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Abstract. We consider formal provabil-
ity with structural induction and related
proof principles in the $\lambda$-calculus presented
with first-0rder abstract syntax over one-
sorted variable names. As well as sum-
marising and elaborating on earlier, for-
mally verified proofs (in $\mathrm{I}\mathrm{s}\mathrm{a}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e}/\mathrm{H}\mathrm{O}\mathrm{L}$)
of the relative renaming-freeness of $\beta-$

residual theory and $\beta$-confluence, we also
present proofs of $\eta$-confluence, $\beta\eta-$-confluence,
the strong weakly-finite $\beta$-development(aka
residual-completion) property, residual $\beta-$

confluence $\eta-\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-\beta$-postponement, and no
tably $\beta$-standardisation. In the latter case, the
known proofs fail in instructive ways. Interest-
ingly, our uniform proof methodology, which
has relevance beyond the A-calculus, proof
erly contains pen-and-paper proof practices in
aprecise sense. The proof methodology also
makes precise what is the full algebraic proof
burden of the considered results, which we,
moreover, appear to be the first to resolve.

1Introduction

The use of structural induction and related proof prin-
ciples for simple syntax (i.e., first-0rder abstract syntax
over one-sorted variable names) is along-standing and
widely-used practice in the programming-language the-
ory community. Unfortunately, at afirst, closer inspec-
tion it seems that the practice is not formally justifi-
able because of aneed to avoid undue variable capture
when performing substitution, thus breaking the syntac-
tic equality underlying structural induction, etc.. Even
more worrying is the fact that, in spite of substantial
efforts in the mechanised theorem-proving community,
no formal proof developments (prior to what we report
on here) have been able to overcome the problems that
are encountered with substitution and go on to success-
fully employ the proof principles in question. Indeed,
and starting with de Bruijn [6], it has become an active
research area to define, formalise, and automate alter-
native syntactic frameworks that, on the one hand, pre-
serve as much of the inherent naturality of simple syntax

as possible. At the same time, they are customised to
provide suitable induction and recursion principles for
any considered language [6-10, 12, 17, 21]. However, by
changing the underlying syntactic framework, the alge-
braic meaning of, $\mathrm{e}.\mathrm{g}.$ , adiamond property also changes,
which means that, e.g., confluence as proved and as de
fined no longer coincide, cf. Lemma 18 and [25].

In the recognition that the above is both unfortu-
nate as far as the formal status of the existing informal
literature is concerned and unsatisfactory from amath-
ematical Perspective, we pursue the naive approach in
this article (while incorporating the relevant aspects of
$[24, 25])$ . In particular, we show that it is, indeed, pos
sible to base formal proofs on first-0rder abstract syn-
tax over one-sorted variable names and hope to con-
vince the reader that, while the technical gap between
pen-and-paper and formal proofs is rather large, the
conceptual gap is somewhat smaller. Furthermore, we
hope that the comprehensive range of applications of
the proof methodology that we present here will estab
lish its wider relevance.

1.1 Syntax of the A-Calculus

The A-calculus is intended to capture the concept of
afunction. It does so, first of all, by providing syntax
that can be used to express function application and
definition:

$e::=x$ $|e_{1}e_{2}|$ Xx. $\mathrm{e}$

The above, informal syntax says that aA-term, $e$ ,
is defined inductively as either avariable name, as an
application of one term to another, or as a $\lambda-$ , or func-
tional, abstraction of avariable name over aterm. The
variable names, $x$ , are typically taken to be, or range
over, words over the Latin alphabet. In Section 2, we
will review the exact requirements to variable names in
an abstract sense. Being based on asimple, inductive
definition, A-terms also come equipped with arange of
primitive proof principles $[1, 3]$ .

Syntactic Equality As aA-term, $e$ , is finite and con-
sists of variable names, the obvious variable name equal-
ity, $=vN$ , which exists at least in the case of words over
the Latin alphabet, canonically extends to all A-terms:

$\underline{x=vNy}e_{1\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}}=e_{1}’$ e2 $=\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}e_{2}^{J}x=vNye=\Lambda^{\mathrm{v}u}e’$

$x$ $=_{\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}}y$ $e_{1}e_{2}=_{\Lambda}\mathrm{v}-\mathrm{r}e_{1}’e_{2}’$
$\overline{\lambda z.e=_{\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}}\lambda y.e^{l}}$

Structural Induction In order to prove properties
about the set of A-terms, we can proceed by means of
structural induction, mimicking the inductive definition
of the terms:
Vz.P(z) $\forall e_{1}$ , $e_{2}.P(e_{1})\Lambda P(e_{2})\Rightarrow P(e_{1}e_{2})\forall x$ , $e.P(e)\Rightarrow \mathrm{P}(\mathrm{X}\mathrm{x}.\mathrm{e})$
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$y[x\cdot=e]_{\mathrm{C}\mathrm{u}}=\{$

$e$ if $x=y$
$y$ otherwise

$(e_{1}e_{2})[x:=e]\mathrm{c}_{\mathrm{u}}=e_{1}[x:=e]_{\mathrm{C}\mathrm{u}}e_{2}[x:=e]_{\mathrm{C}\mathrm{u}}$

$(\lambda y.e\mathrm{o})[x:=e]_{\mathrm{C}\mathrm{u}}=\{$

$\lambda y.e0$ if $x=y$
Xx.eo $[x:=e]\mathrm{c}\mathrm{u}$ if $x\neq y\wedge(y\not\in \mathrm{F}\mathrm{V}(\mathrm{e})\vee x\not\in \mathrm{F}\mathrm{V}(e_{0}))$

$\lambda z.e\mathit{0}[y:=\mathrm{z}]\mathrm{c}\mathrm{n}[\mathrm{x} :=e]\mathrm{c}_{\mathrm{u}}$ $0/\mathrm{W}j$ first $z\not\in\{x\}\mathrm{U}\mathrm{F}\mathrm{V}(\mathrm{e})\mathrm{U}\mathrm{F}\mathrm{V}(e_{0})$

Fig. 1. Curry-style capture-avoiding substitution

x I y $e_{1}[x :=e]\mathrm{c}_{\mathrm{u}}=e_{1}’$ e2 [x$:=e]\mathrm{c}\mathrm{u}=e_{2}’$

$x[x :=e]_{\mathrm{C}\mathrm{u}}=e$ $y[x:=e]\mathrm{c}_{\mathrm{u}}=y$ (eie2)[x $:=e$] $\mathrm{C}\mathrm{u}e’1=e’2$

$x\neq y$ $(y\not\in \mathrm{F}\mathrm{V}(\mathrm{e})\vee x \not\in \mathrm{F}\mathrm{V}(e_{0}’))$ $\mathrm{e}\mathrm{o}[\mathrm{x}:=e]\mathrm{c}_{\mathrm{u}}=e_{0}^{\mathit{1}}$

$(\lambda x.e\mathrm{o})[x:=e]\mathrm{c}_{\mathrm{u}}=\lambda x.eo$ (Xy.eo)[x $:=e$] $\mathrm{c}_{\mathrm{u}}=\lambda y.e_{0}’$

$z\neq yy\in \mathrm{F}\mathrm{V}(e)x\in \mathrm{F}\mathrm{V}(eo)z=\mathrm{F}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{h}((e_{0}e)x)\mathrm{e}_{0}[\mathrm{y}:=z]\mathrm{c}_{\mathrm{u}}=e_{0}’e_{0}’[x:=e]\mathrm{c}_{\mathrm{u}}=e_{0}’$

$(\lambda y.e\mathrm{o})[x:=e]_{\mathrm{C}\mathrm{u}}=\lambda z.e_{0}’$

Fig. 2. Curry-style substitution (re-)defined inductively

Structural Case-Splitting As each syntax construc-
tor of the A-calculus is unique, we see that it is possible
to case split on terms –with $E_{\dot{1}}$ in some suitable meta
language:

case $e$ of $x\Rightarrow E_{1}(x)$

$|$ $e_{1}e_{2}\Rightarrow E_{2}(e_{1}, e_{2})$

$|\lambda x.e_{0}\Rightarrow E_{3}(x, e_{0})$

Structural Recursion Based on case-splitting and
well-foundedness of terms, we can even define functions
on A-terms by means of structural recursion, i.e., by
making recursive calls only on the sub terms of agiven
constructor:

$f(x)=E_{1}(x)$

$f(e_{1}e_{2})=E_{2}(f(e_{1}), f(e_{2}))$

$f(\lambda x.e)=E_{3}(x, f(e))$

The above implies that $f$ is well-defined: it is com-
putable by virtue of well-foundedness of terms and to
tal because the definition case-splits exhaustively on $\lambda-$

terms. As an example application, we define the function
that computes the free variables in aterm, i.e., the vari-
able $\mathrm{n}$ ames that do not occur inside aA-abstraction of
themselves.

Definition 1

$\mathrm{F}\mathrm{V}(y)=\{y\}$

$\mathrm{F}\mathrm{V}(e_{1}e_{2})=\mathrm{F}\mathrm{V}(\mathrm{e})\mathrm{U}\mathrm{F}\mathrm{V}(\mathrm{e})$

$\mathrm{F}\mathrm{V}(\lambda y.e)=\mathrm{F}\mathrm{V}(\mathrm{e})\backslash \{y\}$

Proposition 2 $\mathrm{F}\mathrm{V}(-)$ is a total, computable function.

1.2 Reduction and Substitution

In order to have A-abstractions act as functions and not
to have too many, e.g., identity functions, amongst other
things, we are typically interested in the following rela
tions that can be applied anywhere in aterm –their
precise form is due to Curry [4].

1. $(\lambda x.e)e’$ –$,\beta^{\mathrm{c}_{\mathrm{u}}e[x:=e’]\mathrm{c}_{\mathrm{u}}}$

2. $\lambda y.e[x:=\mathrm{y}]\mathrm{C}\mathrm{u}--*_{\alpha^{\mathrm{C}\mathrm{u}}}$ Xx.e, if y $\not\in \mathrm{F}\mathrm{V}(e)$

Our interest in 2., above is the equivalence relation it
induces. We denote it by $==_{\alpha}$ , cf. Appendix $\mathrm{B}$ , and we
will eventually factor it out, as is standard.

Variable Capture In his seminal formalist presenta-
tion of the A-calculus [4], Curry defines the above substi-
tution operator, $-[-:=-]_{\mathrm{C}\mathrm{u}}$ , essentially as in Figure 1.
The last clause is the interesting one. It renames the con-
sidered $y$ into the first $z$ that has not been used already. 1

Consider, for example, the substitution of $x$ for $z$ in the
two terms Xx.z and Xy.z. Both terms-as-functions dis-
card their argument. If we simply replace the $z$ in the
terms with $x$ , the latter would still discard its argument
but the former would become the identity function and
this discrepancy would lead to inconsistencies.

Well-Definedness Of formalist relevance, we remark
that Curry-style substitution is not well-defined by con-
struction as the definition does not employ structural

1 While the notion “the first $z$”is trivially well-defined in
the present case, the issue is abit more subtle in awider
context, as we shall see in Section 2.
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recursion. The offender is the last clause that applies
$-[x:=e]$ to aterm, $e_{0}[y:=z]$ , which is not asubterm of
$\lambda y.e_{0}$ in general. It can be observed that while $e0[y:=z]$
is not asub term of Ay.eo, it will have the same size
as $e_{0}$ and we can thus establish the well-formedness of
$-[-:=-]\mathrm{c}_{\mathrm{u}}$ by external means. Alternatively, we can
introduce amore advanced, parallel substitution oper-
ator [22]. However, as we eventually will distance our-
selves ffom the use of renaming in substitution, we will
do neither but instead refer to Section 2.3 for an alter-
native derivation of Curry-style substitution.

variableName Indeterminacy Having initially
committed ourselves to using renaming in substitution,
arange of problems are brought down on us. Hindley
[11] observed, for example, that it becomes impossible
to predict the variable name used for agiven abstrac-
tion after reducing, thus putting, e.g., confluence out of
reach:

$–*\beta^{\mathrm{C}\mathrm{u}}(\lambda y.\lambda x.zy)y--arrow\lambda x.xy\beta^{\mathrm{C}\mathrm{u}}$

$(\lambda x.(\lambda y.\lambda x.xy)z)y--\beta^{\mathrm{C}\tilde{\mathrm{u}}}(\lambda x.\lambda z.zx)y--arrow\lambda z.zy$

$\beta^{\mathrm{C}\mathrm{u}}$

In the lower branch, the innermost $x$ abstraction must
be renamed to a $z$-abstraction, while the upper branch
never encounters the variable name clash. Hindley pro
ceeded to define a $\beta$-relation on $\alpha$-equivalence classes
that overcomes the above indeterminacy by factoring it
out:

$\lfloor e\rfloor=^{\mathrm{d}\mathrm{e}t}\{e’|e==_{a}e’\}$

$\lfloor e_{1}\rfloorarrow\beta^{\mathrm{H}1}\mathrm{L}e_{2}\rfloor=^{\mathrm{d}\mathrm{e}\mathrm{f}}\exists e_{1}’\in\lfloor e_{1}\rfloor,e_{2}’\in\lfloor e_{2}\rfloor.e’1--mathrm{c}_{\mathrm{u}}\beta e_{2}’$

No relevant proof principles are introduced by this
and the approach can not be used in aformal setting as
it stands.

Broken Induction Steps Instead of factoring out
a-equivalence altogether, one could attempt to reason
up to post-fixed name unification. Unfortunately, this
would lead to arange of unusual situations as far as sub
sequent uses of abstract rewriting is concerned. An ex-
aanple is the following attempted adaptation of the well-
known equivalence between confluence and the Church-
Rosser property. Please refer to Appendix Afor aprecise
definition of our diagram notation.

Non-Lemma 3

$..\swarrow.[searrow] \mathrm{h}4_{arrow}\acute{.}l$ . $\Rightarrow$

$.\backslash ,-_{\mathrm{v}\backslash }-_{u’}\backslash \mathrm{A}’\mathrm{O}*\wedge\backslash \wedge\cdot \mathrm{O}’ J^{\cdot}$

$0^{\wedge\wedge\prime}$
$\wedge$

$0$

Proof (pSlLS) By reflexive, transitive, $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\alpha$ in-
Section in $=$ .

Base, Reflexive, Symmetric Cases: Simple.

Transitive Case: Breaks down.

Broken a-Equality in Sub-Terms Having failed in
our attempts to control limited use of a-equivalence,
one might think that the syntactic version of Hindley’s
approach, cf. Section 1.2, could work: that it is possible
to state all properties about terms uP to $==_{\alpha}$ rather than
the primitive $=\Lambda^{\mathrm{V}\mathrm{A}}$ .
Lemma 4(Simplified Substitution modulo $\alpha$)

$e_{1}==_{\alpha}$ e2 $\Lambda x\neq y.\cdot$ $\Lambda y_{1}\neq y_{2}$

$\Downarrow$

$e_{1}[x_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}[x_{2}:=y\mathrm{z}]_{\mathrm{C}\mathrm{u}}-=_{\alpha}e_{2}[x_{2}:=y_{2}]_{\mathrm{C}\mathrm{u}}[z_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}$

Proof (FAILS) By structural induction in $e_{1}$ .
Most Cases: Trivial.
Last Abstraction Case (simplified): Breaks down.

$(\lambda y_{1}.e)[x_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}[x_{2}:=y_{2}]$

$=\lambda z.e’[x_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}[x_{2}:=y_{2}]_{\mathrm{C}\mathrm{u}}$

$==_{\alpha}^{\mathrm{f}\mathrm{f}}\lambda z.e’[x_{2}:=y_{2}]_{\mathrm{C}\mathrm{u}}[x_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}$

$=(\lambda z.e’)[x_{2}:=y_{2}]_{\mathrm{C}\mathrm{u}}[x_{1}:=y_{1}]_{\mathrm{C}\mathrm{u}}$

The problem above is that $e$ and $e’$ are not actually $\alpha-$

equivalent, even if $\lambda y_{1}.e$ and $\lambda z.e’$ are, and the $==_{\alpha}$-step
can thus not be substantiated by the induction hypoth-
esis. Consider, e.g., $e$ as $y_{1}$ and $e’$ ae $z$ . The above result
is certainly correct but, unfortunately, not provable with
the tools we have at our disposal at the moment
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1.3 This article

The results we are dealing with are mostly well-known
and have been addressed in several contexts. Indeed, a
number of truly beautiful and concise informal proofs
exist; see, in particular, Takahashi [23], whom we owe a
great debt. This article, therefore, spends little energy
on those parts of the proofs and focuses instead on what
it takes to formalise them. There are two key issues: (i)
the syntactic properties that can actually be established
uP to $=_{\Lambda^{\mathrm{v}*\mathrm{r}}}$ (as opposed to $==_{\alpha}$ , which we have seen to
be highly problematic) and (ii) how to generalise these
to the algebraic properties we are seeking. The full type
set proofs (roughly 100 pages for the proofs alone) are
available fiiom our homepage.

In general, our proofs follow the structure that we
present in Figure 3. It is based on nested inductions. The
full-coloured arrows mean “is the key lemma for”, while
the others mean “is used to substantiate side addition
on lemma applications”. The first issue above, (i), is
expressed in the addition of the “Variable Monotinicity”
proof layer in Figure 3. The second issue, (ii), is entirely
accounted for in the “Administrative Proof Layer” in
Figure 3.

The proofs underpinning Sections 3and 4.1 have been
verified in full in $\mathrm{I}\mathrm{s}\mathrm{a}\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e}/\mathrm{H}\mathrm{O}\mathrm{L}$ (at least in the case of
one of the alternatives they present) $[24, 25]$ . By the
nature of Figure 3, this means that substantial parts of
the other proofs essentially have been verified as well.

Apart from the various technical sections in the body
of this paper, the appendix section contains an expla
nation of our diagram notation (Appendix A) and our
other notation (Appendix B) as well as some well-known
rewriting results that we use (Appendix $\mathrm{C}$).

2The $\mathrm{A}^{\mathrm{v}\mathrm{a}\mathrm{r}}$-Calculus

Having seen that the standard presentations of the $\lambda-$

calculus lead to formalist problems, we will now give an
alternative presentation that overcomes them. The dif-
ferent presentations differ only in how they lend them-
selves to provability. Their equational properties are
equivalent.

2.1 Formal Syntax

We use $e’ \mathrm{s}$ to range over the inductively built-up set of
A-terms. The variable names, $\mathcal{V}N$, are generic but must
meet certain minimal requirements.

Definition 5 $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}::=VN$ $|\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}|\lambda \mathcal{V}N.\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$

Assertion 6 $\mathcal{V}N$ is a single-sorted set of objects, aka
variable names.

Assertion 7 $\mathcal{V}N- equal_{i}ty_{l}=vN$, is decidable.

Assertion 8There exists a total, computable func-
tion, Fresh(-) : $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}arrow \mathcal{V}N$, such $that^{\mathit{2}}$.

besh(e)\not\in FV(e) U $\mathrm{B}\mathrm{V}(e)$

The last assertion trivially implies that $\mathcal{V}N$ is infinite. 3

We shall use $x’ \mathrm{s}$ , $y’ \mathrm{s}$ , and $z’ \mathrm{s}$ as meta variable of $\mathcal{V}N$

and, by aslight abuse of notation, also as actual vari-
able names in terms. We will suppress the $\mathcal{V}N$ suffix on
variable-name equality and merely write, e.g., $x$ $=y$ .

2.2 Orthonormal Reduction

The key technicality to prevent implicit renaming is our
use of apredicate, $\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(e_{1})\cap \mathrm{F}\mathrm{V}(e_{2})=\emptyset$ , cf. Figure 4,
which guarantees that no capture takes place in the sub
stitution: $e_{1}[x :=e_{2}]$ . It coincides with the notion of not
free for.
Definition 9(The $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ Calculus) The terms of the
$\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ -calculus are $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ , cf. Definition 5. The (indexed)
$\alpha-$ , $\beta-$ , and $\eta$-reduction relations of $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ : $-*:\alpha-$ , $–*\rho$ ,
and $–*_{\eta}$ are given inductively in Figure 5. The plain
$Ct$ -relation is:

$e–*_{\alpha}e’\Leftrightarrow^{\mathrm{d}\mathrm{e}\mathrm{f}}\exists y.e-^{y}\_{i\alpha}e’$

Unlike the situation with Curry-style substitution, we
see that our notion of substitution is defined by struc-
tural recursion and, hence, is well-defined by construc-
them.

Proposition 10 $-[x:=e]$ is a total, computable func-
them.
2 For the definition of BV(-), see Figure 4.
3 In the setting of Nominal Logic [19], the assertion also val-

idates the axiom of choice, which is known to be provably
inconsistent with the Fraenkel-Mostowski set theory that
underpins Nominal Logic. Nominal Logic instead guar-
antees the existence of some fresh variable name, which
by design can be any variable name except for afinite
number. More work needs to be done to clarify the cor-
respondence between simple syntax and syntax based on
Nominal Logic.
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$y[x:=e]=\{$
e if x $=y$

y otherwise
$(e_{1}e_{2})[x:=e]=e_{1}[x:=e]e_{2}[z:=e]$

$(\lambda y.e_{0})[x:=e]=\{$
$\lambda y.e0[x:=e]$ if x $\neq y\Lambda$ y $\not\in \mathrm{F}\mathrm{V}(e)$

$\lambda y.e_{0}$ otherwise

$\frac{y\not\in \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(e)\cup \mathrm{F}\mathrm{V}(e)}{\lambda x.e-^{y}*_{\dot{\mathrm{r}}\alpha}\lambda y.e[x.=y]}\cdot(\alpha)$

$\mathrm{j}^{\alpha}e--*e’\mathrm{V}\prime y$

$e_{1}-*:\alpha ye_{1}’$ e2 $\underline{\nu}_{*:\alpha e_{2}’}$

$\mathrm{A}\mathrm{x}.\mathrm{e}--*:\alpha$ Ax.e $\overline{e_{1}e_{2}-^{y}*\cdot e_{1}’|\alpha e_{2}}$ $\overline{e_{1}e_{2}--\_{\iota\alpha}\cdot e_{1}e_{2}’v}$

$\frac{\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(e_{1})\cap \mathrm{F}\mathrm{V}(e_{2})=\emptyset}{(\lambda x.e_{1})e_{2}-*_{\beta}e_{1}[x\cdot=e_{2}]}.(\beta)$

$\underline{e--*\rho e’}$

,
$e_{1}--*_{\beta}e_{1}’$

$\underline{e_{2}-*_{\beta}e_{2}’}$

,
Ax.e $-arrow\beta$ Ax.e $\mathrm{e}[\mathrm{e}2-*\beta e’1e2$ $\mathrm{e}[\mathrm{e}2-*\rho \mathrm{e}[\mathrm{e}2$

$\underline{x\not\in \mathrm{F}\mathrm{V}(e)=\emptyset}(\eta)$

$e–\_{\eta}e’$ $\underline{e_{1}-*_{\eta}e_{1}’}$

,
e2 $–,\eta e_{2}’$

Ax.e $-,\eta e$ $Ax.e-,\eta$ Ax.e $\mathrm{e}[\mathrm{e}2--*_{\eta}\mathrm{e}[\mathrm{e}2$
$\overline{e_{1}e_{2}-*_{\eta}e_{1}e_{2}’}$

Fig. 5. Renaming-free substitution, $-[-:= -]$ , defined recursively, and a-, 73-, $\eta-$-reduction defined inductively over $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$

The $\beta-$ and $\eta$-relations we have presented above do
not incur any renaming that could have been performed
in astand-alone fashion by the $\alpha$-relation, thus making
them orthogonal The normality part of our informal
orthonormality principle is established by the following
property, symmetry $\mathrm{o}\mathrm{f}-*_{\alpha}$ , which implies that the ci-

relation itself is renaming-free.

Lemma 11 $.-\backslash ’----\alpha\sim$ .
$\alpha$

2.3 Curry’s A-Calculus Decomposed

In order to assure ourselves that the $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$-calculus is
indeed the right calculus and partly to test the use-
fulness of the associated primitive proof principles, we
now show how to derive Curry’s presentation from ours.
First, we show that as far as our use of substitution is
concerned, $-[-:=-]$ coincides $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-[-:=-]_{\mathrm{C}\mathrm{u}}$ .

Proposition 12

$\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(e_{a})\cap \mathrm{F}\mathrm{V}(e)=\emptyset$

$\Downarrow$

$ei[x:=e]=e_{a}[x:=e]\mathrm{c}_{\mathrm{u}}$

Proof Astraightforward structural induction in $e_{a}$ . $\square$

What might not be obvious is that Curry-style sub
stitution can be shown to decompose into the $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}_{-}}$

calculus. In contrast to the structurally flawed Figure 1,
Figure 2introduces aprimitively-defined, 4-ary relation
that is Curry-style substitution, albeit with no claim of
well-definedness.

Lemma 13

$e_{a}[x :=e]_{\mathrm{C}\mathrm{u}}=e_{a}’$

$\Downarrow$

$\exists!e_{b}.e_{a\alpha}-,e_{b}\Lambda e_{b}[x:=e]=e_{a}’$

Proof By rule induction in Curry-style substitution-
as-a-relation, cf. Figure 2. Uniqueness of $e_{b}$ is guaran-
teed by the functionality of Fresh(-). Cl

We stress that the above property is not provable
by structural induction in $e_{a}$ and that it ensures that
Curry-style substitution is, indeed, well-defined and
functional.

Lemma 14 For any $x$ and $e$ , $-[x:=e]_{\mathrm{C}\mathrm{u}}=-$ is $a$

total, computable function of the first, open argument
onto the second, open argument.

Lemma 13 also establishes the decomposition of
Curry’s calculus as awhole into the $\lambda^{\mathrm{r}}$-calculus.

Lemma 15 $–*_{\alpha}\subseteq(--*_{\alpha^{\mathrm{C}\mathrm{u}}})^{-1}\subseteq--\#_{\alpha}$

Lemma 16 $–*\rho\subseteq--*_{\beta^{\mathrm{C}\mathrm{u}}}\subseteq--,\alpha;--\star\rho$

2.4 The Real A-Calculus

As suggested previously, the actual calculus we are in-
terested in is the a-collapse of $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ . Algebraically speak-
ing, this means that we want to consider the following
structure, cf. Hindley’s presentation, Section 1.2.

Definition 17 (The Real A-Calculus

$-\Lambda=^{def_{\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}/\Rightarrow=_{\alpha}}}$
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$\mathrm{U}\mathrm{B}(x)$ $=\mathrm{T}\mathrm{r}\mathrm{u}\mathrm{e}$

$\mathrm{U}\mathrm{B}$ ( $\mathrm{e}_{\mathrm{i}}$ e2) $=\mathrm{U}\mathrm{B}(e_{1})\Lambda$ UB(e2) $\Lambda$ ( $\mathrm{B}\mathrm{V}(e_{1})\cap \mathrm{B}\mathrm{V}$ (e2) $=\emptyset$)
$\mathrm{V}\mathrm{B}$ (Xx. $\mathrm{e}$) $=\mathrm{U}\mathrm{B}(e)\Lambda x\not\in \mathrm{B}\mathrm{V}(e)$

Fig. 6. The uniquely bound $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ -predicate

To address any inherent requirements for renaming
in the A-calculus, we introduce aformal notion called
Barendregt Conventional Form $(\mathrm{B}\mathrm{C}\mathrm{F}),5$ which, as it
turns out, provides arational reconstruction of the usual
(informal) Barendregt Variable Convention [2], cf. [25].
BCFs are terms where all variable names are different.

-

$\lfloor-\rfloor$ : $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}arrow\Lambda$

$e$ $\mapsto\{e’|e=-_{\alpha}-e’\}$

$-\lfloor e_{1}\rfloorarrow\beta\lfloor e_{2}\rfloor\Leftrightarrow f_{e_{1}--;--*_{\beta;--_{\alpha}e_{2}}}--_{a}-de-$

$-\lfloor e_{1}\rfloorarrow_{\eta}\lfloor e_{2}\rfloor\Leftrightarrow^{def_{e_{1\alpha}}}=--;-*_{\eta};---_{\alpha}-e_{2}$

It can be shown (without too much trouble) that
Curry’s, Hindley’s, and our relations all are pointwise
identical, cf. [25]. For now, we merely present the part
of that result that pertains to the current set-up.

Lemma 18 For $\mathrm{X}\in\{\beta, \eta, \beta\eta\}$ (any $\mathrm{X}$ , in fact), we
have:

$\lfloor e\rfloorarrow \mathrm{x}\lfloor e’\rfloor\Leftrightarrow e--\theta\alpha \mathrm{x}e’$

Proof By definition of the real relations and reflexive,
transitive closure, we immediately see that

$\lfloor e\rfloorarrow \mathrm{x}\lfloor e’\rfloor\Leftrightarrow e(--\underline{-}_{\alpha};--*\mathrm{x};---_{\alpha}-)^{\star}e’\vee e---_{\alpha}-e’$

The result thus follows directly from Lemma 11. $\square$

3Residual Theory

This section shows that residual theory, i.e., the ex-
clusive contraction of pre-existing, or marked, redexes,
provides anice setting for quantifying the “computing
power” of the renaming-free $\beta$-relation. We use $t_{t}$ ’s as
meta variables over the marked terms and we allow our-
selves to use $\Lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$-concepts for the marked terms with
only implicit coercions; in particular, we assume there
is an $\alpha^{\mathrm{Q}}$-relation that can rename all (not just marked)
abstractions.

Definition 19 (The Marked $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ -Calculus)

$\Lambda_{\mathfrak{g}}^{\mathrm{v}\mathrm{a}\mathrm{r}}$ –x $|\Lambda_{\mathrm{Q}}^{\mathrm{v}\mathrm{a}\mathrm{r}}\Lambda_{\mathrm{O}}^{\mathrm{n}\mathrm{r}}|\lambda VN.\Lambda_{\mathrm{Q}}^{\mathrm{v}\mathrm{a}\mathrm{r}}|(\lambda VN.\Lambda_{\mathrm{Q}}^{n\mathrm{r}})@\Lambda_{\mathrm{Q}}^{\mathrm{v}}$

”

$-*_{\beta^{\Phi}}$ is like $-*_{\beta}$ except only marked re-
dexes, $(\lambda z.t_{1})@t_{2}$ , rnay be contracted (provided
$\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(t_{1})\cap \mathrm{F}\mathrm{V}(t_{2})=\emptyset)$ . We further define $a$ residual
completion relation, $–\triangleleft_{\beta^{\Phi}}$ , by induction over terms
that attempts to contract all (marked) redexes in one
step, starting from $within^{4}$.
4 The relation corresponds closely to the parallel $\beta$ relation

of Figure 7.

Definition 20 Cf. Figures 4and 6:

BCF(e) $=\mathrm{U}\mathrm{B}(e)\Lambda(\mathrm{B}\mathrm{V}(e)\cap \mathrm{F}\mathrm{V}(e)=\emptyset)$

As afirst approximation to renaming-ffeeness, we
note that it is astraightforward proof that BCFs resid-
ually completes, i.e., that all marked redexes in aBCF
can be contracted from within without causing variable
clashes.

Lemma 21(BCF) . $.\sim\#$ $0$

$\beta^{u}$

We also show that the residual-completion relation is
functional on the full $\beta$-residual theory of aterm, i.e.,
that residual completion always catches up with itself.

Lemma 22
$\beta^{u}$ $\beta^{\Phi}$

$.\backslash --\backslash \backslash :---\dashv,\cdot\Lambda’.\backslash _{\mathrm{Y}^{\wedge}}’-\backslash -----\dashv_{\mathrm{f}}\beta^{u}.’\beta^{\Phi}\mathrm{a}\backslash \cdot$

$\beta^{\epsilon}’$

.
$\beta^{\rho}$

Proof The right-most conjunct follows from the
left-most by asimple reflexive, transitive induction
in which the latter constitutes the base case. The
left-most conjunct follows by arule induction in
–qo for which it is paramount that redexes are en-
abled if $\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{\mathrm{x}}(-)$ $\cap \mathrm{F}\mathrm{V}(-)=\emptyset$ rather than only if
$\mathrm{B}\mathrm{V}(\mathrm{e})\cap \mathrm{F}\mathrm{V}(\mathrm{e})=\emptyset$ . Other than that, the proof is
mostly straightforward, albeit big. $\square$

The above property asserts that when residual com-
pletion exists, the considered divergence can be resolved
as shown. The property allows us to prove that $\beta-$

residual theory is renaming-free uP to BCF-initiality,
i.e., that no redexes are blocked by their side condition.

Theorem 23 (BCF) .
$—*\beta^{o}$

. $\backslash \wedge\wedge- \mathrm{R}$ $\circ$

Proof Consider aBCF and a $–\sim_{\beta}0- \mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\beta^{\Phi}$ of it.
By Lemma 21, the considered BCF also residually com-
pletes and, by Lemma 22, the thus-created divergence
can be resolved by atrailing residual completion. $\square$

Asubtle point of interest is that the above proof, in
fact, shows that the $\beta$-residual theory of any term that
residually-completes, i.e., is renaming-free if contracted
from within, is renaming-free in general.

5 The te rm was suggested to us by Randy Pollack
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e $-\mathrm{H}*_{\beta}e’$ $e_{1}-\vdash\vdash_{\beta}e_{1}’$ $e_{2}-\mathrm{H}’\beta e_{2}’$

$\overline{x-\mathrm{H}*_{\beta}x}$

$\lambda_{Xe-\mathrm{H}\beta}.’\lambda x.e’$ $e_{1}e_{2}-\mathrm{H}\_{\beta}e_{1}’e_{2}’$

Fresh-Naming As the general $\alpha-/\beta$ commutativity re
sult is not provable, we introduce the following restricted
a-relation, which only ffesh-names.

$\frac{e_{1}-\mathrm{H}*_{\beta}e_{1}’e_{2}- \mathrm{H}*_{\beta}e_{2}’\mathrm{F}\mathrm{V}(e_{2}’)\cap \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}(e_{1}’)=\emptyset}{(\lambda x.e_{1})e_{2}-\mathrm{H}’\rho e_{1}[x.=e_{2}’]},.(\beta^{1\mathfrak{l}})$

Fig. 7. The parallel $\beta$ relation for $\lambda^{\mathrm{m}\mathrm{r}}$

4Confluence

The previous section establishes arather large fragment
of the $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ -calculus as susceptible to primitive equa-
tional reasoning. This section summarises and elabo
rates on our formally verified efforts to bring this to
bearing on $\beta$-confluence[25]. We also present proofs that
apply the methodology to prove $\eta-$ and $\beta\eta$ Confluence

4.1 $\beta$ Confluence

The $–*\rho$-relation does not enjoy the diamond proP-
erty because aredex that is contracted in one direction
of adivergence can be duplicated (and erased) in the
other direction by the substitution operator. As shown
by Tait and Martin-L\"of, the potential divergence “blow-
uP” does not materialise because it can be controlled by
parallel reduction. Please refer to Figure 7for the $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}_{-}}$

version of this relation.

Lernrna 24 (BCF) $\cdot-\mathrm{f}1arrow$ .
1 $\beta\acute{\sigma}$

$\pm$ $=$
$\beta\downarrow$. } $|_{\check{\beta}^{\mathrm{O}}}^{;\beta}$

Proof Rather than prove this property by an exhaus-
tive case-splitting, thus resulting in aminimally resolv-
ing end-term, Ihkahashi observed that the considered
di amond can be diagonalised by the relation that con-
tracts all redexes in one step, i.e., by amaimally re-
solving end-term [23]. As we saw in Section 3this is
within reach of the structural proof principles of $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ . $\square$

Definition 26

e $-*_{\alpha 0}e’\Leftrightarrow^{\mathrm{d}\mathrm{e}\mathrm{f}}3\mathrm{z}.\mathrm{e}--\star:\alpha e’z\Lambda z\not\in \mathrm{F}\mathrm{V}(e)\mathrm{U}\mathrm{B}\mathrm{V}(\mathrm{e})$

The fresh-naming $\alpha$-relation can straightforwardly be
proven to commute with the parallel (actually, any)
$\beta$-relation with the proviso that the resolving $\alpha$-steps
are not necessarily fresh-naming (because of $\beta$-incurred
term duplication).

Lemma 27
$.-\mathrm{H}arrow$ .
1 $\beta$ ;

$\alpha_{0}\downarrow$ $\mathfrak{g}_{\mathrm{C}}$

$.\vee$
$\}\{*\beta^{\mathrm{o}}$

Similarly, the ffesh-naming $\alpha$-relation can be shown
to resolve $\alpha$-equivalence to aBCF (although the formal
proof of this is surprisingly involved, cf. [25] $)$ .

Lemma 28

$.========\backslash /\backslash \alpha,\cdot$

$\alpha_{00}\backslash _{\mathrm{t}\backslash }$

.
$\alpha_{0}$

(BCF)

Applying Administration With these results in
place, we can lift Lemma 24 to the real A-calculus.

Lemma 29 $\mathrm{o}(\dashv[]_{\beta})$ A $\mathrm{o}(--*_{\alpha};-\mathrm{H}’\rho)$

Proof As for the left-most conjunct, see Figure 8for
the step by step resolution of the definitionally-given
syntactic divergence. We trust the steps are self-evident
and that it can be seen that aslight adaptation of the
figure also proves the right-most conjunct. $\square$

We are now in aposition to establish $\beta$-confluence.

Theorem 30

The Full Proof Burden Areal version of the parallel
$\beta$-relation on syntax can be defined along the lines of
Definition 17 (which, further to Lemma 21, turns out to
be the real real parallel $\beta$ relation.

Definition 25 $\lfloor e_{1}\rfloor-[] f*_{\beta}\lfloor e_{2}\rfloor\Leftrightarrow^{def}e_{1}=_{-j-\mathrm{H}*_{\beta};-=_{\alpha}}^{-_{\alpha}}-$e2

In order to prove the diamond property for $\dashv\mapsto\beta$ , we
need some measure of commutativity between $\alpha-$ and

Confl $(arrow\beta)$ AConfl $($–, $\alpha\beta)$

$\Lambda \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(--,\alpha \mathrm{c}_{\mathrm{u}}\beta \mathrm{c}_{\mathrm{u}})$

$\Lambda \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(arrow_{\beta^{\mathrm{H}1}})$

Proof The two top most conjuncts are equivalent by
Lemma 18. They can also be proved independently by
applying the Diamond Tiling Lemma of Appendix $\mathrm{C}$

to the corresponding conjunct in Lemma 29. The third
conjunct follows by Lemmas 15 and 16. The final con-
junct follows in an analogous manner. $\square$
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$\prime\prime\prime^{\prime\backslash }M0_{\backslash }$
$\prime\prime\backslash M0_{\backslash }$

$\grave{\ltimes}<M_{1}^{\iota’\alpha}$

’
$\alpha\grave{\grave{M}}_{1}^{r}\grave{/}_{4}$

$\aleph^{\backslash }<M_{1}^{\iota\alpha\alpha},M_{1}^{r}\backslash \mathrm{g}\mathrm{c}\mathrm{p}\grave{/}\mathrm{g}$

$\grave{\ltimes}<\backslash \not\in^{\mathrm{c}\mathrm{p}’\grave{/}_{4}}M_{1}^{\iota^{J\prime}\alpha\alpha}M_{1}^{r}$

$M_{2}^{\iota}\beta$

$\beta M_{2}^{r}\backslash \backslash$
$\prime\prime M_{2}^{l}\beta$ $\alpha \mathrm{o}N_{0}\alpha_{0}$

$\beta \mathrm{A}f_{2}^{r}\backslash \backslash$
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$\beta,M_{2}^{r}\backslash \backslash$
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$\beta,M_{2}^{f}\backslash \backslash$

”

$M_{2}^{l}\beta$ $\alpha \mathit{0}N_{0}\alpha_{0}$

$\beta,M_{2}^{r}\backslash \backslash$
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Fig. 8. The administrative proof layer for $\beta$-confluence

$M_{0}$

” $\backslash \backslash$

$\prime\prime J\alpha$

’
$\alpha^{\backslash }\backslash \backslash \backslash$

$M_{1}^{l}$ $M_{1}^{r}$

$\mathrm{A}\Upsilon_{2}^{\iota^{-_{\eta}’}}$

’
$\backslash \alpha_{0N_{0}}^{*\iota_{\alpha_{0}}^{\prime’}}\backslash$ $\backslash \eta_{M_{2}^{r}}^{\mathrm{Y}}\backslash$

$\prime^{\prime’}J\alpha J’$ $\backslash [searrow]\alpha.$”
$\backslash ’\backslash \backslash \eta\tilde{N}_{1}^{r}=====\grave{=}M_{3}^{r}\alpha\backslash *’\alpha^{\backslash }\backslash \backslash$

$M_{3}^{l}=====N_{1}^{1}\alpha\eta$

$\alpha$

$\backslash \mathrm{t}$ $t’$

$\eta\eta\prime\prime^{N_{\theta}}\backslash \backslash$

$\backslash \backslash ^{\alpha_{J/}}\sim\vee$

$M_{1}^{\iota_{==M_{0}==M_{1}^{r}}^{\alpha\alpha}}$

$M_{2}^{l}==N_{1}^{\iota^{-}\eta}\eta_{\vee’’}’$ $\backslash \backslash \grave{\eta}_{N_{1}^{r}=}^{\mathrm{Y}}\cong_{M_{2}^{r}}\backslash \eta$

” $\alpha$

$\backslash [searrow]$ $0^{\prime’}$

$\prime\prime\prime$

’ $\alpha$ $\alpha$ $\backslash \backslash$

$\backslash \backslash$

$M_{3}^{l}$

$\eta\eta/F^{2}\backslash \backslash ^{\underline{\alpha}_{J/}}rightarrow\backslash \backslash$

$M_{3}^{r}$

$\alpha\backslash \backslash$

Fig. 9. The administrative proof layer for y7 Confluence

4.2 $\eta$-Confluence

Unlike the $\beta$-relation, $\eta-$-reduction is natively renaming-
free:

Lemma 31 ($\alpha/\eta$ Commutativity)

$\mathrm{I}\mathrm{I}.\vec{\eta}--$ :
ai $\vee 1\alpha$.

$\sim.,’\grave{\eta}^{\mathrm{b}\circ}$

Lemma 32 ($\eta$ Commutativity)

$\eta\downarrow.l^{\eta}\mathrm{i}_{1}^{--}\vec{\eta}_{\mathrm{f}}\vee\backslash \cdot \mathrm{O}^{\cdot}$
$\wedge$

$\eta i$. $\vec{\eta}\backslash \mathrm{f}.\eta$

Proof The left-most conjunct
$\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d}1\mathrm{y}\grave{\eta}^{;\grave,0}$

provable by structural means. The proof of the right-
most property follows from the left-most as displayed in

Figure 9. The top part of the figure is aproof by the
general method; the lower part is an optimised version
that takes advantage of $\eta$ commuting with $\alpha$ , not just
with $\alpha_{0}$ . $\square$

Theorem 33 Confl(–*\eta )\wedge Confl(\rightarrow \eta ) $\Lambda$ Confl(–*\mbox{\boldmath $\alpha$}\eta )

Proof The two left-most conjuncts can be established
from the corresponding conjuncts in Lemma 32 by the
Hindley-Rosen Lemma of Appendix C. The right-most
conjunct can be established either by the Commuting
Confluence Lemma of Appendix $\mathrm{C}$ applied to the left-
most conjunct and generalisations of Lemmas 11 and 31
or, alternatively, it can be observed that the two right-
most conjuncts are equivalent by Lemma 18. $\square$

4.3 $\beta\eta$-Confluence

Since the $\eta$-relation is natively renaming-free and the $\beta-$

relation relies on the a-relation, we must show that $\eta-$

commutes with combined $\alpha\beta$-reduction in order to ap
ply the Commuting Confluence Lemma of Appendix C.

Lemma 34
$\mathrm{I}.\vec{\eta}--$ ;

$|.\eta_{\dagger}.\mathrm{l}\cdot,\eta_{\mathrm{f}}--*--*\sqrt 1\alpha\beta\Lambda\alpha\beta\star \mathrm{t}^{\mathrm{t}}.\alpha\beta$

$\beta\downarrow \mathrm{I}$. ,
$\acute{\eta}^{\mathrm{o}}.\mathrm{s}^{\xi_{\alpha\beta\wedge\alpha\beta\downarrow}}\mathrm{I}.$ .

$*\triangleright\eta^{\mathrm{o}}$

. ,
$\mathrm{m}\acute{.}\mathrm{A}\eta^{\mathrm{O}}$

Proof The proof of the left-most conjunct is straight-
forward. The $\alpha$-step in the resolution on the right is
needed for the obvious divergence on $\lambda z.(\lambda y.e)x$ , with
$x\neq y$ . The middle conjunct combines the left-most con
junct and Lemma 31. The right-most conjunct follows
from the middle by the Hindley-Rosen Lemma of Ap
pendix C. $\square$
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$M_{0}$
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”
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$\prime_{J}$
$\backslash \backslash$
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$M_{2}^{\check{l}}\beta$

”
$\backslash \alpha\backslash \grave{\eta}_{N_{0}=====\tilde{=}M_{2}^{\mathrm{r}}}^{\mathrm{Y}\grave{\eta}}$

” $\backslash$ $\alpha$
$\backslash \backslash$

$M_{3}^{l^{\prime’}}"\alpha$

$\backslash \eta^{*t_{\alpha\beta}’}\prime F_{\alpha_{J/}}^{1}\backslash \backslash =\backslash \backslash$

$\alpha^{\backslash }\backslash \grave{\grave{M}}_{3}^{r}$

Fig. 10. The administrative proof layer for $\beta\eta-$-confl

Lemma 35

Proof The

$\beta \mathrm{l}\mathrm{e}\mathrm{f}.\mathrm{t}- \mathrm{m}\mathrm{o}\mathrm{e}\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}.\mathrm{f}\mathrm{o}11\mathrm{o}\mathrm{w}\mathrm{s}\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{i}\vec{\eta}\mathrm{i}_{l}$

}
$\acute{\dot{\acute{\grave{\dot{\eta}}}}}^{\grave{\mathrm{o}}}\hat{\dot{\eta}}^{\mathrm{O}}\iota\beta^{\Lambda}\beta \mathrm{i}\vec{\eta}$

}}
$\mathfrak{x}\beta$

the left-
most conjunct of Lemma 34 as shown in Figure 10.
The top part of the figure is by the general method;
the lower part is an optimisation based on (full) otq-
commutativity, Lemma 31. The right-most conjunct fol-
lows by the Hindley-Rosen Lemma of Appendix C. $\square$

Theorem 36 Confl $(arrow\beta\eta)\Lambda \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(--*_{\alpha\beta\eta})$

Proof We first observe that the two conjuncts are
equivalent by Lemma 18. They can also be proved in-
dependently by the Commuting Confluence Lemma of
Appendix $\mathrm{C}$ applied to Theorems 30 and 33 as well as
Lemma 35 and Lemma 34, respectively. $\square$

5Residual /3-COnfluence

We say that the reflexive, transitive closure of aresidual
relation is the associated development relation, astep of
which is said to be complete if the target term does not
contain amark, unMarked(-). With this terminology in
place, we define aweakened version of the strong finite
development property. 8

6 The strong finite development property also requires that
the residual relation is strongly normalising. It is typically
used to prove (residual) confluence.

Definition 37 $Letarrow\Phi$ be the residual relation of
$arrow$ . We say $thatarrow enjoys$ the strong weakly-finite
development property, SWFDP $(arrow)$ , if
1. $tarrow_{q}t’\Rightarrow\exists t’.t^{\prime-\epsilon}t’$ A $\mathrm{u}\mathrm{n}\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{d}(t’)$

-developments can be completed
2. $tarrow_{o}t_{i}\wedge \mathrm{u}\mathrm{n}\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{d}(t_{i})\Lambda i\in\{1,2\}\Rightarrow t_{1}=t_{2}$

-completions are unique

To motivate the name of the proPerty, we see that,
indeed:

Proposition a8 SWFDP $(arrow)\Rightarrow \mathrm{W}\mathrm{N}(arrow_{\mathrm{p}})^{7}$

Proof By Definition 37 1. and reflexivity of $arrow 0$ . $\square$

Surprisingly, perhaps, we have that already the SWFDP
implies residual confluence.

Lemma 39 SWFDP $(arrow)\Rightarrow \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(arrow_{\mathrm{n}})$

Proof Consider the following divergence:

$M_{1}M_{2}\mathrm{B}\swarrow^{M}[searrow]@$

7 The predicate $\mathrm{W}\mathrm{N}(-)$ stands for Weak Normalisation and
means that all terms reduce to anormal form
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By Definition 37, 1., there exist $N_{1}$ , $N_{2}$ , such that
$\mathrm{u}\mathrm{n}\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{d}(N_{1})$ , $\mathrm{u}\mathrm{n}\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{d}(N_{2})$ and:

$@\swarrow^{M}[searrow] \mathrm{n}$

$M_{1}$ $M_{2}$

@\downarrow $\downarrow@$

$N_{1}$ $N_{2}$

By transitivity of $arrow@$ and Definition 37, 2., we see
that, in fact, $N_{1}=N_{2}$ and we are done. $\square$

With direct reference to Section 3, we define the
following property, which is fairly easily proven to be
equivalent to the SWFDP.

Definition 40 A relation, $arrow$ , enjoys the residual-
completion property, RCP$(arrow)$ , if there exists $a$

residual-completion relation, “$a$’such that:

1. $-_{\emptyset}\subseteqarrow a$

-residual-completion is a development
2.
-

$\cdot$

$\overline{residu}^{\Phi}al- c\mathrm{q}mpletioni\mathrm{o}(\mathrm{N}\mathrm{F}_{u})$

totally completes

3.
$\cdot$

$\backslash _{\varpi}.\infty$
$\prime\prime f$

.
-residual-completion is residually cO-final

Lemma 41 RCP(\rightarrow )\Leftrightarrow SWFDP(\rightarrow )

Our interest in the RCP is its constructive nature, in
particular when the residual-completion relation is de
fined as acomputable function the way we did in Sec-
than 3.

Lemma 42 RCP(\rightarrow \beta ) $\Lambda$ SWFDP(\rightarrow \beta )

Proof We prove the left-most conjunct. Clause 1. fol-
lows from the easily established fact that $–\triangleleft_{\beta^{\Phi}}\subseteq--,\beta@$ .
Clause 2follows from Lemmas 21 and 28. Finally,
Clause 3is proved as shown in Figure 11. $\square$

Theorem 43 Confl(\rightarrow \beta u) $\Lambda \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(--*_{\alpha^{\mathrm{g}}\beta^{\mathrm{g}}})$

We see that $\mathrm{S}\mathrm{N}(\sim\beta^{\mathrm{Q}})$ (i.e., the difference between
the SWFDP and the strong finite development prop
erty) is not needed for concluding confluence bom a
residual analysis of the $\beta$-relation, something which
is in stark contrast to established opinion [2, p.283].
Strong finite development essentially implies confluence
through Newman’s Lemma, thus relying crucially on the
(non-equational) $\mathrm{S}\mathrm{N}$-property for the residual relation.
We think it anice “purification” of the equational im-
port of residual theory that an externallyjustified termi-
nation property is not needed for concluding confluence.

6 $\eta-\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-\beta$-POstpOnement

As well as condensing Tait and Martin-Ldf $\mathrm{s}$ use of par-
allel $\beta$-reduction for proving $\beta$-confluence, Takahashi
[23] also shows how to adapt the parallel-reduction
technology to other typical situations in the equational
theory of the A-calculus. One such situation is for prov-
ing $\eta- \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-\beta$ -postponement, cf. Figure 12. The proof
presented by Takahashi [23] essentially goes through
up to BCF-initiality as it stands, albeit not completely.
Rather than focusing on the low-level technical details,
this section merely shows the Administrative and Ab
stract proof layers of our formalisation of Takahashi’s
proof.

The notion of commutativity that we have considered
so far is orthogonal in nature to that employed in the $\eta-$

$\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-\beta$-Postponement Theorem. Whereas the former can
be described as divergence commutativity, this section
focuses on composition commutativity.

Lemma 44 (BCF)
$\{|>\beta$

$\circ$

1 ;
$\eta_{\star}^{\mathrm{B}}$ $\Leftarrow\dot{*}\eta$

$.-\mathrm{H}_{\vec{\beta}}$
.
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Proof The parallel $\eta$-relation is used to allow for the
duplication of a $\eta$-redex by the $\beta$-contraction when the
latter is performed first. The parallel $\beta$-relation, on the
other hand, is used, e.g., for the following situation:

$\underline{\mathrm{C}\mathrm{a}\mathrm{p}\mathrm{t}_{x}}(e_{1})\cap \mathrm{F}\mathrm{V}(e_{2})=\emptyset$ $/a^{\mathrm{w}\mathrm{h}})\underline{e_{1}}-*_{\beta^{\mathrm{w}\mathrm{h}}}e_{1-\prime\cap \mathrm{n}^{\mathrm{W}\mathrm{h}_{1}}}’$

$\overline{(\lambda x.e_{1})e_{2}}--*_{\beta^{\mathrm{w}\mathrm{h}}}e_{1}[x\cdot.=e_{2}]$

$\backslash \mu$

$J\overline{e_{1}e_{2}}--*_{\beta^{\mathrm{w}\mathrm{h}}}e_{1}’e_{2}$

$\backslash arrow \mathrm{w}$ /

Fig. 14. Weak-head $\beta$-reduction
$(\lambda x.(\lambda y.e_{1})x)e_{2\eta}-,(\lambda y.e_{1})e_{2\beta}--*e_{1}[y:=e_{2}]$

This reduction sequence commutes into aleading par-
allel $\beta$-step with atrailing $\eta$-step, which is in this case
is reflexive:

$(\lambda x.(\lambda y.e_{1})x)e_{2\beta}-\mathrm{H}*\mathrm{e}\mathrm{i}[\mathrm{y}:=x][x:=e_{2}]$

BCF-initiality is used to enable the double ($\mathrm{n}$-fold, in
general) substitution in the commuted reduction se-
quence. $\square$

$\frac{e_{1}}{e_{1}\mathrm{e}_{2}}--\_{\beta^{1}}--*_{\beta^{1}}e_{1}’ e_{2}e_{1}’$ $(@_{1}^{1}) \frac{e_{2}-*\rho}{e_{1}e_{2\beta^{1}}-}*e_{2}’e_{1}e_{2}’$ $(@_{2}^{\mathrm{I}})$

$\underline{e-*_{\beta}}e’$
$/1^{1}1$

$-\overline{\lambda x.e--*_{\beta^{1}}}\lambda x.e’\iota-r$

–

$-/1\Gamma--^{1}\backslash \underline{e_{1}}-\mathrm{H}’\beta \mathrm{I}e_{1}’$
$e_{2}-\mathrm{H}’\beta e_{2}’$

$/\cap \mathrm{n}^{\mathrm{I}}\backslash$

$\overline{z}-\mathrm{H}*_{\beta^{\mathrm{I}x}}$

$1$

$\mathrm{v}a\iota_{1\mathfrak{l}/}\overline{e_{1}e_{2}}\sim \mathrm{H}’\beta’e_{1}’e_{2}’$

$\backslash \infty_{\mathrm{I}\mathrm{I}}/$

$\underline{e-\mathrm{H}*_{\beta}}e’$
/11

$\overline{\lambda z.e-\mathrm{H}\mathrm{r}_{\beta^{1}}}\lambda x.e’$

$\backslash -|\dagger J$

Fig. 15. Inner and parallel inner $\beta$-reduction

Lemma 45 . }
$\dagger^{\beta}\sim$

$0$

$\eta\neq$ $\mp_{\dot{\nu}\eta}^{\mathrm{I}}$

$.\dashv\vdash$ .
Proof Please refer to Figure 13 for the details of the
proof. Anovel aspect of the proof is the existence of an
$\alpha_{0}$-step from $M_{5}$ to $N_{2}$ . By construction, we know that
the two terms are a-equivalent. Asimple lemma shows
that $N_{2}$ is aBCF because $\eta-$-reduction preserves BCFs.
The final result that is needed, i.e., that $\alpha_{0}$ reduction
can reach any BCF that is $\alpha$-equivalent to the start
term, can also be proved by structural means but it is
not as straightforward as could be imagined. This is due
to the need for the target BCF to be any BCF. Cl

With the one necessary technical lemma in place, we
present the postponement theorem.

Theorem 46

$.,-\backslash _{\mathrm{Y}}\backslash _{\mu},$

,
$.-\mathrm{O}$

$\beta\eta’\acute{\tilde{\eta}}^{\nabla}"$ .
Proof By reflexive, transitive induction in $arrow\beta\eta$ .
The only interesting case is the transitive case, which
follows in amanner akin to the Hindley-Rosen Lemma
of Appendix $\mathrm{C}$ using Lemma 45. $\square$

7 $\beta$ Standardisation

Standardisation is also acomposition-commutativity
result like postponement. It is avery powerful result
that, informally speaking, says that any reduction se-
quence can be performed left-to right. Standardisation
implies results such as the left-most reduction lemma,
etc., [2], and guarantees the existence of evaluation-
order independent semantics [20].

This section addresses three different approaches to
proving standardisation due to Mitschke [18], Plotkin

[20], and David [5], respectively. The three approaches
are fairy closely related, with Plotkin’s proof bridging
the other two, so to speak. Mitschke’s and Plotkin’s
proofs both use semi-standardisation while David’s and
Plotkin’s both can be described as absorption standardi-
sation. In spite (actually because) of this, only Plotkin’s
approach is formally provable by the proof principles
we are considering. We shall examine the failures of the
other two proofs closely.

7.1 Semi-Standardisation with Hereditary
Recursion

In this section, we shall pursue aslight adaptation of
Takahashi’s adaptation [23] of Mitschke’s proof [18]. In-
stead of head and acorresponding notion of inner reduc-
tion, we base the proof on weak-head reduction. This
does not affect the formal status of the proof technique
but does allow us to reuse the results of this section
when pursuing Plotkin’s approach. The main proof bur-
den is to show that (weak-)head redexes can contracted
before any inner redexes, s0-called semi-standardisation.

Definition 47 Weak-head $\beta$ reduction, – $,\beta^{\mathrm{w}1}‘$ , is de-
fined in Figure 14. The corresponding (strong) inner,
$–\#_{\beta^{1}}$ , and parallel inner, $-\mathrm{H}*_{\beta^{\mathrm{I}}}$ , $\beta$-relations are defined
in Figure 14.
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introduce an $\alpha_{1}$ -relation that corresponds to the wBCF-
predicate. The $\alpha_{1}$ -relation is less well-behaved than the
$\alpha_{0}$-relation but we can, at least, show that it commutes
with $-+\beta$ (and thus $-*_{\beta^{\mathrm{w}\mathrm{h}}}$ ), up to a-resolution. The
left-most conjunct of the lemma, follows by rule induc-
than in $-\mathrm{H}’\beta^{\mathrm{I}}$ . $[]$

At this point, the idea is to recursive over the $\circ$ in
Lemma 50 and show that the sub terms in which the
outgoing $arrow\beta^{1}$ -step are ordinary $\beta$-steps, themselves
can be semi-standardised and so on. Unfortunately, the
$\circ$ is quantified over a-equivalence classes, for which no
recursion is possible and we are stuck.

Lemma 48
$\beta_{i}^{\mathrm{w}\mathrm{h}}\circ\ell_{\mathrm{w}}^{\beta^{1}}$

(BCF) .’- $-\dashv\vdash-\vec{\beta}$ . $\Lambda$

Proof Please refer to Figure 16 for the proof of the
right-most conjunct based on the left-most conjunct,
wich, in turn, is proved by rule induction $\mathrm{i}\mathrm{n}-\mathrm{H}\_{\beta}$. [:]

The use of BCF-initiality in the left-most conjunct
above guarantees that weak-head redexes can be con-
tracted without waiting for the contraction of an inner
redex to eliminate avariable clash.

Lemma 49
(BCF)

$\cdot\backslash \nu_{\mathrm{p}.’\beta^{\mathrm{w}\mathrm{h}}}\beta|\}\beta,\dot{\lambda}\acute,$

.
$\Lambda$

$\lambda_{\beta^{1}}../_{\beta^{\mathrm{w}\mathrm{h}}}^{\lambda^{\mathrm{h}}}|\}^{\beta}$

.
Proof Please refer to Figure 17 for the proof of the
right-most conjunct based on the left-most. We first
note that the figure invokes the obvious adaptation of
Lemma 27 to $-\mathrm{H}*_{\beta^{1}}$ . Although the proof as awhole is
similar to that of $\eta- \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}-\beta$-postponement, cf. Lemma 45,
we do not have that $-\mathrm{H}\star_{\beta}1$ preserves BCFs, as is the case
with $-\mathrm{H}\star_{\eta}$ . Instead, we can introduce aweakened notion
of BCF, wBCF, that allows identical binders to occur
in adjacent positions (but not nested and not coincid-
ing with any bee variables) and show that $-\mathrm{H}’\beta^{1}$ sends
BCFs to wBCFs. In the same manner that $\alpha_{0}$-reduction
and the BCF-predicate correspond to each other, we can

7.2 Hereditary Weak-Head Standardisation
Plotkin [20] defines standardisation as the least
contextually-closed relation on terms that enjoys left-
absorptivity over weak-head reduction. The following
presentation of the proof methodology owes agreat debt
to McKinna and Pollack [17]. The difference between
their and our presentation is that we focus on prov-
ability with structural induction, etc., while they work
with an alternative syntactic framework that is derived
from first-0rder abstract syntax with $\mathrm{t}\mathrm{f}\mathrm{u}/0$-sorted vari-
able names. The proof requirements in their setting and
in ours are substantially different as aresult.

A First (Failing) Approach Afirst approach, which im-
mediately fails, is to define Plotkin’s relation directly on
terms.

e $-,\beta^{\mathrm{w}\mathrm{h}e’}e’\succ-\dashv_{\mathrm{P}}e’$

e $\succ-\mathrm{r}_{\mathrm{P}}e’$ x $\succ-\tau_{\mathrm{P}}x$

$\underline{e_{1}\succ-\dashv \mathrm{p}e_{1}’e_{2}\succ-\dashv \mathrm{p}e_{2}’}\underline{e\succ-\dashv \mathrm{p}e’}$

$e_{1}e_{2}\succ-\dashv \mathrm{p}e_{1}’e_{2}’$ $Xx.e\succ-\dashv \mathrm{p}\lambda x.e’$

As standardisation pertains to all $\beta$-reductions(i.e.,
$arrow\beta$ , not just $-\cdot\beta$ ), the naive approach needs the
full A-calculus to be renaming-free, which it is not. The
problem manifests itself in the required administrative
proof layer for the standardisation property and its ex-
act nature is of independent interest. The point is that,
even if it is possible to prove the following key property
(which, in fact, seems to be the $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}^{8}$), we cannot prove
8 Coincidentally, it is interesting to note that the proof of

the property can only be conducted by rule induction in
$\succ-\dashv \mathrm{p}$ and not $\mathrm{i}\mathrm{n}-*\rho$ .
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41 $*$ (BCF) 11 $[searrow]$ (BCF)
$M_{2}-\ovalbox{\tt\small REJECT}_{0_{\mathrm{I}\star}}^{N_{1}}|$ $M_{2}-\theta_{0}^{N_{\iota_{\star}}}\mathrm{I}$

’
1 1 $\backslash$ 1

$\beta\downarrow|$ $\backslash \backslash$

$\beta\downarrow$ $\beta\downarrow(\mathrm{w}\mathrm{B}\mathrm{C}\mathrm{F})$ $\beta\downarrow$

$\alpha 1\mathrm{I}M_{3}-1\mathrm{I}k^{N_{2}}$
$\backslash \mathrm{t}1$ $\alpha||\mathrm{I}M_{3}-\mathrm{t}_{\mathrm{I}}^{N_{2}^{a}}\mathrm{l}|$ $\backslash$
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$M_{4}\mathrm{I}|//$ 1 $\mathrm{g}_{\mathrm{I}}|$

$M_{4}|\mathrm{I}$
$\mathrm{I}\mathrm{I}$

$\mathrm{g}_{\mathrm{I}}/$

$\alpha \mathrm{I}|/$

$\dot{\mathrm{f}}1$

/ $\alpha||$

$M_{6}^{\mathrm{I}\mathrm{I}J}\mathrm{Y}$

$\mathrm{i}1$

$\mathit{1}$

$M_{5}^{\mathrm{I}\mathrm{I}}-\ovalbox{\tt\small REJECT}_{0}^{N_{2/}^{b}}\mathrm{Y}\gamma/\alpha 0\downarrow_{(\mathrm{B}}\phi)$

$\mathrm{P}^{\mathrm{I}}$ ’
$\mathrm{p}[perp]^{\mathrm{I}}$

$[perp]\langle \mathrm{p}$

$\mathrm{p}[perp]^{1}$
$\mathrm{P}[perp]^{J}\vee \mathrm{p}$

$M_{6}-\not\supset^{N_{3}}1\mathrm{I}$ $M_{6}-?^{N_{3}}\mathrm{I}1$

$\alpha$ $11$ ”
$\alpha$ $||$ ’

11 $\iota_{\alpha}$ 11 $g_{\alpha}$

$M\tau$
$M_{7}$

$\lambda y.e_{1}=_{\alpha\alpha \mathrm{w}\mathrm{h}}==\lambda y’.\mathrm{e}_{1}’-+\tau\backslash \mathrm{I}\beta \mathrm{I},r_{\alpha}\backslash \backslash |\mathrm{I}\lambda y^{l}.e_{2}’===\lambda z.e_{2}\succ-\dashv\lambda x.e_{3}$

$\backslash \backslash \mathrm{u}\downarrow^{\alpha 0}$

$\beta^{\mathrm{I}}$

$\downarrow^{\alpha}$, ’ ’
$\alpha_{\lambda x.e_{0}--|\vdasharrow\lambda x.e_{0}’}$

Fig. 19. The administrative proof layer for the $(\lambda_{\succ\tau_{\mathrm{w}\mathrm{h}}})$ case
of Lemma 54

Combining Term Structure and $a$ -Collapsed Reduction
In order to avoid these problems, we adapt the above
definition slightly.

Definition 52

$\frac{\lfloor e\rfloorarrow_{\beta^{\mathrm{w}\mathrm{h}}}\lfloor e’\rfloor e’\succ-\dashv_{\mathrm{w}\mathrm{h}}e’}{e\succ-\dashv_{\mathrm{w}\mathrm{h}}e’}(\mathrm{w}\mathrm{h}_{\mathrm{p}\mathrm{r}\mathrm{e}})$

$\overline{x\succ-\dashv_{\mathrm{w}\mathrm{h}}x}(\mathrm{V}_{\succ \mathrm{t}_{\mathrm{w}\mathrm{h}}})$

Fig. 18. Failed administrative proof layer for left-
absorptivity of progression standardisation

full standardisation but at most standardisation of the
renaming-ffee fragment of the $\lambda^{\mathrm{v}\mathrm{a}\mathrm{r}}$ -calculus.

(BCF)
$.\prime \mathrm{f}_{\backslash t\backslash }-\sim^{\beta}.\mathrm{v}\cdot-\gamma_{\mu}^{\mathrm{P}}$ .

$\mathrm{P}$

Please refer to Figure 18 for the only two sensible
approaches to the administrative proof layer for the fol-
lowing property, which is derived from the one above.

Non-Lemma 51

$.\mathrm{A}_{\backslash \backslash _{\backslash }\wedge}-_{\mathrm{r}\wedge*}^{\beta},\cdot-\gamma^{\grave{\mathrm{P}}}\prime\prime\prime\acute{\mathrm{p}}$.

$\frac{e_{1}\succ-\tau_{\mathrm{w}\mathrm{h}}e_{1}’e_{2}\succ-\dashv_{\mathrm{w}\mathrm{h}}e_{2}’}{e_{1}e_{2}\succ-\dashv_{\mathrm{w}\mathrm{h}}e_{1}’e_{2}},(@\succ \mathrm{t}_{\mathrm{w}\mathrm{h}})$ $\frac{e\succ-\tau_{\mathrm{w}\mathrm{h}}e’}{\lambda x.e\succ-\tau_{\mathrm{w}\mathrm{h}}\lambda z.e’}(\lambda_{\succ\tau_{\mathrm{w}\mathrm{h}}})$

The definition mixes the advantages of being able to
define relations inductively over terms with the use of
reduction in the real A-calculus to avoid issues of renam-
ing. Note, however, that, further to the failed proof of
Lemma 4, it is by no means obvious whether this mix-
turn $\mathrm{w}\mathrm{i}\mathrm{h}$ lend itself to primitive structural reasoning.
The proof-technical issue surfaces in the $(\mathrm{V}_{\succ 1})\mathrm{w}11$ case of
the proof of Lemma 54.

Lemma 53

$\beta\neq$

.
$\beta^{\mathrm{w}\mathrm{h}}\iota^{\backslash }\sim 0_{\mathrm{f}}=_{\beta^{1}}^{l}.’$.

$.arrow$ .
Proof The property can $\theta_{\mathrm{e}}^{\mathrm{w}}h\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{d}$ from Lemmas 48
and 49 based on asuitable adaptation of the Hindley-
Rosen Lemma, cf. Appendix C. $\square$

The left-most diagram in the figure attempts to align
itself with Figure 13, which fails because $\succ-\dashv \mathrm{p}$ only
commutes with $–\star_{\alpha_{0}}$ . The right-most diagram adheres
to this and fails because of the inserted $–\mathrm{r}_{\alpha 0}$ , which
we cannot incorporate into the syntactic version of the
property. It is even straightforward to come up with a
counter-example.

(Xs.ss) (Xx.Xy.xy) $–*\beta(\lambda x.\lambda y.xy)(\lambda x.\lambda y.xy)$

We can turn the end-term into an $\alpha$-equivalent BCF as
it happens, which standardises:

$(\lambda x_{1}.\lambda y_{1}.x_{1}y_{1})(\lambda x_{2}.\lambda y_{2}.x_{2}y_{2})\succ-\dashv \mathrm{p}\lambda y_{1}.\lambda y_{2}.y_{1}y_{2}$

As the end-term of this step uses the two $y$ copies nested
within each other, we see that the original start term
does not standardise to it.

The key technical lemma in the present standardisa
tion proof development is the following absorption prop
erty.

Lemma 54

$\lfloor e_{1}\rfloor\neg\mapsto\beta^{1}\lfloor e_{2}\rfloor\Lambda e_{2}\succ-\dashv_{\mathrm{w}\mathrm{h}}e_{3}\Rightarrow e_{1}\succ-\backslash _{\mathrm{w}\mathrm{h}}e_{3}$

Proof The proof is by rule induction $\mathrm{i}\mathrm{n}\succ-\dashv_{\mathrm{w}\mathrm{h}}$ and
uses Lemma 53 before applying the $\mathrm{I}.\mathrm{H}$ . and the defini-
tional left-absorptivity over weak-head reduction when
needed. As far as administration is concerned, the only
interesting case is for abstraction.

Case $(\lambda_{\succ \mathrm{I}\mathrm{w}\mathrm{h}})$ :We are considering the following situa
tion (although this takes some effort to substanti-
ate).

Ay.ei $=_{-_{\alpha}}^{-\lambda e_{1}’-\mathrm{H}*_{\beta^{1}}\lambda e_{2}’-=_{\alpha}\lambda \mathrm{y}.e\mathrm{i}}y’.y’.-\succ-\dashv_{\mathrm{w}\mathrm{h}}$ Xx.e
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By Definition 47 and the case, we have
$e_{1}’-\mathrm{H}+\beta e_{2}’$ and $e_{2}\succ-\dashv_{\mathrm{w}\mathrm{h}}$ e3. If $y’=x$ , we
can prove $e_{2}’----_{\alpha}e_{2}$ , which means that we
are considering $\lfloor e_{1}’\rfloor\dashv\{arrow\beta\lfloor e_{2}’\rfloor\succ-\dashv_{\mathrm{w}\mathrm{h}}$ $e_{3}$ , so
to speak. bom Lemma 48, we thus have:

$\lfloor e_{1}’\rfloorarrow\beta^{\mathrm{w}\mathrm{h}}[\text{\’{e}} 1\mathrm{J}\dashv\mapsto\beta^{\mathrm{t}}\mathrm{L}\mathrm{e}2\mathrm{J}\succ-\dashv_{\mathrm{w}\mathrm{h}}$ e3. An ap-
plication of the $\mathrm{I}.\mathrm{H}$ . and an invocation of the

$(\mathrm{w}\mathrm{h}_{\mathrm{p}\mathrm{r}\mathrm{e}})$-rule will then give us that $e_{1}’\succ-\dashv_{\mathrm{w}\mathrm{h}}e_{3}$ and
we have $\lambda x.e_{1}’\succ-\dashv_{\mathrm{w}\mathrm{h}}$ Xx.e[ by the $(\lambda_{\succ\prec_{\mathrm{w}\mathrm{h}}})$-rule. A
final (reflexive) application of the $(\mathrm{w}\mathrm{h}_{\mathrm{p}\mathrm{r}\mathrm{e}})$ rule thus
finishes the case: $\lambda y.e_{1}\succ-\dashv_{\mathrm{w}\mathrm{h}}$ Xx.es. Unfortunately,
we can not guarantee $y’=x$ . Instead, Figure 19
shows how to overcome this using our general
administrative proof-layer technology, cf. Figure 3.
Based on the upper line, we first rewrite $\lambda y’.e_{1}$’to
(the BCF) Az.eO (although it takes some effort to
substantiate that this is possible). The commuting
square involving $\lambda x.e_{0}’$ can then be constructed
by the obvious adaptation of Lemma 27 and the
diagram can finally be closed based on Lemma 11.
To show that Xy.ei $\succ-\dashv_{\mathrm{w}\mathrm{h}}$ -standardises to Xx.es.
first apply the reasoning above to show that Xx.eo
does and, then, use the $(\mathrm{w}\mathrm{h}_{\mathrm{p}\mathrm{r}\mathrm{e}})$-rule reflexively to
show the result we are after.

Other Cases: Fairly straightforward. $\square$

This ensures that contraction progresses ffom left-to
right while at the same time allowing newly created re-
dexes to be contracted. Other rules allow redexes not to
be contracted as the relation otherwise would be left-
most reduction.

Right-Absorptivity As mentioned, the key technical
lemma is purported to show right-absorptivity of
$\succ-\dashv_{\mathrm{p}\mathrm{r}\mathrm{g}}$ over $–,\beta$ , which appears to be straightforward,
at least in the case of the above contraction rule [5, 13-
15].

Non-Lemma 56

(BCF) $.\mathrm{v}.-\gamma.’\wedge\cdot\wedge-prg\sim\sim’\beta\backslash \cdot$

’ prg

Unfortunately, not even the BCF-initial version of the
property is true. The following is acounter-example.

$(\lambda s.ss)(\lambda x.(\lambda y.xy)z)$ $\succ-\dashv \mathrm{p}\mathrm{r}\mathrm{g}(\lambda y.(\lambda x.xz)y)z-*\rho(\lambda y.yz)z$

The problem in the counter-example is the last step of
the standardisation, which amounts to the contraction
of the redex involving the inner $y$-abstraction below.

Theorem 55 $\lfloor e_{1}\rfloorarrow\beta \mathrm{L}\mathrm{e}2\mathrm{J}\Rightarrow e_{1}\succ-\tau_{\mathrm{w}\mathrm{h}}e_{2}$

Proof By reflexive, left-transitive induction $\mathrm{i}\mathrm{n}arrow\rho$ .
The reflexive case is astraightforward structural in-
duction. The left-transitive case follows by an I.H.-
application followed by acase split on the considered
$arrow\rho$ step into $arrow\beta^{\mathrm{w}\mathrm{h}}$ and $arrow\beta^{1}$ (seeing that we can
show that the union of the latter two is the former). In
case of $arrow\beta^{\mathrm{w}\mathrm{h}}$ ’we are done by definition $\mathrm{o}\mathrm{f}\succ-\dashv_{\mathrm{w}\mathrm{h}}$ . In
case of $arrow\beta^{1}$ , we are done by Lemma 54. $\square$

7.3 (Failing) Progression Standardisation
An alternative proof development for standardisation
was proposed by David [5] and pursued, more or less
independently, in [13-15]. The idea is to define astan-
dardisation relation directly by induction over terms (al-
though this is only done implicitly in [5] $):\succ-\dashv_{\mathrm{p}\mathrm{r}\mathrm{g}}$, and
to show that this relation right-absorbs the ordinary $\beta-$

relation. In that sense, the proof development is the dual
approach to what we considered in the previous section.
Informally, the key technical point is to contract terms
as follows, cf. $[13, 15]$ :

(..(e[x $:=\mathrm{e}\mathrm{o}]\mathrm{e}\mathrm{i})..$ ) $\mathrm{e}\mathrm{f}\mathrm{c}\succ-\dashv_{\mathrm{p}\mathrm{r}\mathrm{g}}e’$

$(..((\lambda x.e)e_{0})e_{1}..)e_{k}\succ--|\mathrm{p}\mathrm{r}\mathrm{g}e’$

9 In order for the relation to make sense in the current set-
ting, it is necessary to suPply it with afinite axiomatisa-
tion, which can be done.

$(\lambda y.(\lambda x.(\lambda y.xy)z)y)z$

As it happens, this is the point where the considered
$–*_{\beta}$ -step(i.e., the contraction of the redex involving the
$x$-abstraction)must be inserted but that is not possible
because of aclash with the inner y-abstraction.

Left-Absorptivity In sharp contrast with the above (and
surprisingly, at first), it turns out that it is possible to
prove left-absorptivity, as also seen at the beginning of
Section 7.2.

(BCF)
$\cdot\prime^{-\sim.\tau^{\prime-\backslash }\gamma}b\beta.\mathrm{p},\mathrm{r}.\mathrm{g}\backslash$

prg

The difference between right- and left-absorptivity is
that the universal quantification over $\succ-\tau_{\mathrm{p}\mathrm{r}\mathrm{g}}$ covers far
fewer steps in the latter case than in the former. As we
saw, this manifests itself when trying to prove standard-
isation for the real A-calculus.

Non-Lemma 57

$.\dot{A}\backslash \cdot.’\backslash \backslash \backslash \neg\vee\sim\beta_{\neg_{\wedge}^{p\tau g}},$.
$\prime ptg$

The counter-example at the beginning of Section 7.2
applies
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8Conclusion

Standard, informal practice in the programming lan-
guage theory community when using structural induc-
tion and related proof principles is to assume that vari-
ables clashes are not an issue (aka Barendregt’s Variable
Convention). We have shown this to be formally correct
for arange of standard properties, possibly up to BCF-
initiality, cf. Lemmas 21, 22, 24, 32, 34, 44, 48, 49, and
54. For the most part, we have been able to show that
the undertaken proof burden resolution is formally in-
complete in the sense that the formal proof burden can
be met by the addition of afairly simple administra
tive proof layer, cf. Figures 8, 9, 10, 11, 13, 16, and 17.
The administrative proof layers mostly rely on the same
additional lemmas, thus preventing ablow-up of proof
obligations. We studied standardisation in some detail
and found that only one out of three proof techniques
appears to be amenable to the use of structural induc-
that, etc..

ACommutative Diagrams

We use commutative diagrams in three different ways,
which are distinguished in the way they write vertices.

A.1Vertices as Terms

connected to a $\circ$ must be half-coloured. Adiagram must
be type-correct on domains. Aproperty is read off of a
diagram thus:

1. write universal quantifications for all .’s
2. assume the full-coloured relations and the validation

of any guard for $\mathrm{a}$ .
3. conclude the guarded existence of all os and their

relations

The following diagram and property are thus equivalent.

$(P)\downarrow$
. $arrow$ .

$\Downarrow e_{1}arrow e_{2}$

$\Lambda e_{1}arrow e\mathrm{a}\wedge P(e_{1})$. P
$\mathrm{o}^{\dot{\nu}}(Q)\mathrm{I}$

$\exists e_{4}.e_{2}arrow e_{4}\Lambda e_{3}arrow e_{4}\Lambda Q(e_{4})$

B Notation and Terminology

We say that aterm reduces to another if the two are
related by areduction relation and we denote the rela-
tionship by an infix arrow between the two terms. The
“direction” of the reduction should be thought of as be
ing from-left-to right. The sub term of the left-hand side
that areduction step “acts upon” is called the redex of
the reduction and it is said to be contracted.

-The converse of arelation, $arrow$ , is written $(arrow)^{-1}$ .
-Composition is:

When written with terms as vertices, commutative dia
grams simply describe reduction scenarios.

A.2 Vertices as M’s, N’s

We shall see next that commutative diagrams are used
to express rewriting predicates such as:

“For all terms, such that, . . . ’ there exist terms,
such that, \ldots .’’

In order to prove these results, we start by writing $M$ ’s
for the universally quantified terms and gradually in-
troduce $N$ ’s from supporting lemmas to eventually sub
stantiate the existence claims. Please note that we use
$\mathrm{g}$ to signify “claimed” existences that are impossible.

A.3 Vertices as \bullet ’s, 0’s

Formally, acommutative diagram of this nature is aset
of vertices and aset of directed edges between pairs
of vertices. Informally, the colour of avertex ( $\cdot$ vs o)
denotes quantification modes over terms, universal and
existential, respectively. Avertex may be guarded by
apredicate. Edges are written as the relational sym-
bol they pertain to and are either full-coloured (black)
or half-coloured (gray). Informally, the colour indicates
assumed and concluded relations, respectively. An edge

a $arrow 1;arrow 2$
$c\Leftrightarrow^{\mathrm{d}\epsilon \mathrm{f}}\exists b.aarrow_{1}b\Lambda barrow_{2}c$

-Given two reduction $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}arrow 1$ and $arrow 2$ , we have:
$arrow 1,2$

$=^{\mathrm{d}\mathrm{e}\mathrm{f}}$

$arrow 1\cuparrow 2$ . If no confusion is possible,
we omit the comma.

-The reflexive closure of arelation $\mathrm{i}\mathrm{s}$:

$\frac{e_{1}arrow e_{2}}{e_{1}-\circ e_{2}}$

$\overline{e-\circ e}$

-The reflexive, transitive closure is:

$\frac{e_{1}arrow e_{2}}{e_{1}arrow e_{2}}$

$\overline{earrow e}$

$e_{1}arrow e_{1}e_{2}arrow e_{2}e_{3}arrow e_{3}$

We will also denote $arrow \mathrm{b}\mathrm{y}$ $(arrow)^{*}$ .
-The reflexive, transitive, and symmetric closure is:

$\underline{e_{1}arrow e_{2}}$

–

$e_{1}=e_{2}$ $e_{2}=e_{3}$
$\underline{e_{1}=e_{2}}$

$e_{1}=e_{2}$ $e=e$ $e_{1}=e_{3}$ $e_{2}=e_{1}$

-The situation of aterm reducing to two terms is
called adivergence.

10 This and the next two items are immediately associated
with primitive induction principles. Equality, however, is
only point-wise (or extensional), and no recursion princi-
ple is possible,
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-Two diverging reductions, as defined above, are said
to be cO-initial

-Dually, two reductions that share their end-term are
said to be cO-final.

-Co initial reductions are resolvable if they compose
with $\mathrm{c}\mathrm{o}$-final reductions.

-Arelation has the diamond property, $0$ , if any diver-
gence can be resolved.

-Arelation, $arrow$ , is confluent, Confl, if $\mathrm{o}(arrow)$ .

C Known Abstract Results

Diamond Tiling Lemma

$(\existsarrow_{2}\cdotarrow 1\subseteqarrow 2\subseteqarrow_{1}\Lambda \mathrm{o}(arrow_{2}))\Rightarrow\circ(arrow_{1})$

Hindley-Rosen Lemma

$2_{\bullet}\downarrow\vec{1},|\bullet\bullet \mathrm{J}2$
$\Rightarrow$

$2\downarrow\vec{1}\}\bullet\bullet j\# 2$

$\acute{1}^{\mathrm{O}}$ $\bullet^{\ovalbox{\tt\small REJECT}_{\acute{1}^{\mathrm{O}}}}$

,

Commuting Confluence Lemma
$\bulletarrow\bullet 1$

$2_{\bullet}\downarrow$

/’

$\mathrm{o}\mathrm{s}^{f}\oint\theta j\mathrm{f}$ Confl$(arrow_{1})$ A $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(arrow_{2})\Rightarrow \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{f}1(arrow_{1,2})$

1
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