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Wolfgang M. Schrnidt

The last decades have seen exciting new advances in diophantine approximation. On

the other hand, anumber of long standing questions have not been resolved. 1will give

arather subjective overview of the current state of the area.

As is well known, Dirichlet’s box principle can be used to show that, given real $\{$ .

and $X^{\cdot}\geq 1$ , there are integers $q,$ $p$ with

(1) $1\leq q\leq X$ , $|q\xi-p|<X^{-1}$ ;

and this implies that for irrational 4there are infinitely many rational approximations

$p/q$ with

(2) $| \xi-\frac{p}{q}|<\frac{1}{q^{2}}$ .

One may consider (1) to be alocalized result, since the range for $q$ is prescribed by $X$ ,

whereas (2) is non-localized.

Considerable difficulties arise when one tries to approximate 4by rationals $p/q^{2},$ $\mathrm{i}.(^{1}.’$

rationals whose denominator is asquare. Write $\gamma_{loc}$ for the supremum of the numbers

7such that the inequalities

$1\leq q\leq X$ , $|q^{2}\xi-p|<c(\gamma, \xi)X^{-\gamma}$

have asolution for every 4and $X\geq 1$ , where $c(\gamma, \xi)$ is asuitable constant. Let $\gamma nonl$

be the supremum of the numbers $\gamma$ such that

(3) $| \xi-\frac{p}{q^{2}}|<q^{-\gamma-2}$
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has infinitely many solutions $p,$ $q>0$ for every irrational $\xi.$ Clearly $\gamma_{\mathfrak{l}\omega \mathrm{c}},\leq\gamma,‘/\cdot‘ \mathfrak{l}1\mathrm{l}(|$

it is easily seen that $\gamma nonl\leq 1$ . For along time the record was held by [H. Heilbronn,

1948] who showed that $\gamma_{nonl}\geq\gamma_{lo\mathrm{c}}\geq 1/2$ . Afew years ago, [A. Zaharescu, 1995] gave

an ingenious proof that $\gamma_{loc}\geq 4/7,$ $\gamma nonl\geq 2/3$ .

$\bullet$ Is it true that $\gamma_{nonl}=1$ , or even $\gamma_{loc}=1$?

The only reason we have for conjecturing $\gamma_{nonl}=1$ is that (3) has infinitely many

solutions for any $\gamma<1$ , and almost every 4in the sense of Lebesgue measure.

It is even harder to approximate by rationals $p/q^{n}$ where $n>2$ . For this and a

great many related questions see [R. C. Baker, 1986]. Such questions are usually dealt

with by analytic methods. Quite generally, diophantine approximation is $\mathrm{n}\mathrm{o}\mathrm{t}_{l}$ part, $()\mathrm{f}$

algebra or analysis, but straddles both areas.

Again by Dirichlet’s box principle, given reals $\xi_{1},$
$\ldots,$

$\xi_{n},$ and given $X\geq 1,$ $\mathrm{f}_{1}\mathrm{h}\mathrm{e},\mathrm{I}^{\cdot}(^{\backslash |}c1.1(^{\backslash }$

integers $q,p_{1},$ $\ldots,p_{n}$ with

(4) $1\leq q\leq X$ , $|q\xi,\cdot-p_{i}|<X^{-1/\mathrm{n}}$ $(i=1, \ldots, n)$ ,

and dividing by $q$ we see that $\xi_{1},$
$\ldots,$

$\xi_{n}$ have infinitely many simultaneous approxima-

tions $p_{1}/q,$ $\ldots,p_{n}/q$ with

(5) $|\xi_{1}$. $- \frac{p_{i}}{q}|<\frac{1}{q^{1+1/n}}$ $(i=1, \ldots, n)$ ,

provided at least one of the $\xi_{i}’ \mathrm{s}$ is irrational. Here the 1in the numerator of the right

hand side may not be replaced by an arbitrarily small constant. Now if $n=2$ , and we

multiply the,inequalities (5) together, we obtain

(6) $| \xi_{1}-\frac{p_{1}}{q}||\xi_{2}-\frac{p_{2}}{q}|<\frac{1}{q^{3}}$ .

J. E. Littlewood posed the following difficult question:

$\bullet$ May the 1on the right hand side of (6) be replaced by an arbitrarily small constcvnt$‘$?
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In other words, given $\epsilon>0$ and arbitrary $\xi_{1},$ $\xi_{2}$ , are there pairs $p1/q,$ $p2/q$ with

(7) $| \xi_{1}-\frac{p_{1}}{q}||\xi_{2}-\frac{p_{2}}{q}|<\frac{\epsilon}{q^{3}}$ ?

In fact this question is open for many given numbers $\xi_{1},$ $\xi_{2}$ . [J. W. S. Casscls ;tnd } $1$ .

P. F. Swinnerton-Dyer, 1955] could show that (7) may be achieved when 1, $\zeta_{1},$ $\xi_{2}\mathrm{i}_{\mathrm{b}^{1}\epsilon 1}|$

basis of areal cubic number field, and arefinement of this result is due to [J. Peck,

1961]. Also, (7) may be achieved for almost every $(\xi_{1}, \xi_{2})\in \mathbb{R}^{2}$ , in the sense of Lebesgue

measure. Amuch stronger result of this type was recently given by [A. $\mathrm{P}\mathrm{o}11\mathrm{i}_{11}\mathrm{g}\mathrm{f}_{\iota}()11\dot{\mathrm{r}}11\mathrm{l}\mathrm{t}|$

S. Velani, 2000].

Suppose $\rho,$
$\sigma$ is apair of nonnegative reals with $\rho+\sigma=3.$ Let us say $(\xi_{1\backslash }\xi\underline{\circ})1‘ \mathrm{b}|\mathrm{i}\iota\downarrow$

class $C(\rho, \sigma)$ if

$| \xi_{1}-\frac{p_{1}}{q}|<\epsilon q^{-\rho}$ , $| \xi_{2}-\frac{p_{2}}{q}|<\epsilon q^{-\sigma}$

has asolution $p_{1}/q,p_{2}/q$ for every $\epsilon>0$ . Littlewood’s question would have a $1$ ) $\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{f}^{\backslash }}$

answer if we had $C(\rho, \sigma)=\mathbb{R}^{2}$ for some $\rho,$
$\sigma$ . However, by the method of$\cdot$ [W. M.

Schmidt, 1969], the complement of $C(\rho, \sigma)$ has the cardinality of the $\mathrm{t}^{\backslash }‘$ ) $11\mathrm{t}\mathrm{i}\mathrm{n}\iota 111111\{_{()1}$

.

every $\rho,$
$\sigma$ . Littlewood’s question still has apositive answer if $C(\rho, \sigma)\mathrm{U}\mathrm{C}(\rho’.\sigma’)$

$\mathbb{R}\underline{.,}$

for some pairs $\rho,$
$\sigma$ and $\rho’,$ $\sigma’$ . But I

$\bullet$ conjecture that always $C(\rho, \sigma)\cup C(\rho’, \sigma’)\neq \mathbb{R}^{2}$ .

It is not even known whether $C(1/3,2/3)\cup C(2/3,1/3)=\mathbb{R}^{2}$ .

It is atrivial consequence of Dirichlet’s result on (1) that when $L(\mathrm{x})$ is a linear $\int.()1111$

in $n>1$ variables with real coefficients, there are for any $\epsilon>0$ integer points $\mathrm{x}\neq 0$

with $|L(\mathrm{x})|<\epsilon$ . Acommon generalization of this, and of atheorem of [B. J. Birch.

1957] on diophantine equations, says that when $F_{1},$
$\ldots,$

$F_{R}$ are forms of odd degree

$d$ with real coefficients in $n>c(d, R)$ variables, then there is for any $\epsilon>0$ a point

$\mathrm{x}\in \mathrm{Z}^{n}\backslash \{0\}$ with

(8) $|F_{\dot{\mathrm{t}}}(\mathrm{x})|<\epsilon$ $(i=1, \ldots, R)$ .
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The values obtainable for $c(d, R)$ by the present method [W. M. Schnridt, 1980] $\mathrm{w}()\iota\iota 1_{\mathrm{t}}1$

be absurdly large. Adifficult problem is to

$\bullet$ find reasonable bounds for $\mathrm{c}(d, R)$ .

Even an estimate like $c(d, R)\leq\exp_{d}(R)$ would be great progress, where $\exp_{0}(x)=x$ ,

$\exp_{d}(x)=\exp_{d-1}(e^{x})$ for $d>0$ . For recent results on (8) when $d=3$ , see [D. E.

Freeman, to appear], who also deals with related questions in his other works. See also

the treatise by R. C. Baker quoted above.

We will now turn to more algebraic topics. The exponent 2in Dirichlet’s (2) is best

possible. By the Theorem of Thue-Siegel-Roth [K. F. Roth, 1955], the exponent 2is

best possible for approximation to algebraic numbers. Thus when ais algebraic,

(9) $| \alpha-\frac{p}{q}|<\frac{1}{q^{2+\delta}}$

where $\delta>0$ , has only finitely many solutions $p/q$ . Here is another challenge:

$\bullet$ Replace $q^{\delta}$ in (9) by a function growing more slowly than any positive power of
$\cdot$

$q$ .

For instance, one might conjecture that

$| \alpha-\frac{p}{q}|<\frac{\mathrm{l}}{q^{2}(1\mathrm{o}\mathrm{g}q)^{2}}$

has only finitely many solutions. On the other hand, it is widely believed that

$\bullet$ $| \alpha-\frac{p}{q}|<\epsilon/q^{2}$ has infinitely many solutions for every $\epsilon>0$ if $\alpha$ is al.qebraic of
degree at least 3.

This is equivalent to the conjecture that such $\alpha$ has unbounded partial quotients in

its continued fraction expansion.

As is well known, Roth’s Theorem is not effective: its method of proof allows $|_{l}$ (’

bound the number of solutions to (9) in terms of aand $\delta$ (see, e.g., [E. $\mathrm{B}\mathrm{t}$) $\mathrm{I}\mathrm{r}\mathrm{l}|_{)}\mathrm{i}\mathrm{t}^{1}\mathrm{I}^{\cdot}\mathrm{i}\dot{r}11|(|$

A. J. Van derPoorten, 1988]), but not the size $\max(|p|, |q|)$ , hence does not allow $\mathrm{t},\mathrm{c}$ )

find all the solutions. It therefore would be important to
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$\bullet$ make Roth ’s Theorem effective.
The well known $\mathrm{a}\mathrm{b}\mathrm{c}$-conjecture implies Roth’s Theorem (see, e.g., [A. Granvillc and

T. J. Tucker, 2002], and an effective version of the conjecture implies an $\mathrm{e},\mathrm{f}\mathrm{f}\cdot \mathrm{e}\mathrm{c}\mathrm{t}_{l}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{R}(\mathrm{I}\mathrm{t},1\downarrow.|\backslash ^{1}$

Theorem. The $\mathrm{a}\mathrm{b}\mathrm{c}$-conjecture has many applications to diophantine appr$()$xi $\iota \mathrm{I}1j\{\mathrm{t}\mathrm{i}()l1$

AThue equation is an equation

(10) $F(x, y)=m$

where $m\in \mathrm{N}$ and $F$ is ahomogeneous form of degree $n\geq 3$ with integer coefficients

and distinct linear factors. We can factor

$F(x, y)=a(x-\alpha_{1}y)\cdots(x-\alpha_{n}y)$

with algebraic and distinct $\alpha$ ; ’s, and any solution of (10) will have some $|x-\alpha_{i}y|$ small,

hence $| \alpha:-\frac{x}{y}|$ small, and it easily follows from Roth’s Theorem that (10) has only

finitely many solutions in integers $x,$ $y$ . This approach is ineffective. i.e.. does not allow

to find the solutions. To get an effective method, one does not need as $\mathrm{I}\mathrm{n}\iota\iota \mathrm{c}\mathrm{h}\dot{\epsilon}\iota_{\mathrm{t}}\mathrm{s}$.
$\mathrm{a}\mathrm{r}\iota$

effective Roth’s Theorem, but only the effective solubility of

$| \alpha-\frac{p}{q}|<\frac{1}{q^{n-\theta}}$

with $n=\deg\alpha$ and effective $\theta=\theta(\alpha)>0$ . In fact such aresult was proved by [N. I.

Feldman, 1971], using A. Baker’s theory of linear forms in logarithms. AlaIl $\mathrm{B}\mathrm{a}\mathrm{k}\epsilon \mathrm{l}\mathrm{r}$ in

seminal work of the $1960’ \mathrm{s}$ gave explicit lower bounds for expressions

$|\beta_{1}\log\alpha_{1}+\cdots+\beta_{m}\log\alpha_{m}|$

with algebraic $\alpha$:’s and $\beta_{1}.’ \mathrm{s}$ . Many authors, including Baker himself, Wiistholz, Wald-

schmidt, [E. M. Matveev, 2000], have refined these bounds, and padic versions are due

to Y. Kunrui. Also, S. David and N. Hirata-Kohno recently established $\mathrm{C}()\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\})()\mathrm{n}\mathrm{r}\mathrm{l}\mathrm{i}\mathrm{n}\}\mathrm{i}$

estimates for elliptic logarithms.
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Many mathematicians have contributed to the effective solution of Tlno; $\mathrm{t}^{\backslash }(11\mathrm{I}r1,111\mathrm{I}11_{\mathrm{I}}*$

including A. Baker, M. Bennett, E. Bombieri and J. Vaaler, Heuberger, Lettl. $()\mathrm{k}\mathrm{h}’\mathit{1}_{\lrcorner}\mathrm{a}\mathrm{k}\mathrm{i}$ .

Peth\"o, Thomas, Tichy, Tzanakis, Voutier, Wakabayashi. There are three basic meth-

$\mathrm{o}\mathrm{d}\mathrm{s}:$ Pad\’e approximation, linear forms in logarithms, and an approach based on Thue

and arefined Dyson’s Lemma. Others than the author of this survey would $\mathrm{b}_{\mathrm{t}^{\backslash }}\mathrm{b}(^{\mathrm{y}}\mathrm{t}-$

$\mathrm{t}\mathrm{e}\mathrm{r}$ qualified to report on these developments. Quite generally, solutions of
$\cdot$

$(1())]_{1i\backslash ^{r}(!},|$

$\max(|x|, |y|)<\exp(c_{1}(n)H^{c_{2}(n)})$ where $H$ is the rnaximum rnodulus of
$\cdot$

$7\prime \mathrm{t}r1|\mathfrak{l}1(\{\dagger_{l}\mathrm{I}1(^{1}$

coefficients of $F$ .

Let us turn to the number of solutions. [E. Bombieri and W. M. $\mathrm{S}\mathrm{c}\mathrm{h}_{111}\mathrm{i}\mathrm{d}\mathrm{t},$ $1^{(}\mathrm{J}87$ ]

showed that this number is

(11) $\leq cn^{1+\omega}$

where $c$ is an absolute constant and $\omega=\omega(m)$ is the number of distinct $1^{11^{\mathrm{t}}\mathrm{i}\mathrm{I}1\mathfrak{i}(^{\backslash }}\{_{\dot{\mathrm{f}}\mathrm{t}\mathrm{t}}..|_{1}()1.*$

of $m$ . Observe that this bound is independent of the coefficients of$\cdot$

$F.$ [C. L. $\mathrm{S}\mathrm{i}_{\mathrm{t}^{\backslash }}\mathrm{g}(^{\backslash }1$ .

1929] alluded to aconjecture that when apolynomial equation $f(x, y)=\mathrm{O}$ defines an

irreducible curve of positive genus, then the number of integer solutions can be bounded

in terms of the number of monomials which occur in $f$ with nonzero coefficients. This

is not quite true, but according to [J. Mueller and W. M. Schmidt, 1988], for Thue

equations the number of solutions may be bounded in terms of $m$ , and the number of

monomials of the equation. It would be of interest to see

$\bullet$ what modified form of Siegel’s conjecture is true more generally?

Often it is just as easy to deal with the Thue inequality

$|F(x, y)|\leq m$

as it is to deal with the equation. [J. L. Thunder, 1995] used clever arguments $\uparrow_{\mathrm{I}}0$ sbow

that under anatural condition, the number of solutions is $\leq c_{\mathrm{o}}nm^{2/n}$ with an absolute

constant $c_{\mathrm{o}}$ .
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Ageneralization of many of the results mentioned so far from $\mathbb{Q}$ to an algebraic

number field $K$ is fairly easy. [E. Wirsing, 1961] introduced amore interesting $(1^{11\mathrm{P}\backslash \mathrm{t}\mathrm{i}\circ \mathrm{I}1:}‘$
.

given $\xi\in \mathbb{R}$ and $d\in \mathrm{N}$, how well can 4be approximated by algebraic numbers of degree

$\leq d$?Wirsing himself showed that unless 4is itself algebraic of degree $\leq d$ , tbere $.\mathrm{d}1^{\cdot}\mathrm{t}^{\backslash }$.

infinitely many algebraic numbers $\alpha$ of degree $\leq d$ with

(12) $|\xi-\alpha|<c(\xi)H(\alpha)^{-(d+3)/2}$ ,

where $H(\alpha)$ is the naive Height, namely the maximum modulus of the coefficients of

the defining polynomial of $\alpha$ . According to [Y. Bugeaud and O. Teulie, 2000] one may

even insist that $\alpha$ is of exact degree $d$ . Once it was thought that the exponent in (12)

should $\mathrm{b}\mathrm{e}-(d+1)+\epsilon$ , or $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}-(d+1)$ . This is in fact true when $d=1$ by Dirichlet’s

Theorem, and was established for $d=2$ by [H. Davenport and W. M. Schmidt, 1967].

In general, the exponent in (12) was somewhat improved by [K. I. Tishchenko, (to

appear)]. For $d>2$ an exponent such as $-(d+1)$ is now in doubt by aresult of D.

Roy quoted below. Inow make the following, perhaps reckless

$\bullet$ conjecture: the best exponent in (12) $is-\gamma(d)$ with $\gamma(’d)\sim d/2$ as $darrow\infty$ .

There is avariation on the question, where ais restricted to be an algebraic $\gamma,\cdot\gamma’,f\prime^{l}/(\prime^{t}./\cdot$

of degree $\leq d$ . It had been thought that in this case the correct exponent should $|$ ) $(^{\Delta}$

-d-l $\epsilon$ , or $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}-d$ . But [D. Roy, (to appear)] very recently showed the correct exponent

for $d=3$ to $\mathrm{b}\mathrm{e}-\frac{1}{2}(3+\sqrt{5})>-3$ . He derived this from the following. By Dirichlet’s

result on (4), for any $\xi$ and any $X\geq 1$ , there are integers $q,p_{1},p_{2}$ with

$1\leq q\leq X$ , $|q\xi-p_{1}|<X^{-1/2}$ , $|q\xi^{2}-p_{2}|<X^{-1/2}$ .

However, according to Roy, there are denumerably many numbers 4for which

$1\leq q\leq X$ , $|q\xi-p_{1}|<c(\xi)X^{-\theta}$ , $|q\xi^{2}-p_{2}|<c(\xi)X^{-\theta}$

has solutions for every $X\geq 1$ , where $0= \frac{1}{2}(\sqrt{5}-1)\sim 0.618>1/2$ . Here $\theta$ is best,

possible. Observe that this is alocalized result.
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The exponent $1+1/n$ in Dirichlet’s theorem (5) on simultaneous approxirnation its.

best possible. In fact when $\alpha_{1},$
$\ldots,$

$\alpha_{n}$ are algebraic, and 1, $\alpha_{1},$
$\ldots,$

$\alpha_{n}$ linearly inde-

pendent over $\mathbb{Q}$, then

$| \alpha:-\frac{p_{1}}{q}$

.
$|<1/q^{1+\frac{1}{n}+\delta}$ $(i=1, \ldots, n)$

where $\delta>0$ , has only finitely many solutions $p_{1}/q,$ $\ldots,p_{n}/q$ . This is aconsequence

of the Subspace Theorem, which in its simplest version says that if $L_{1},$
$\ldots,$

$L_{r}$ , are

linearly independent linear forms in $n$ variables with algebraic $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}_{l}\mathrm{s}’$.then the

points $\mathrm{x}\in \mathbb{Z}^{n}\backslash \{0\}$ with

$\prod_{\dot{l}=1}^{n}|L:(\mathrm{x})|<|\mathrm{x}|^{-\delta}$

lie in finitely many proper subspaces of $\mathbb{Q}^{n}$ . Here $|\mathrm{x}|$ denotes the Euclidean 1lornl $()\mathrm{f}\mathrm{x}$

In areformulation allowing rational (rather than integral) points, the solutions $\mathrm{x}\in$

$\Psi\backslash \{0\}$ of

$\prod_{\dot{l}=1}^{n}(|L:(\mathrm{x})|/|\mathrm{x}|)<H(\mathrm{x})^{-n-\delta}$ ,

where $H(\mathrm{x})$ is asuitable “Height” of $\mathrm{x}$ , lie in finitely many proper subspaces.

Ageneralization allowing points $\mathrm{x}\in K^{n}$ where $K$ is anumber field is due to Schlicke-

wei. Let $|\cdot|_{v}$ (tz $\in \mathcal{M}=\mathcal{M}(K)$ ) be suitably normalized absolute values of $K|\mathrm{s}^{\backslash }\iota\iota(.1\downarrow$

that the product formula holds. Suppose $S\subset \mathcal{M}$ is afinite set cont.aining all $\mathrm{t}$,lxc

Archimedean absolute values, and for each $v\in S$ , let $L_{1}^{v},$
$\ldots,$

$L_{\gamma}^{v}$‘be linearly independenf

forms in $n$ variables with coefficients in $K$ . Then the solutions $\mathrm{x}\in K^{\tau\iota}\backslash \{\mathrm{x}\}$ of

(13) $\prod_{v\in S}.\prod_{1=1}^{n}(|L_{\dot{l}}^{v}(\mathrm{x})|_{v}/|\mathrm{x}|_{v})<H(\mathrm{x})^{-n-\delta}$

lie in finitely many proper subspaces of $K^{n}$ .
In fact, [J. H. Evertse and H. P. Schlickewei, 2002] proved an even more general

version, where $\mathrm{x}$ is not confined to $K^{n}$ , but may be any nonzero point in $\overline{\mathbb{Q}}^{n}$ , where $\overline{\mathbb{Q}}$
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is an algebraic closure of $K$ . Furthermore, the solutions of the inequality fall into $\mathrm{t}\mathrm{w}\iota$)

classes, the “small solutions” with

$H( \mathrm{x})<\max(n^{4n/\delta}, H(L_{i}^{v})(v\in S, 1\leq\prime i\leq n))$ ,

and the others, the “large solutions” , lying in the union of at most,

$t=t(n, \delta, \# S)$

subspaces of $\overline{\mathbb{Q}}^{\mathrm{n}}$ It is important for applications that $t$ does not depend on $K$ or the

coefficients of the linear forms $L_{i}^{v}$ .

This breakthrough was possible by important work by Roy and Thunder. Siegel’s

Lemma says that asystem of linear equations

$L_{i}(\mathrm{x})=0$ $(i=1, \ldots, m)$

in $n>m$ variables defined over $\mathbb{Q}$ has anontrivial solution $\mathrm{x}\in\wp$ with

$H( \mathrm{x})\leq c_{n,m}(\max_{\dot{l}}H(L_{i}))^{m/(n-m)}$ ,

and this has been generalized to anumber field $K$ by [R. B. Macfeat, 1971] and iude-

pendently by [E. Bombieri and J. Vaaler, 1983]. But now $c_{n,m}=c_{n,m}(K)$ depends on

$K$ , and in particular on its discriminant. [D. Roy and J. L. Thunder, 1996] showed that

if we allow solutions $\mathrm{X}\in\overline{\mathbb{Q}}^{\mathrm{n}}$ (not just $K^{n}$ ), the dependency on $K$ can be eliminated,

so that again $c_{n,m}$ depends on $n,$ $m$ only. The proof does not give information on the

field $K(\mathrm{x})$ generated over $K$ by their solutions $\mathrm{x}$ . It would be of interest to

$\bullet$ give a bound for the degree $K(\mathrm{x})$ : $K$] in the $Roy$-Thunder result.

The Subspace Theorem may be applied to Wirsing’s question: when $\xi$ is algebraic,

and $\delta>0$ , there are only finitely many algebraic numbers $\alpha$ of degree $\leq d$ with

(14) $|\xi-\alpha|<H(\alpha)^{-d-1-\delta}$ .
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[J. H. Evertse and N. Hirata-Kohno, 2002] studied more general “Wirsing systerns”

(15) $|\xi:-\alpha^{(i)}|<H(\alpha)^{-\emptyset:}$ $(i=1, \ldots, n)$

where the $\alpha^{(:)}$ are conjugates of an algebraic number $\alpha$ of fixed degree $d\geq n.$ If the $\xi_{i}$

are algebraic and $\Sigma_{:}\phi:>2d$ , there are only finitely many solutions $\alpha$ . In many cases

this condition can be relaxed to $\Sigma_{:}\phi_{1}$. $>d+1$ , which is more in line with (14).

$\bullet$ Under what conditions exactly does $\Sigma_{1}.\phi_{i}>d+1s’uffice$ for the finiteness of
$\cdot$

$t,/|,($

number of $\alpha’ s$ with (15)?

[P. Vojta, 1989] refined the Subspace Theorem by showing that there is afinite union

$U$ of proper subspaces of dimension $>1$ and depending only on the $L_{i}^{v}$ (in particular

independent of $\delta>0$) such that all but finitely many $\mathrm{x}\in K^{n}\backslash \{0\}$ with (13) lie in $\zeta f$ .

See also [W. IVI. Schmidt, 1993].

$\bullet$ $U$ can be taken as the union of at most how many subspaces?

When $n=3,$ $K=\mathbb{Q}$, and $\# S=1$ , then $U$ may be taken as the union of at most 3

proper subspaces; and this is best possible.

Just as Roth’s Theorem leads to Thue equations, the Subspace Theorem leads to

equations

(16) $F(\mathrm{x})=m$

where $F(\mathrm{x})=F(x_{1}, \ldots, x_{n})$ with integer coefficients is decomposable, $\mathrm{i}.\mathrm{e}.$ , is the product

of linear forms. Under quite general circumstances, $\mathrm{e}.\mathrm{g}.$ , when $F$ is a“$\mathrm{n}\mathrm{o}11\mathrm{d}\mathrm{c}^{1}\mathrm{g}\mathrm{e}111^{1},\Gamma \mathrm{d}t\iota$ :

norm form”, there are only finitely many integer solutions. In this case,

$\bullet$ is there an estimate for the number of solrtions analogous to (11), in particular

depending only on $n,$ $d=\deg F,$ $\omega(m)$?(The letter $n$ had a different meaning $\dagger,7l(11)$ ).

[J. Thunder, 2001] obtained rather satisfying results on decomposable form inequal-

ities

(17) $|F(\mathrm{x})|\leq m$ .
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The number of solutions is finite for every $m$ precisely if $F$ is of finite type, i.e., if the

volume of the set of real solutions of (17) is finite, and if the same holds for the real

solutions in any $n’$-dimensional subspace defined over Q. In this case, $\mathrm{t}1_{1\mathrm{C}^{\backslash }}11\mathfrak{i}11111$ ) $1^{\backslash }1()|$

.

integer solutions is $\leq c_{\mathrm{o}}m^{n/d}$ with an effective constant $c_{o}=c_{\mathrm{o}}(n, d)$ .

Some deep applications of the Subspace Theorem were recently $\mathrm{g}\mathrm{i}\mathrm{v}(^{1},\mathrm{I}1\}_{)}.\mathrm{y}(_{()1\vee j}’.\iota \mathrm{j}$ ‘ $|$

and Zannier. They gave [P. Corvaja and U. Zannier, $2002\mathrm{b}$] anew proof of
$\cdot$

$\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{g}\mathrm{e}1^{\dot{\prime}}\mathrm{s}$

theorem on integral points on curves, avoiding the embedding into Jacobians. Part

of this theorem says that if an irreducible curve $f(x, y)=\mathrm{O}$ has at least 3points at

infinity, then it contains only finitely many integer points. Corvaja and Zannier prove

this result in $1 \frac{1}{2}$ pages: there is no loss of generality in assuming that the curve1 $C$ is

nonsingular. If $Q_{1},$
$\ldots,$

$Q_{r}(r\geq 3)$ are the points at infinity, let $\phi_{1\prime}\ldots,$ $\phi_{J},\}_{)(}\backslash \mathrm{a}|$ ) $i\iota‘\backslash \cdot \mathrm{i}.\backslash$

of the space $V_{N}$ of elements $\phi$ in the function field of $C$ with

$\mathrm{d}\mathrm{i}\mathrm{v}\phi\geq-N(Q_{1}+\cdots+Q_{f})$ .

They construct linear forms in $\phi_{1},$
$\ldots,$

$\phi_{d}$ to which the Subspace $\mathrm{T}\mathrm{t}_{1()11’111}‘"\cdot.11\downarrow\dot{(}1$ }.
$|_{\mathfrak{l}1}$ ‘

applied if $N$ is chosen sufficiently large. Siegel’s Theorem in general $\mathrm{f}\cdot()11\iota)\mathrm{W}|\mathrm{h}$. $|_{)\prime}\iota_{1i1\mathfrak{l}\mathfrak{l}\backslash \mathrm{t}’}.$.

when the curve has positive genus, there is an unramified cover $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{t}\downarrow \mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\geq|.\mathit{3}1^{)()111\uparrow \mathrm{h}}$

.

at infinity.

What about the nurnber of integral points on acurve with at least 3points at infin-

$\mathrm{i}\mathrm{t}\mathrm{y}$?Or more generally the number of “$S$-integral”points, which allow denominators

involving afinite set $S$ of “primes” (more precisely, points with coordinates $x_{i}$ in a

number field $K$ , having $|x:|_{v}\leq 1$ for all places $v\not\in S$ ). As pointed out, e.g., in [M.

Hindry and J. H. Silverman, 2000], there are “small” points $\mathrm{x}$ on the curve with Height

$H(\mathrm{x})\leq H^{\mathrm{c}}$

where $H$ is the maximum Height of the defining equations of the curve, whereas $\mathrm{t}_{\mathrm{t}}1_{1\mathrm{C}}|$,
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number of the remaining points, i.e., the

number of “large” points on the curve is $\leq c^{\# S}$ .

The new approach [P. Corvaja and U. Zannier, manuscript $\mathrm{a}$] yields an effective value

for $c$ depending only on $\deg C$ and $m$ when the curve $C\subset \mathrm{P}_{m}$ .

But there is more! According to [P. C. and U. Z., manuscript $\mathrm{b}$], suppose $X$ is an

irreducible, nonsingular surface with $r\geq 4$ divisors $D_{1},$
$\ldots,$

$D_{r}$ at infinity, such that

no three have apoint in common, and with intersection matrix $(Di\cdot Dj)$ of
$\cdot$

$\mathrm{I}^{\cdot}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{k}1’|11\mathrm{J}(\rfloor$

with positive entries. Then the integer points on this surface lie on acurve. Anatural

question would be whether

$\bullet$ there is an analogue for irreducible varieties of arbitrary dimension $d$?Are there

suitable conditions on the divisors at infinity for this to happen?

The same authors [P. C. and U. Z., manuscript $\mathrm{c}$] have results on awide generaliza-

tion of decomposable form equations (16), as well as ageneralization of the Subspace

Theorem. Other generalizations have been given by [G. Faltings and G. Wiistholz,

1994] and [J. H. Evertse and R. Ferretti, to appear].

Consider an exponential equation

(18) $\sum_{\dot{l}=1}^{n}a:\alpha_{i1}^{y_{1}}\cdots\alpha_{ir}^{y_{F}}=0$

with given nonzero complex numbers $a:,$ $\alpha_{ij}$ , to be solved in integers $y_{1},$ $\ldots.’|(/?$ . $\mathrm{L}\mathrm{b}_{\mathfrak{l}1(}^{\}\cdot \mathrm{I}_{1}$

an equation arose, e.g., in the contribution by M. Higasikawa at the present conference.

The equation may be rewritten as

(19) $. \sum_{1=1}^{n}a:x:=0$

where $\mathrm{x}=(x_{1}, \ldots, x_{n})$ runs through the multiplicative group $\Gamma\subset(\mathbb{C}^{\mathrm{x}})^{n}$ of rank

$\leq r$ generated by $(\alpha_{1j}, \ldots, \alpha_{n_{J}}|)(j=1, . , . , r)$ . In the algebraic case, i.e., when tle
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$a_{i},$ $\alpha_{ij}$ are in anumber field $K$ , then each $x_{i}$ is an $S$-unit, i.e., has “numerator” and

“denominator” in the finite set of numerators and denominators of the $\alpha_{ij}$ , and if, turns

out that the Subspace Theorem may be applied. Today we know (see [J. H. Evertse,

H. P. Schlickewei and W. M. Schmidt, 2002]) that up to proportionality, the number $\mathrm{o}\mathrm{I}^{\cdot}$

nondegenerate (i.e., with no vanishing subsum) solutions $\mathrm{x}$ of (19), lying in agroup $1^{-\urcorner}$

of rank $r$ , is $\leq c(n, r)$ . Again there is no dependency on the coefficients, which may be

arbitrary complex numbers. This result depends on the Evertse-Schlickewei version of

the Subspace Theorem, which in turn depends on the work of Roy-Thunder mentioned

above.

The situation is more complicated when the $a_{i}$ in (18) are polynomials in $\mathrm{x}$ . Tbere

is ageneral theorem of [M. Laurent, 1989] which says in particular that if $\alpha_{11}^{y_{1}}\cdots\alpha_{1}^{/l_{1}}.,=$

$\ldots=\alpha_{n1}^{y_{1}}\cdots\alpha_{nr}^{y_{\mathrm{r}}}$ with $\mathrm{y}=(y_{1}, \ldots, y_{f})\in \mathbb{Z}^{r}$ implies $\mathrm{y}=0$ , then there are only finitely

many nondegenerate solutions to (18). It would be desirable to

$\bullet$ find a bound for the nurnber of solutions in Laurent ’s Theorem uthich depenrls only

on $n,$ $r$ and the degrees of the $a_{i}$ .

In the case $r=1$ , i.e., the one variable case, this has been done by [W. M. $\mathrm{s}_{(}\cdot\}_{1\mathrm{I}11}\mathrm{i}\mathrm{t}\{\uparrow i$ .

1999], and has consequences for linear recurrence sequences. These are sequences

$\{u_{n}\}_{n\in \mathrm{Z}}$ of complex numbers satisfying arecurrence relation

$u_{n}=c_{1}u_{n-1}+\cdots+c_{t}u_{n-t}$ $(n\in \mathbb{Z})$

with fixed coefficients $c_{1},$ $\ldots,$
$\mathrm{c}_{t}$ . If the sequence is “non-degenerate” in some $\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{c}_{:}^{s}$.

then the zer0-multiplicity, i.e., the number of $n$ with $u_{n}=0$ , is $\leq c(t,)$ .

Of the deep works of Corvaja and Zannier on linear recurrences, let me just $\mathrm{m}‘!\mathrm{r}\mathrm{l}\mathrm{t},\mathrm{i}\mathrm{t}$ ) $11$

aresult in [P. C. and U. Z., $2002\mathrm{a}$], that if $u_{n},$ $v_{n}$ are linear recurrence sequences

$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Psi \mathrm{i}\mathrm{n}\mathrm{g}$ some natural conditions, and if $u_{n}/v_{n}$ is in $\mathbb{Z}$ for infinitely many $n,$ $\mathrm{t}_{\downarrow}\mathrm{h}\mathrm{e}.11$

$\{u_{n}/v_{n}\}_{n\in \mathrm{Z}}$ is also alinear recurrence sequence.
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Let me finally turn to the analogue of the theory where $\mathbb{Q}$ is replaced by afunction

field $k(T)$ in one variable. When the characteristic is positive, many issues becc)11lP

more complicated than in the classical case. [C. F. Osgood, 1985] and [P. $\mathrm{V}\mathrm{o},\mathrm{i}\uparrow|\mathrm{a}$. $1987\rceil$

found aconnection with Nevanlinna theory, and work has been done by $\mathrm{L}.\mathrm{E}.$ Baunl,

W. M. Bucks, A. Lasjaunias, B. de Mathan, W. H. Mills, D. P. Robbins, M. $\mathrm{R}\mathrm{u},$ $.\mathrm{I}$ . $.1$ .

Ruch, M. M. Sweet, D. Thakur, J. F. Voloch, J. T. Y. $\mathrm{W}\mathrm{a}1_{i}\mathrm{I}^{\supset}.$ M. $\mathrm{w}_{\mathrm{b}\prime}()11’ 1,1|(|()\uparrow[|’\backslash ||*$

Whereas in the classical case it is widely believed that algebraic aof degree $>.\mathit{2}|1\dot{t}\iota|\mathrm{h}$.

unbounded partial quotients in its continued fraction, [L. E. Baum and M. M. $\backslash \mathrm{b}_{\mathrm{W}(^{\backslash }1^{\backslash \{}}’$

1976] exhibited functions of degree 3over $\mathrm{F}_{2}(T)$ with bounded $\mathrm{I}$) $\mathrm{a}\mathrm{I}^{\cdot}\mathrm{t},\mathrm{i}\mathrm{a}\mathrm{l}$ quotient $|\backslash ^{1}(|\mathfrak{l}^{\backslash }.$ .

these quotients are polynomials of bounded degree). Many more such instances have

since been found; see, e.g., [A. Lasjaunias and J. J. Ruch, 2002]. It is achallenge to

$\bullet$ find a general criterion on when an algebraic function in positive $ch.a$racteristic

has bounded partial quotients.

It was already known to Mahler that Roth’s Theorem is not true in positive char-

acteristic. Given $\alpha$ in $k((T^{-1}))$ (this being the analogue of $\mathbb{R}$), and asuitable ab-

solute value on this field, let $\nu(\alpha)$ be the supremum of the exponents $e$ such that

$|\alpha-p/q|<1/|q|^{\mathrm{e}}$ has infinitely marry solutions $p/q$ in $k(T)$ . It was shown indepen-

dently by [W. M. Schmidt, 2000] and [D. Thakur, 1999] that for every rational $\nu\geq 2$ ,

there are algebraic functions at with $\nu(\alpha)=\nu$ . It is not known whether

$\bullet$ $\nu(\alpha)$ for algebraic $\alpha$ is necessarily rational?
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