natural.

This is, however, sufficient to obtain amodel of intuitionistic linear logic, since
we only consider the morphisms from $(I, I)$ to $(U, U)$ . In fact $\mathcal{G}(\mathbb{C})((I, I),$ $(U, U))$ is
alinear combinatory algebra, $i.e.$ , the algebraic model of intuitionistic linear logic.

The construction of linear combinatory algebra from the $\mathrm{G}\mathrm{o}\mathrm{I}$ Situation is fully
worked out in Abramsky, Haghverdi and Scot [1], and we do not give its detail here.
In the present paper we are more interested in how this setting fits Girard’s original
formulation of Geometry of Interaction.

At this moment we only note that amorphism $f$ : $(I, I)arrow(U, U)$ in $\mathcal{G}(\mathbb{C})$ is
nothing but the morphism $f$ : $Uarrow U$ in $\mathbb{C}$ , assuming that $\mathbb{C}$ is astrict monoidal
category. In this case it is more perspicuous to distinguish the two occurrences of
$U$ in $(U, U)$ as $(U^{+}, U^{-})$ , and write $f$ : $U^{-}arrow U^{+}$ for $f$ in $\mathbb{C}$ :
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2.4 The category PInj
Atypical example of atraced symmetric monoidal category with a $\mathrm{G}\mathrm{o}\mathrm{I}$ Situation is
the category of sets and partial injective functions. This category is equipped with
the tensorial structure defined by the disjoint unions of sets and functions.

Given the disjoint union $A\cup+B=\{(0, x)|x\in A\}\cup\{(1, y)|y\in B\}$ of sets $A$

and $B$ , we have the injections $\iota_{1}$ : $Aarrow A\mathrm{E}B$ and $\iota_{2}$ : $Barrow A\mathfrak{G}B$ defined by

$\iota_{1}$ : $X\mapsto(0, x)$ , $\iota_{2}$ : $y\mapsto(1, y)$

and the quasi (partial) projections $\pi_{1}$ : A$ $Barrow A$ and $\pi_{2}$ : $A\cup+Barrow B$ defined by

$\pi_{1}$ : $(0, x)\mapsto x$ , $\pi_{2}$ : $(1, y)\mapsto y$ .

They can be naturally extended to the n-ary injections $\iota_{i}^{n}$ : $A_{1}arrow A_{1}\Theta\cdots\oplus A_{n}$ and
quasi projections $\pi_{i}^{n}$ : $A_{1}\cup+\cdots\cup+A_{n}arrow A_{i}$ . Note that they are all partial injective
functions and hence morphisms of PInj.

If partial injective functions $f_{i}$ : $Aarrow B(i\in I)$ have mutually disjoint domains
$\{x|\exists yf_{i}(x)=y\}$ and mutually disjoint codomains $\{y|\exists xf_{1}.(x)=y\}$ , they can be
summed up simply by taking the union $\bigcup_{i\in I}f_{i}$ . We write $\sum_{i\in I}f_{i}$ for $\bigcup_{i\in I}f_{1}.$ .

By means of $\iota_{i}^{n}$ and $\pi_{l}^{n}$ any partial function $f$ : $A_{1}\cup+\cdots\cup+A_{n}arrow A_{1}\cup+\cdots\cup+A_{m}$

can be decomposed as
$f= \sum_{\prime}\sum_{ji\in\{1,\ldots m\}\in\{1,\ldots,n\}}f_{ij}$

where $f_{ij}=\pi_{i}^{m}f\iota_{j}^{n}$ . Furthermore the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of $f$ : $A\oplus Uarrow B\oplus U$ is given by

$\mathrm{T}\mathrm{r}_{A,B}^{U}(f)=f_{AA}+\sum_{n\in\omega}f_{UB}f_{UU}^{n}f_{AU}$

where $f_{AA}=f_{11},$ $f_{AU}=fi_{2}$ , $f_{UB}=f_{21},$ $f_{UU}=f_{22}$ .

3Girard’s formulation

3.1 The preliminary setting
Girard’s original Geometry of Interaction is formulated in terms of operator algebra.
The canonical example is the Banach space $B(\mathbb{H})$ of bounded operators on $\mathbb{H}$ , where
$\mathbb{H}$ is the Hilbert space $p$ of square summable infinite sequences of complex numbers.

It turns out that the full internal structure of $B(\mathbb{H})$ is not really necessary.
For this reason we only state some of the basic definitions. The infinite sequence
$z=(z_{l})_{i\in\omega}$ of complex numbers is square sumrnable if $\sum_{i=0}^{\infty}z_{i}\overline{z}_{i}$ converges. In that
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case the square root of this value is denoted $||z||$ . The bounded operator $u$ on IHI is a
linear transformation on $\mathbb{H}$ such that $\sup\{||u(z)|||||z||=1\}$ is finite.

For $x=(x_{i})$ and $y=(y_{i})$ , the scalar product $\langle x, y\rangle$ is defined as $\sum x_{\iota}\overline{y}_{i}$ , and
we have the adjoint operation $u\mapsto u^{*}$ on $B(\mathbb{H})$ such that $\langle ux, y\rangle=\langle x, u^{*}y\rangle$ . A
bounded operator $u$ is

$\bullet$ unitary if $uu^{*}=u^{*}u=1$ , where 1is the identity operator,

$\bullet$ hermitian if $u=u^{*}$ ,

$\bullet$ aprojector if $u$ is hermitian and $u^{2}=u$ ,

$\bullet$ asymmetry if $u$ is hermitian and unitary,

$\bullet$ apartial isornetry if $uu^{*}$ and $u^{*}u$ are projectors.

Any projector defines aclosed subspace $\mathbb{H}’=\{ux|x\in \mathbb{H}\}$ of IHI. Conversely
given any closed subspace $\mathbb{H}’$ of IHI, the unique decomposition $x=\’$ +$’’ of $x\in 1\mathrm{H}\mathrm{I}$

into $x’$ in IHI’ and $x”$ in its orthogonal complement $\mathbb{H}’’$ gives aprojector $x\mapsto x’$ .
Apartial isometry $u$ can be regarded then as ascalar product preserving map

(isometry) from the subspace $\{u^{*}ux|x\in \mathbb{H}\}$ onto the subspace $\{uu^{*}x|x\in \mathbb{H}\}$ .
Clearly $uu^{*}ux$ belongs to the latter, and it is onto since $uu^{*}x=u((u^{*}u)(u^{*}x))$ . The
scalar product is preserved since

$\langle uu^{*}ux, uu^{*}uy\rangle=\langle u^{*}ux, u^{*}uu^{*}uy\rangle=\langle u^{*}ux, u^{*}uy\rangle$

holds.

3.2 The partial isometries p and $q$

What is really necessary from $B(\mathbb{H})$ is the existence of partial isometries $p$ and $q$ ,
which are used to internalize the direct sum IHI $\oplus \mathbb{H}$ within $\mathbb{H}$ . In fact it suffices to
have any $p$ and $q$ such that

(1) $p^{*}q=q^{*}p=0$ ,

(2) $p^{*}p=q^{*}q=1$ .

As amatter of fact (2) implies that $p$ and $q$ are partial isometries.
The concrete examples of $p$ and $q$ can be given by introducing the canonical base

$(b^{n})$ of $\ell^{2}$ . Each $b^{n}=(b_{m}^{n})$ is an infinite sequence of 0and 1such that $\Psi_{m}=1$ iff
$n=m$:
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Clearly any z $=(z_{n})$ is expressed as the infinitary linear combination z $= \sum z_{n}b^{n}$ .
Then p is given by pz $= \sum z_{n}b^{2n}$ and its adjoint $p^{*}$ by $p^{*}z= \sum z_{2n}b^{n}$ :

0123 $2n2n+1$

Similarly $qz= \sum z_{n}b^{2n+1}$ and $q^{*}z= \sum z_{2n+1}b^{n}$ :

0123 $2n2n+1$

Note that $p$ may be regarded as an isometry from $\mathbb{H}=\{p^{*}pz|z\in \mathbb{H}\}$ onto
$\{\sum z_{n}b_{2n}|z_{n}\in \mathbb{C}\}=\{pp^{*}z|z\in \mathbb{H}\}$ , hence abijection between them. Similarly $q$

may be regarded as abijection between $\mathbb{H}$ and $\{\sum z_{n}b_{2n+1}|z_{n}\in \mathbb{C}\}$ .
In those examples of $p$ and $q$ the equation

$(1’)pp^{*}+qq^{*}=1$

holds, which is stronger than (1). From $(1’)$ we have

$p^{*}q=p^{*}(pp^{*}+qq^{*})q=p^{*}pp^{*}q+p^{*}qq^{*}q=p^{*}q+p^{*}q$

and $p^{*}q=\mathrm{O}$ holds. $q^{*}p=\mathrm{O}$ similarly follows from $(1’)$ .

3.3 Internalizing the direct sum
The direct sum $\mathbb{H}\oplus \mathbb{H}’$ of the Hilbert spaces $\mathbb{H}$ and $\mathbb{H}’$ can simply given as the vector
space of formal expressions x% $x’$ for $x\in \mathrm{I}\mathrm{E}\mathrm{I}\mathrm{I}$ and $x’\in \mathbb{H}’$ , where the vector addition
and the scalar multiplication are defined pointwise, and

$\langle x\oplus x’, y\oplus y’\rangle=\langle x, y\rangle+\langle x’, y’\rangle$ .

The direct sum $f\oplus g$ of morphisms $f$ and $g$ is defined similarly as

$(f\oplus g)(x\oplus y)=fx\oplus gy$ .
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We take $x\oplus(y\oplus z)$ to be identical to $(x\oplus y)\oplus z$ , simply denoted $x\oplus y\oplus z$ ,
and make the canonical isomorphisms for associativity identity maps. Recall that
direct sum is just another name of biproduct in the category of vector spaces.

For $\mathbb{H}=\ell^{2}$ , the direct sum $\mathbb{H}\oplus \mathbb{H}$ has the base consisting of $\theta^{l}\oplus 0$ and $0\oplus b^{n}$ .
Then the mapping

$\{0b^{n}b^{n}\bigoplus_{\oplus}0\mapsto\mapsto b^{2n}b^{2n}\dotplus_{1}$

induces the isomorphism $j:\mathbb{H}\oplus \mathbb{H}arrow \mathbb{H}$ . For $x=(x_{n})$ and $y=(y_{n})$

$j(x \oplus y)=j(x\oplus 0+0\oplus y)=\sum x_{n}b^{2n}+\sum y_{n}b^{2n+1}=px+qy$ ,

and for $z=(z_{n})$

$j^{-1}z=j^{-1}( \sum z_{2n}b^{2n}+\sum z_{2n+1}b^{2n+1})$

$=( \sum z_{2n}b^{n})\oplus 0+0\oplus(\sum z_{2n+1}b^{n})$

$=p^{*}z\oplus q^{*}z$ .

Hence we can regard $px+qy\in \mathbb{H}$ as the internal representation of $x\oplus y\in \mathbb{H}\oplus \mathbb{H}$,
and any $z\in \mathbb{H}$ can be regarded as such.

Given $j$ we have the isomorphisms $1_{\mathrm{H}}$ $\oplus j$ : $\mathbb{H}’\oplus \mathbb{H}\oplus \mathrm{E}\mathrm{I}$ $arrow \mathbb{H}’\oplus \mathbb{H}$ and this is
enough to establish the existence of isomorphism $j^{n}$ : $\mathbb{H}^{n}arrow \mathbb{H}$ for $n\geq 3$ .

Under the general setting $j$ : $x\oplus y\mapsto px+qy$ does not necessarily give an
isomorphism but constitutes aretraction with $k$ : $z\mapsto p^{*}z\oplus q^{*}z$ . This follows
immediately from the conditions (1) and (2) for $p$ and $q$ . It can be generalized to
the retraction $j^{n}$ : $\mathbb{H}^{n}\triangleleft \mathbb{H}$ : $k^{n}$ as well.

3.4 Matrix representation of operators
$\mathbb{H}^{n}$ is abiproduct, and we have the projections $\pi_{i}$ : $\mathbb{H}^{n}arrow \mathrm{I}\mathrm{H}\mathrm{I}$ $(1\leq i\leq n)$ given by

$x_{1}\oplus\cdots\oplus x_{n}\mapsto x_{i}$

and the injections $\iota_{i}$ : $\mathbb{H}arrow \mathbb{H}^{n}(1\leq i\leq n)$ given by

$x\mapsto 0\oplus\cdots\oplus x\oplus\cdots\oplus 0$ .
$\mathrm{i}\mathrm{t}\mathrm{h}$

This additive structure allows the decomposition of amap $f$ : $\mathbb{H}^{n}arrow \mathbb{H}^{m}$ into the
maps $(f_{ij})$ ( $1\leq i\leq m$ and $1\leq j\leq n$) by

$f_{ij}=\pi_{i}f\iota_{j}$ : $\mathbb{H}arrow \mathrm{I}\mathrm{H}\mathrm{I}$
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in such away that

$f(x_{1} \oplus\cdots\oplus x_{n})=\sum_{i=1}^{n}f_{1i}x_{i}\oplus\cdots\oplus\sum_{i=1}^{n}f_{mi^{X}i}$ .

Writing the direct sum $(x_{1}\oplus\cdots\% x_{n})$ as acolumn vector, we can rewrite the
above formula as the familiar equation

$(\begin{array}{lll}\sum_{i=1}^{n} \vdots f_{1i}x_{i}\sum_{i=1}^{n} \vdots f_{mi}x_{i}\end{array})$

.

$=(\begin{array}{lll}f_{11} \cdots f_{1n}\vdots \ddots \vdots f_{m1} \cdots f_{mn}\end{array})(\begin{array}{l}x_{1}\vdots x_{n}\end{array})$

of matrix computation, $i.e$ . the map $f$ : $\mathbb{H}^{n}arrow \mathbb{H}^{m}$ can be expressed as the matrix

$(f_{m1}f_{11}..\cdot$
. . . $f_{mn}f_{1n}.\cdot.)$

and this is represented graphically as:

1

$i$

$n$

For $f$ : $\mathbb{H}^{n}arrow \mathbb{H}^{m}$ and $g$ : $\mathbb{H}^{n’}arrow \mathbb{H}^{m’}$ , the direct sum $f\oplus g$ is then represented
by the matrix

$(\begin{array}{llllll}f_{11} \cdots f_{1n} 0 \cdots 0\vdots \vdots \vdots . \vdots f_{m1} ........ f_{mn} 0 ..\cdot... 00 0 g_{11} g_{1n’}\vdots \ddots \vdots \vdots \ddots \vdots 0 \cdots 0 g_{m’1} \cdots g_{mn},\end{array})$

and the diagram for $f\oplus g$ is obtained by stacking the diagrams for $f$ and $g$ .
Since we have the retraction (possibly isomorphism) $j^{n}$ : $\mathbb{H}^{n}\triangleleft \mathbb{H}$ : $k^{n}$ , any map

$f$ : $\mathbb{H}^{n}arrow \mathbb{H}^{m}$ can be regarded as the map $\hat{f}=j^{m}fk^{n}$ : $\mathbb{H}arrow \mathbb{H}$ as depicted below.
$\mathbb{H}^{n}arrow f\mathbb{H}^{m}$

$k^{n}\uparrow$ $\downarrow j^{m}$

$\mathbb{H}arrow\hat{f}\mathbb{H}$
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We call $\hat{f}$ the intemalized version of f. Note that f can be recovered from $\hat{f}$ by
$\hat{f}\mapsto k^{m}\hat{f}j^{n}$ . Hence we can officially stay inside the endomorphisms on $\mathbb{H}$ , while
working informally on maps from $\mathbb{H}^{n}$ to $\mathbb{H}^{m}$ .

Similarly any map f : $\mathbb{H}^{n+2}arrow \mathbb{H}^{n+2}(n\geq 0)$ can be regarded as the map

$\{$

$(1_{\mathrm{H}^{n}}\oplus j)f(1_{\mathbb{H}^{n}}\oplus k)$ if $n\geq 1$ ,
$jfk$ if $n=0$ ,

from $\mathbb{H}^{n+1}$ to $\mathbb{H}^{n+1}$ . Note that

$j=(pq)$ , $k=(\begin{array}{l}p^{*}q^{*}\end{array})$

and $(1_{\mathrm{y}}\oplus j)f(1_{\mathbb{H}^{n}}\oplus k)$ can be written as

$(\begin{array}{lllll}1 0 0 0\vdots \ddots \vdots \vdots \vdots 0 1 0 00 0 p q\end{array})(\begin{array}{lllll}f_{11} f_{1n} \alpha_{1} \alpha_{2}\vdots \ddots \vdots \vdots \vdots f_{m1} f_{mn} \beta_{1} \beta_{2}\alpha_{1}’ \alpha_{2}’ \gamma_{1} \gamma_{2}\beta_{1} \beta_{2} \delta_{1} \delta_{2}\end{array})(\begin{array}{llll}1 0 0\vdots \ddots \vdots \vdots 0 1 00 0 p^{*}0 0 q^{*}\end{array})$

which is equal to the matrix:

$(\begin{array}{lllll}f_{11}\ddots f_{1n} \alpha_{1}p^{*}+\alpha_{2}q^{*}\vdots \ddots \vdots \vdots f_{m1} \ddots f_{mn} \beta_{1}p^{*}+\beta_{2}q^{*}p\alpha_{1}’+q\beta_{1}’ p\alpha_{2}’+q\beta_{2}’ p\gamma_{1}p^{*}+p\gamma_{2}q^{*}+q\delta_{1}p^{*}+q\delta_{2}q^{*}\end{array})$

We write $\Phi$ for the operation $f\mapsto(1_{\mathbb{H}^{n}}\oplus j)f(1_{\mathbb{H}^{n}}\oplus k)$ or $f\mapsto jfk$ , and 0will be
called contraction of matrices $(f_{ij})$ . Note that any two rows (columns) of amatrix
can be exchanged by the left (right) action of the isomorphism:

$(\begin{array}{ll}1 1\end{array}\}$

Hence we can contract any two rows and columns of amatrix by moving them last,
contracting them and moving them back.
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3.5 The interpretation of proofs

For now we concentrate on the multiplicative fragment of classical linear logic with-
out exponentials.

We consider aproof together with all the cut formulas within it. Aproof
of asequent $\vdash A_{1},$

$\ldots,$
$A_{n}$ with cut formulas $B_{1},$ $\ldots B_{m}$ is said to be of type $\vdash$

$[B_{1}, \ldots, B_{m}]A_{1},$
$\ldots,$

$A_{n}$ . It is interpreted by an $(2m+n, 2m+n)$ matrix of the el-
ements of $B(\mathbb{H})$ , which is officially transposed to an element of $B(\mathbb{H})$ through the
retraction.

The interpretation of an axiom $\vdash A,$
$A^{[perp]}$ is the permutation $\sigma$ :

$\sigma=(\begin{array}{ll}0 11 0\end{array})$

Given aproof of type $\vdash[\Delta]\Gamma,$ $A,$ $B$ with the interpretation $\Pi$ , aproof of type
$\vdash[\Delta]\Gamma,$ $A\mathit{8}B$ obtained from it by the ?rule is interpreted just by $\Phi\Pi$ , where (I) is
the contraction of the last two rows and columns of amatrix.

Given proofs of type $\vdash[\Delta]\Gamma,$ $A$ and of type $\vdash[\Delta’]\Gamma’,$ $A’$ with interpretations $\Pi$

and $\Pi’$

$\Pi=(\begin{array}{ll} \alpha\Sigma \vdots\beta \ldots \gamma\end{array})$ , $\Pi’=(\begin{array}{lll} \Sigma^{/} \alpha’ \vdots\beta’ \cdots \gamma’\end{array})$

respectively, aproof of type $\vdash[\Delta, \Delta’]\Gamma,$ $\Gamma’,$ $A\otimes A’$ obtained from them by the $\otimes$

rule is interpreted by

(I) $\frac{\prod}{0}\gamma\alpha 0.\cdot.\cdot..\underline{\prod\gamma’\alpha’00..\cdot..\cdot}]$

where the matrix to be contracted is obtained by moving the last row and column
of $\Pi$ right before the last row and column of $\Pi’$ in $\Pi\oplus\Pi’$ .

Similarly given proofs of type $\vdash[]A,$ $\Gamma$ and of type $\vdash[\Theta]^{\backslash }A^{[perp]},$ $\Delta$ with interpre-
tations $\Pi$ and $\Pi’$ as below

$\Pi=(\begin{array}{lll}\alpha \cdots \beta\vdots \gamma \Sigma \end{array})$ , $\Pi’=(\begin{array}{lll}\alpha’ \cdots \beta’\vdots \gamma’ \Sigma’ \end{array})$
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aproof of type $\vdash[A, \Theta, ’]\Gamma_{\}}\Delta$ obtained from them by the cut rule is interpreted
by the matrix:

$\{$

$\underline{\prod\alpha}$ 0

0 $\underline{\prod\alpha’}$

: 0
$\gamma$ .$\cdot$

.

0 .$\cdot$
.... $\gamma’$

Note that we move the last rows and columns of $\Pi$ and $\Pi’$ to the first two rows and
columns in $\Pi\oplus\square ’$ and we do not apply the contraction 0here.

3.6 The execution formula
The interpretation $\Pi$ of aproof of type $\vdash[B_{1}, \ldots, B_{m}]A_{1},$ $\ldots A_{n}$ is an $(2m+n,$ $2m+$

$n)$ matrix. From this we can obtain aproof of type $\vdash A_{1},$
$\ldots,$

$A_{n}$ by cut elimination.
This process is expressed by the execution fomula:

$\mathrm{E}\mathrm{x}(\square , \sigma_{m,n})=(I_{2m+n}-\sigma_{m,n}^{2})\Pi(I_{2m+n}-\sigma_{m,n}\Pi)^{-1}(I_{2m+n}-\sigma_{m,n}^{2})$

where $I_{2m+n}$ is the unit matrix and $\sigma_{m,n}$ is given by

$\sigma_{m,n}=\sigma\bigoplus_{\check{m\mathrm{t}\mathrm{i}\mathrm{m}}}\cdots\bigoplus_{\mathrm{e}\mathrm{s}}\sigma\oplus 0_{n}$

or

$\sigma_{m,n}=\{$

01
10
.$\cdot$
. .$\cdot$. ...
00
00

0

$0001^{\cdot}.\cdot$ $0001^{\cdot}.\cdot$

$00$

$)$ .
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Acting from the left $\sigma_{m,n}^{2}$ is the map

$\{\begin{array}{l}x_{1}x_{2}\vdots x_{2m-1}l_{2m}x_{2m+1}\vdots x_{2m+n}\end{array}\}$ $\mapsto$ $\{\begin{array}{l}x_{2}x_{1}\vdots x_{2m}x_{2m-1}0\vdots 0\end{array}\}$

and $I_{2m+n}-\sigma_{m,n}^{2}$ is nothing but

$x_{1}$
$\backslash$

$.\cdot$

.

$x_{2m}$

$x_{2m+1}$

.$\cdot$.

$x_{2m+n/}$

$\mapsto$ $(\begin{array}{l}0\vdots 0x_{2m+1}\vdots x_{2m+n}\end{array}\}$ .

Recall that if the infinite series $I+X+X^{2}+\cdots$ converges for amatrix $X$ , it is
equal to the matrix $(I-X)^{-1}$ . In our case the matrix $\sigma_{m,n}\Pi$ is shown to be nilpotent,
$i.e$ . $(\sigma_{m,n}\Pi)^{i}=0_{2m+n}$ for some $i$ . This in fact corresponds to the normalization of
aproof. Hence the infinite series $I+\sigma_{m,n}\Pi+(\sigma_{m,n}\Pi)^{2}+\cdots$ converges and

$\Pi(I_{2m+n}-\sigma_{m,n}\Pi)^{-1}=\Pi+\Pi\sigma_{m,n}\Pi+\Pi\sigma_{m,n}\Pi\sigma_{m,n}\Pi+\cdots$

holds.

3.7 Exponentials
The exponentials !and ?are handled by internalizing the tensor product IHI $\otimes \mathbb{H}$ ,
which is defined as the space of all linear combinations of $x\otimes y$ ( $x\in \mathrm{I}\mathrm{E}\mathrm{I}\mathrm{I}$ and $y\in \mathbb{H}$ )
with complex coefficients, quotiented by the equivalence relations:

$x\otimes(x’+y’)=x\otimes x’+x\otimes y’$ , $(x+y)\otimes x’=x\otimes x’+y\otimes x’$

$(\mathrm{A}x)\otimes x’=x\otimes(\mathrm{A}x’)$ $=\lambda(x\otimes x’)$ .

The tensor product $u\otimes v$ of bounded operators $u$ : IH[ $arrow \mathrm{I}\mathrm{H}\mathrm{I}$ and $v$ : $\mathbb{H}’arrow \mathrm{I}\mathrm{I}\mathrm{I}’$ is
defined as the completion of

$(u\otimes v)(x\otimes y)=ux\otimes vy$.
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In particular the tensor product IHI $\otimes \mathbb{H}$ , where $\mathbb{H}=\beta$ , has the canonical base
$(\mathrm{c}^{mn})$ . Each $c^{mn}$ is an infinite double sequence of 0and 1such that $d^{nn}(m’, n’)=1$

iff $m=m’$ and $n=n’$ . We then have the isomorphism $\beta$ : IEI $arrow \mathbb{H}\otimes \mathbb{H}$ induced from
the bijection between $\mathrm{N}$ and $\mathrm{N}\cross \mathrm{N}$ .

We write $\langle m, n\rangle$ for the number corresponding to an ordered pair $(m, n)$ by the
bijection between $\mathrm{N}$ and $\mathrm{N}\cross \mathrm{N}$. The internalized version of the associativity map
between $\mathbb{H}\otimes(\mathbb{H}\otimes \mathrm{I}\mathrm{H}\mathrm{I})$ and $(\mathbb{H}\otimes \mathbb{H})\otimes \mathbb{H}$ is then obtained as the map $t$ : $\mathbb{H}arrow \mathbb{H}$

induced by the bijection
$\langle m, \langle n,p\rangle\rangle\mapsto\langle\langle m, n\rangle,p\rangle$ .

$t^{*}$ is the inverse $t^{-1}$ of $t$ .
We also consider the bounded operators $p$ and $q$ on $\mathbb{H}$ which are induced from

the maps
$n\mapsto\langle \mathrm{O}, n\rangle$ , $n\mapsto\langle 1, n\rangle$

respectively. They are different from $p$ and $q$ previously defined, but they satisfy
the conditions

1. $p^{*}q=q^{*}p=0$ ,

2. $p^{*}p=q^{*}q=1$ .
Hence they can be used to obtain the retraction $j$ : $\mathbb{H}\oplus \mathbb{H}\triangleleft \mathbb{H}$ : Aby

$j$ : $x\oplus y\mapsto px+qy$ , $k$ : $z\mapsto p^{*}z\oplus q^{*}z$ .

Note however that $j$ and $k$ are not isomorphisms anymore.
When aproof of the type $\vdash[\Delta]7\Gamma$ , ! $A$ is obtained from aproof of the type

$\vdash[\Delta]7\Gamma,$ $A$ by an application of the promotion rule, the matrix changes in the
following way.

$(\begin{array}{lll}\alpha \beta\vdots \ddots \vdots\gamma \delta\end{array})$ $\mapsto$ $(\begin{array}{lllll}t(1\otimes \alpha)t^{*} t(1\otimes \beta)\vdots \ddots \vdots (1\otimes\vdots \gamma)t^{*} 1\otimes \delta\end{array})$

For the dereliction rule from $\vdash[\Delta]\Gamma,$ $A$ to $\vdash[\Delta]\Gamma,$ $7A$ , we use:

$(\begin{array}{lll}\alpha \beta\vdots \ddots \vdots\gamma \delta\end{array})$ $\mapsto$ $(\begin{array}{lll}\alpha \beta p^{*}\vdots \ddots \vdots p\gamma p\delta p^{*}\end{array})$

where $p$ and $q$ are the new $p$ and $q$ we just defined. For the weakening from $\vdash[\Delta]\Gamma$

to $\vdash[\Delta]\Gamma$ , ? $A$ , we use:

( $.\cdot$.
$\cdot..\cdot.\cdot$) $\mapsto$ $(\begin{array}{lll}\alpha 0\vdots \ddots \vdots 0 0\end{array})$
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For the contraction rule from $\vdash[\Delta]\Gamma,$ ? $A,$ ? $A$ to $\vdash[\Delta]\Gamma,$ ? $A$ , we change the matrix

$(\begin{array}{lll}\cdots \alpha_{1} \alpha_{2} \vdots \vdots \gamma_{1} \gamma_{2} \delta_{1} \delta_{2}\end{array})$

to the matrix:

$(\begin{array}{lllll}\cdots \alpha_{1}(p^{*} \otimes 1)+\alpha_{2}(q^{*} \otimes 1) .. \vdots (p\otimes 1)\gamma_{1}(p^{*} \otimes 1)+(p\otimes 1)\gamma_{2}(q^{*} \otimes 1) +(q\otimes 1)\delta_{1}(p^{*}\otimes 1)+(q\otimes 1)\delta_{2}(q^{*} \otimes 1)\end{array})$

4Working out the relationship

4.1 The category $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$

In this section we work out how the axiomatic framework captures Girard’s original
formulation, following Haghverdi’s sketch in [4]. The category we are working with
is not the category of Hilbert spaces but its subcategory $\mathrm{H}\mathrm{i}1\mathrm{b}_{l}$ defined by M. Barr.

The key observation is that there exists amonoidal contravariant functor, called
$\ell^{2}$ , from the category PInj to the category of Hilbert spaces. Aset $X$ is mapped
to the space of those complex valued functions $a$ on $X$ which are square summable
in the sense that $\sum_{x\in X}|a(x)|^{2}$ is finite. Aquasi injective function $f$ : $Xarrow Y$ is
mapped to the function which sends $a\in P(Y)$ to

$\ell^{2}(f)(x)=\{$
$af(x)$ if $f(x)$ is defined
0otherwise.

The category $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ is defined as the image of $\ell^{2}$ .
It is known that $\ell^{2}(X\cross Y)\cong\ell^{2}X\otimes P^{2}Y$ and $\ell^{2}(X\Theta Y)\cong\ell^{2}X\oplus l^{2}Y$ where

$\ell^{2}X\otimes\ell^{2}Y$ and $\ell^{2}X\oplus\ell^{2}Y$ are atensor product and adirect sum, respectively, in the
category of Hilbert spaces. In $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ they are both tensor products, but $\ell^{2}X\oplus\ell^{2}Y$

is no longer adirect sum.
The $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ in $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ can simply defined from the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ in PInj as below.

$\mathrm{T}\mathrm{r}_{\ell^{2}(X),\ell^{2}(Y)}^{t^{2}(U)}(\ell^{2}(f))=\ell^{2}(\mathrm{T}\mathrm{r}_{X,Y}^{U}(f))$.
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4.2 The basic structure
Aproof of $\vdash[C_{1}, \ldots, C_{m}]A_{1},$

$\ldots,$
$A_{n}$ is interpreted by a $(2m+n, 2m+n)$ matrix,

understood as an operator from $\mathbb{H}^{2m+n}$ to $\mathbb{H}^{2m+n}$ , which can be further internalized
as an operator on $\mathbb{H}$ .

In particular the interpretation of an axiom $\vdash A,$
$A^{[perp]}$ , which is $\sigma$ , is nothing but

the canonical morphism for symmetry in $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ as we expected. The linear logic
tensor and par are both interpreted as the direct sum in the category of Hilbert
spaces.

4.3 Cut as composition in $\mathcal{G}(\mathrm{H}\mathrm{i}1\mathrm{b}_{2})$

Cut in asequent calculus corresponds to composition in acategory. Consider proofs
$\Pi$ and $\Pi’$ of sequents $\vdash A,$ $\Gamma$ and $\vdash A^{[perp]},$ $\Delta$ , respectively. In our setting they are
interpreted as the morphisms II : $(I, I)arrow(A^{+}, A^{-})\oplus(\Gamma^{+}, \Gamma^{-})$ and $\Pi’$ : $(I, I)arrow$

$(A^{-}, A^{+})\oplus(\Delta^{+}, \Delta^{-})$ in $\mathcal{G}(\mathrm{H}\mathrm{i}1\mathrm{b}_{2})$ . Since we are in acompact closed category, we
can obtain the desired morphism by the composition with the counit

$\delta:(A^{+}, A^{-})\otimes(A^{-}, A^{+})arrow(I, I)$

in the following way:

$(I, I)\Pi\otimes\Pi’arrow(A^{+}, A^{-})\oplus(\Gamma^{+}, \Gamma^{-})$ CEt $(A^{-}, A^{+})\oplus(\Delta^{+}, \Delta^{-})arrow$

$(\Gamma^{+}, \Gamma^{-})\oplus(\Delta^{+}, \Delta^{-})\oplus(A^{+}, A^{-})\oplus(A^{-}A^{+}))arrow(\Gamma^{+}, \Gamma^{-})\oplus(\Delta^{+}, \Delta^{-})1\oplus\delta$ .

This morphism is depicted by the diagram:

which can be simplified to the following.
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Although we adopt the convention to take the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ at the right component $U$

of the products $X\oplus U$ and $Y\oplus U$ , the permutation allows us to formulate the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

at the left component $U$ of $U\oplus X$ and $U\oplus Y$ as well. Using the latter convention
we can represent the morphism $\hat{\Pi}$

$(I, I) \prod_{arrow}(A_{1}^{+}, A_{1}^{-})\oplus(A_{1}^{-}, A_{1}^{+})\oplus\cdots\oplus(A_{m}^{+}, A_{m}^{-})\oplus(A_{m}^{-}, A_{m}^{+})\oplus(\Gamma^{+}, \Gamma^{-})\delta\bigoplus_{-^{\delta\oplus 1}}\cdots(\Gamma^{+}, \Gamma^{-})$

by the following diagram:

where $\Pi_{11},$ $\Pi_{12},$ $\Pi_{21}$ and $\Pi_{22}$ are obtained as the submatrices of the matrix $\Pi$ as
below:

$\Pi=$ $=(\begin{array}{ll}\prod_{11} \prod_{12}\prod_{21} \prod_{22}\end{array})$
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$\hat{\Pi}$ is the morphism which corresponds to the proof $\Pi$ of the type $\vdash[A_{1}, \ldots, A_{m}]\Gamma$ .
Writing

$\{$

a

$\hat{\sigma}_{m,n}=\hat{\sigma}\oplus 1_{n}$ ,

we can express $\hat{\Pi}$ by the formula

$\hat{\Pi}=\Pi_{22}+\sum_{n=0}^{\infty}\Pi_{21}(\hat{\sigma}\Pi_{11})^{n}\hat{\sigma}\Pi_{12}$

$=\Pi_{22}+\Pi_{21}\hat{\sigma}\Pi_{12}+\Pi_{21}(\hat{\sigma}\Pi_{11})\hat{\sigma}\Pi_{12}+\Pi_{21}(\hat{\sigma}\Pi_{11})(\hat{\sigma}\Pi_{11})\hat{\sigma}\Pi_{12}+\cdots$

$=\mathrm{T}\mathrm{r}_{\Gamma}^{A_{1}\bigoplus_{-,\mathrm{r}+}\cdots\oplus A_{m}}(\hat{\sigma}_{m,n}\square )$ ,

where $\hat{\sigma}_{m,n}\Pi$ is the matrix:

$\hat{\sigma}_{m,n}\Pi=(\begin{array}{ll}\hat{\sigma}\prod_{11} \hat{\sigma}\prod_{12}\prod_{21} \prod_{22}\end{array})$

Furthermore by way of the projection

$\alpha$ : $(\begin{array}{l}x_{1}\vdots x_{2m}x_{2m+1}\vdots x_{2m+n}\end{array})\mapsto(\begin{array}{l}x_{2m+1}\vdots x_{2m+n}\end{array})$

and the injection

$\alpha’$ : $(\begin{array}{l}x_{2m+1}\vdots x_{2m+n}\end{array})\mapsto(\begin{array}{l}0\vdots 0x_{2m+1}\vdots x_{2m+n}\end{array})$

we have

$\alpha \mathrm{E}\mathrm{x}(\pi, \sigma_{m,n})\alpha’=\alpha\Pi\alpha’+\alpha\square \sigma_{m,n}\mathrm{I}\mathrm{I}\mathrm{c}\mathrm{z}’+\alpha\Pi\sigma_{m,n}\square \sigma_{m,n^{\Pi\alpha’+}}\cdots$

$=\square _{22}+\Pi_{21}\hat{\sigma}\Pi_{12}+\Pi_{21}(\hat{\sigma}\Pi_{11})\hat{\sigma}\Pi_{12}+\ldots$

$=\hat{\Pi}$ .
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4.4 Exponentials from a GoI Situation
The exponential operator !is modelled by the functor

$\mathrm{X}\mapsto \mathbb{H}\otimes \mathrm{X}$ , $f\mapsto 1_{\mathbb{H}}\otimes f$

where $\mathbb{H}\otimes \mathrm{X}$ is the tensor product in Hilbert spaces.
We then need to check that the $\mathrm{G}\mathrm{o}\mathrm{I}$ Situation holds with with $T=\mathbb{H}\otimes \mathrm{I}\mathrm{d}$ and

$U=\mathrm{I}\mathrm{E}\mathrm{I}\mathrm{I}$ . The retractions for areflexive object $U$ become

1. $j$ : $\mathbb{H}\oplus \mathbb{H}\triangleleft \mathbb{H}:k$

}

2. $l$ : $I\triangleleft \mathbb{H}$ : $m$ ,

3. $u$ : H@ $\mathbb{H}\triangleleft \mathbb{H}:v$ .

in the present situation.
We have already seen that $p$ and $q$ give us the retraction $j:\mathbb{H}\oplus \mathbb{H}\triangleleft \mathbb{H}$ : $k$ by

$j$ : $x\oplus y\mapsto px+qy$ , $k$ : $z\mapsto p^{*}z\oplus q^{*}z$ .

Recall however that there are many possibilities to choose specific $p$ and $q$ , and $j$

and $k$ may or may not become isomorphisms depending on the choice.
The additive unit object I is obtained as $\ell^{2}(\emptyset)$ , which is indeed the singleton

$\{\emptyset\}$ . Clearly
1: $0\mapsto 0$ , $m$ : $x\mapsto \mathrm{O}$

give us the required retraction $l:I\triangleleft \mathbb{H}$ : $m$ .
For $u$ : $\mathbb{H}\otimes \mathbb{H}\triangleleft \mathbb{H}$ : $v$ we have already seen the existence of an isomorphism

$\beta$ : $\mathbb{H}arrow \mathrm{I}\mathrm{H}\mathrm{I}\otimes \mathbb{H}$ . Hence $v=\beta$ and $u=\beta^{-1}$ suffice.
The retractions for the functor $T$ are

1. $e$ : $TT\triangleleft T$ : $e’$ (Comultiplication),

2. $d$ : $\mathrm{I}\mathrm{d}\triangleleft T$ : $d’$ (Dereliction),

3. $c$ : $T\oplus T\triangleleft T$ : $d$ (Contraction),

4. $w$ : $\mathcal{K}_{I}\triangleleft T$ : $w’$ (Weakening)

where $T$ : $X\mapsto \mathbb{H}\otimes X,$ $f\mapsto 1\otimes f$ .
The retraction $e:TT\triangleleft T:e’$ is obtained as follows.

$e$ : $\mathbb{H}\otimes(\mathbb{H}\otimes \mathrm{X})arrow a(\mathbb{H}\otimes \mathbb{H})\otimes \mathrm{X}^{\beta^{-1}\otimes 1}arrow \mathbb{H}\otimes \mathrm{X}$, $e’=e^{-1}$ .

where $a$ is acanonical associativity map.

180



When X $=\mathbb{H}$ we the following diagram commutes:

$\mathbb{H}\otimes(\mathbb{H}\otimes \mathbb{H})arrow a(\mathbb{H}\otimes \mathbb{H})\otimes \mathbb{H}arrow\beta^{-1}\otimes 1\mathbb{H}\otimes \mathrm{I}\mathrm{H}\mathrm{I}$

$1\otimes\beta\uparrow$ $\downarrow\beta^{-1}\otimes 1$ $||$

$\mathbb{H}\otimes \mathbb{H}$ $\mathbb{H}\otimes \mathrm{I}\mathrm{H}$ $\mathbb{H}\otimes \mathrm{I}\mathrm{H}\mathrm{I}$

$\beta\uparrow \mathbb{H}$

$arrow t$

$\mathbb{H}\downarrow\beta^{-1}$

—-

$\mathbb{H}\downarrow\beta^{-1}$

Hence $t$ is in fact the internal version of $e$ . Similarly $t^{*}$ is the internal version of $e’$ .
For the retraction $d:\mathrm{I}\mathrm{d}\triangleleft T:d’$ consider the Hilbert space If $=\{a|a:1arrow \mathbb{C}\}$ .

Clearly $\mathrm{I}=\ell^{2}(1)$ and the isomorphism $X\cross 1\cong 1\cross X\cong X$ in PInj induces the
isomorphisms $\ell^{2}(X)\otimes \mathrm{I}\cong \mathrm{I}\otimes\ell^{2}(X)\cong\ell^{2}(X)$ in $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ . We have the partial injection

$Xarrow 1\mathrm{x}X\underline{(0\mapsto 0)\mathrm{x}1}\mathrm{N}\cross X$

and this induces our $d’$ . Similarly

$\mathrm{N}\cross X\underline{(0\mapsto 0)\mathrm{x}1}1\cross Xarrow X$

induces $d$ . For $X=\mathrm{N}$ the internal versions of $d$ and ?coincide with our new $p$ and
$p^{*}$ respectively, since the following diagrams commute:

IHI $-^{d}\mathbb{H}\otimes \mathrm{I}\mathrm{H}\mathrm{I}$ $\mathbb{H}\otimes \mathbb{H}-^{d’}\mathbb{H}$

$\mathbb{H}||arrow p$ $\mathbb{H}\downarrow\beta^{-1}$ $\beta\uparrow \mathbb{H}$ $arrow p^{*}\mathbb{H}||$

The retraction $c:T\oplus T\triangleleft T:d$ is obtained through the isomorphism

$(\ell^{2}(X)\oplus\ell^{2}(Y))\otimes\ell^{2}(Z)\cong(\ell^{2}(X)\otimes\ell^{2}(Z))\oplus(\ell^{2}(Y)\otimes\ell^{2}(Z))$

in $\mathrm{H}\mathrm{i}1\mathrm{b}_{2}$ induced from the isomorphism $(X \mathrm{f}\mathrm{f}\mathrm{l} Y)\cross Z\cong(X\cross Z)\cup+(Y\cross Z)$ in PInj.
The map $c$ is

$(\mathbb{H}\otimes \mathrm{X})\oplus(\mathbb{H}\otimes \mathrm{X})arrow(\mathbb{H}\oplus \mathbb{H})\otimes \mathrm{X}arrow j\otimes 1\mathbb{H}\otimes \mathrm{X}$,

and $d$ is
$\mathbb{H}\otimes \mathrm{X}arrow k\otimes 1(\mathbb{H}\oplus \mathbb{H})\otimes \mathrm{X}arrow(\mathbb{H}\otimes \mathrm{X})\oplus(\mathbb{H}\otimes \mathrm{X})$.

We then have

$c((x\otimes z)\oplus(y\otimes w))=(j\otimes 1)((x\oplus 0)\otimes z+(0\oplus y)\otimes w)$

$=px\otimes z+qy\otimes w$

$=(p\otimes 1)(x\otimes z)+(q\otimes 1)(y\otimes w)$
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and

$c’(x\otimes y)=(p^{*}x\otimes y)\oplus(q^{*}x\otimes y)$

$=(p^{*}\otimes 1)(x\otimes y)\oplus(q^{*}\otimes 1)(x\otimes y)$ .

The retraction $w$ : $\mathcal{K}_{I}\triangleleft T:w’$ is obtained by

$w$ : $0\mapsto 0$ , $w’$ : $x\otimes y\mapsto 0$ .

Those retraction maps give the promotion, dereliction, contraction and weaken-
ing maps in $\mathcal{G}(\mathrm{H}\mathrm{i}1\mathrm{b}_{2})$ .

The promotion map ! $(A^{+}, A^{-})arrow!$ ! $(A^{+}, A^{-})$ is the one depicted by the dia-
gram:

The interpretation of aproof obtained by an application of the promotion rule is
given by the composition with this morphism, and the result can be depicted as
follows:

Since the internalized versions of $e$ and $d$ are $t$ and $t^{*}$ , respectively, this in fact gives
the matrix:

$(\begin{array}{lllll}t(1\otimes \alpha)t^{*} . . t(1\otimes \beta)\vdots \vdots (1\otimes\vdots \gamma)t^{*} \cdots \mathrm{l}\otimes \delta\end{array})$

The dereliction map ! $(A^{+}, A^{-})arrow(A^{+}, A^{-})$ is:

and the composition with this map yields:

182



The internalized versions of $d$ and $d’$ are $p$ and $p^{*}$ , respectively. Hence we have the
matrix:

$(\begin{array}{llll}\alpha .\cdot \beta p^{*}\vdots \vdots p\gamma \cdots \cdots p\delta p^{*}\end{array})$

The contraction map ! $(A^{+}, A^{-})arrow!(A^{+}, A^{-})\oplus!(A^{+}, A^{-})$ is:

and the composition gives:

Since we are writing the direct sum $x\oplus y$ as acolumn vector, $c$ : $x\oplus y\mapsto(p\otimes$

$1)x+(q @1)y$ and $d:x\mapsto(p^{*}\otimes 1)x$ @ $(q^{*}\otimes 1)x$ are represented by the matrices:

$c=$ $(p\otimes 1 q\otimes 1)$ , $c’=(\begin{array}{ll}p^{*} \otimes 1q^{*} \otimes 1\end{array})$

Hence the proof obtained by an application of the contraction rule is represented by
the following matrix as we expected:

$(\begin{array}{lllll}\cdots \alpha_{1}(p^{*} \otimes 1)+\alpha_{2}(q^{*} \otimes 1) .. \vdots (p\otimes 1)\gamma_{1}(p^{*} \otimes 1)+(p\otimes 1)\gamma_{2}(q^{*} \otimes 1) +(q\otimes 1)\delta_{1}(p^{*}\otimes 1)+(q\otimes 1)\delta_{2}(q^{*} \otimes 1)\end{array})$

The weakening map ! $(A^{+}, A^{-})arrow(I, I)$ is:
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and the interpretation of aproof is:

whose matrix is

( $.\cdot$.
$\cdot..\cdot.\cdot$) $\mapsto$ $(\begin{array}{lll}\alpha 0\vdots \ddots \vdots 0 0\end{array})$

since $w$ and $w’$ are the constant zero operators.

5Discussion on the naturality
It has been shown in [1] that the promotion, dereliction, contraction and weakening
maps in $\mathcal{G}(\mathbb{C})$ become natural transformations iff the corresponding retraction maps
are isomorphisms. The argument can be easily generalized and we now state and
prove its generalized version.

Let $(S, \phi, \phi_{I})$ and $(T, \psi,\psi_{I})$ be monoidal functors on C. Suppose that we have
afamily of retractions $h$ : $SA\triangleleft TA$ : $h’$ which is amonoidal natural transformation
from $S$ to $T$ . Consider afamily of morphisms in $\mathcal{G}(\mathbb{C})$ which have the form:

Such afamily of morphisms becomes anatural transformation in $\mathcal{G}(\mathbb{C})$ iff $hh’=1_{TA}$

for all objects $A$ in C.
We give aproof as asequence of diagrams. When we precompose such amor-

phism to another morphism $Sf$ we obtain the morphism represented by the diagram
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where $\phi:SA^{+}\otimes SB^{-}arrow S(A^{+}\otimes B^{-})$ is the isomorphism provided by the monoidal
functor $S$ . This diagram can be simplified to:

(1)

Similarly when we postcompose the morphism to $Tf$ we obtain:

(2)

where $\psi$ : $TA^{+}\otimes TB^{-}arrow T(A^{+}\otimes B^{-})$ is the isomorphism provided by $T$ .
The naturality is the claim that the diagrams (1) and (2) always represent the

same morphism. To see when it holds, we first insert $h’h$ , which is an identity since
$(h, h’)$ is aretraction, in the diagram (1) as follows:

The naturality of $h$ then allows us to transform it to the below:

Since $h$ and $h’$ are monoidal natural transformations, we can then make the diagram
(1) in the following form:

(3)
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If $hh’=1_{TA^{-}}$ the diagram (3) immediately becomes the same as the diagram (2)
and the naturality holds. For the other direction let $f=1_{A_{\mathrm{b}^{7}\mathrm{J}}B}$ . Then (2) becomes
the map $1_{TA}\otimes 1sB$ and (3) becomes $hh’\otimes 1sB$ . If the naturality holds we have
$1_{TA}\otimes 1_{SB}=hh’\otimes 1_{SB}$ for any objects $A$ and $B$ in C. In particular we can choose
$I=B$ . Then $SB=I$ and the naturality of the isomorphisms $\lambda_{A}$ : $A\otimes Iarrow A$ makes
the following diagrams commute.

$TA\otimes Iarrow\lambda_{TA}^{-1}$ TA $TA\otimes Iarrow\lambda_{TA}^{-1}$ TA
$1_{TA}\otimes 1_{\mathit{1}\downarrow}$ $\downarrow 1_{T.4}$ $hh’\otimes 1_{I\downarrow}$ $\downarrow hh’$

$TA\otimes I\vec{\lambda_{TA}}$ TA $TA\otimes I\vec{\lambda_{TA}}$ TA

Hence $1_{TA}\otimes 1_{I}=hh’\otimes 1_{I}$ implies $1_{TA}=hh’$ .
The naturality of the promotion, dereliction, contraction and weakening maps is

necessary to make the Geometry of Interaction interpretation sound for the full cut-
elimination. In Girard’s original formulation, the soundness for the cases involving
exponentials is obtained only when the context formulas are empty. This is due to
the fact that the maps for exponentials are only pointwise natural in $\mathcal{G}(\mathrm{H}\mathrm{i}1\mathrm{b}_{2})$ .

The result stated in this section, however, tells us that we should not expect
more than the pointwise naturality in this setting. We can make the retractions for
contraction and promotion isomorphic, but the retractions for dereliction and weak-
ening should not be isomorphic. As shown in [4] and [1], the pointwise naturality
suffices to construct alinear combinatory algebra, which is good for the analysis of
computation. If the purpose of the Geometry of Interaction is the analysis of the
cut-elimination or the analysis of classical logic, however, the situation is not quite
satisfactory.

The machinery of the Geometry of Interaction, either in its original formulation
or the axiomatic framework, is very much symmetric. It seems however that the
exponential rules, in particular dereliction and weakening, require us to re-introduce
asymmetry in one way or another.
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