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HERMITE’S CONSTANT AND RATIONAL
POINTS OF FLAG VARIETIES

TAKAO WATANABE (JE#8 &X) RAKE

This note is a continuation of our survey article [W6]. We give an account of further
development of generalized Hermite constants after [W6]. First half of this note is almost
the same as the article [W7] written in Japanese, but in the last half, we will state new
results (Theorems 5, 6 and 7) .

1. Hermite’s constant and some generalizations. As I already wrote a survey of
Hermite’s constant in [W6], I skip the details of the history of Hermite’s constant. I only
mention a definition of Hermite-Rankin constant and some important results in this section.

Let £™ be the set of all lattices of rank n in the Euclidean space R"®. For L € L", we
denote by d(L) the volume of the fundamental parallelepiped of L and by m; (L) the square
of the length of minimal vectors in L, i.e., m1(L) = ming#zer llz||2. Then the constant

Yn = mMax '——"‘—ml(L)
" LeLn d(L)*/m

is called Hermite’s constant.
For 1 < d < n — 1, define the lattice invariant m4(L) by

mg(L) = min  det(*ziTj)i<ij<d-
z1,,¢d€L
Ty A ATGF#0

Then Rankin [R] defined the following constant:

o= max mq(L)
n,d LEﬂ" d(L)zd/n’

As a generalization of Hermite-Rankin constant, Thunder [T2] defined the constant
Yn,4(k) for any algebraic number field k. Rankin’s constant 75,4 coincides with v, 4(Q). We
will recall Thunder’s definition of , 4(k) in the next section (see Example 1) and express
Yn,a(k) in terms of fundamental Hermite constants of GL,,. Thunder proved the following:

(1) Yn,ak) = Yan—-d(k) for 1 <d<n-1
(2) Ynd(k) € Ym,a(k)(nm(k))¥ ™ for 1 <d<m<n-1
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n 2/(n[k:Q))
II 20
3) n|Dg|2n=D/2 ;a4
Res,=1Ce(s) ¢

11 2:0)

j=2
Here Zi(s) = (n~%/?T(s/2))" ((27)}~*I'(8))"¢k(s) denotes the zeta function of k, V(n) =
7™/2 /T(1 4+ n/2) the volume of the unit ball in R”®, Dy the discriminant of k¥ and ry (resp.
r3 ) the number of real (resp. imaginary ) places of k. Originally, in the case of k = Q, (1)
and (2) are due to Rankin, and (3) for d = 1 is due to Minkowski and Hlawka.

We particularly write vy, (k) for v, 1(k). Newman ([N, XI]) and Icaza ([I}) also considered
(k) based on Humbert’s reduction theory. Tables below show the known explicit values
of 'Yn(k) (Cf [BCIOL [G'L]a [N]a [R])

2r1+r2|Dkl1/2 )2d/[k:Q]

< Yn,d(k) < (V(n)"/"V(Zn)“/"

n| 2 3 4 5 8 7 8

3 5 6 7 Y42 = 3/2
v | 2V3 V2 VI B Y643 V6L 2
d | -1 -2 -3 -7 -1 2 3 5

nQWa) | V2 2 VB/2 VI3 V3B/2 2/V2/6-3 2 2/¥B

2. Fundamental Hermite constants. Thunder’s definition shows that -, 4(k) is a quan-
tity attached to the Grassmann variety of d-dimensional subspaces in k™. This suggests that
there exists an analogue of Hermite’s constant for any generalized flag variety G/Q, where G
denotes a connected reductive algebraic group defined over k and Q) a k-parabolic subgroup
of G. We introduced such a constant in terms of a strongly k-rational representation =
of G in [W1]. This constant, say 7¢, was named a generalized Hermite constant attached
to m, because vy, 4(k) is equal to 'ygf'" of the d-th exterior representation 74 of GL,. A
strongly k-rational representation is used for embedding k-rationally G/Q into a projective
space. We note that there are infinitely many strongly k-rational representations of G if G is
isotropic. In a subsequent paper [W5], we gave a more natural definition of the generalized
Hermite constant of G/Q provided that @ is maxmal. This new definition depends only
on G,Q and does not need a strongly k-rational representaton n. We write v(G, @, k), or
simply 7q, for this new constant. Two constants ¥$ and <o have a relation of the form
7€ = (7q)°", where cy is a positive rational number depending on 7. In other words, g is
considered as an essential part of ¥¢ in the sense that it is independent of any embedding
of G/Q into a projective space. In this section, we first recall the definition of vg, and then
we state some properties of vq.

In the following, k¥ denotes a global field, i.e., an algebraic number field or a function
field of one variable over a finite field. We fix a connected reductive algebraic group G
defined over k, a minimal k-parabolic subgroup P of G and a maximal standard k-parabolic
subgroup @ of G. By “standard”, we means ) contains P. To define notations, we take a
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connected k-subgroup R of G. Let R(k) denote the group of k-rational points of R, R(A)
the adele group of R and X} (R) the module of k-rational characters of R. For a € R(A),
define the homomorphism 9r(a) from X} (R) into the group R, of positive real numbers
by 9r(a)(x) = |x(a)|a for x € X}(R), where | - |s stands for the idele norm of the idele
group of k. Then O, gives rise to a homomorphism from R(A) into Hom(X} (R),R+). The
kernel of 9 is denoted by R(A)!. If R is a standard k-parabolic subgroup, Ur and Mg
stand for the unipotent radical and a Levi subgroup of R, respectively. If R is a minimal
k-parabolic subgroup P, we can take Mp as the centralizer of a maximal k-split torus S of
G. In general, we take Mg such that Mp C Mp. The maximal central k-split torus of Mg
is denoted by Zgr. We fix a good maximal compact subgroup K of G(A).

We define the height function Hg on G(A). Since Q is maximal, X} (Mq/Zg) is of rank
one and has a generator &g such that @gls is contained in the closed cone generated by the
simple roots with respect to (P, S). Define the map 2g9: G(A) — Zg(A)Mg(A)'\Mg(A)
by 2q(g) = Zg(A)Mq(A)'m if g = umh, u € Ug(A),m € Mg(A) and h € K. This is well
defined and a left Zg(A)Q(A)-invariant. Then the function Hg: G(A) — R, is defined
by Hq(g) = |@q(2o(9))I5" for g € G(A).

We set Yo = Q(A)'\G(A)! and Xg = Q(k)\G(k). Then Xgq is regarded as a subset
of Yy. Since Zg(A)! = Zg(A) N G(A)! C Mg(A)', 2q maps Yo = Q(A)'\G(A)! to
Mg(A)'\(Mq(A) NG(A)!). Namely, we have the following commutative diagram:

Yo —22 ., Mg(A)'\(Mg(A) NG(A)Y)

! l

Za(A)QAYN\G(A) —2—  Zg(A)Mg(A)'\Mq(A)

Since both vertical arrows are injective, Hg is restricted to Yg. Let Br = {y € Yo: Hq (y) <
T} for T > 0. We can prove the following.

Proposition. For T > 0 and any g € G(A)Y, Br N Xqg is a finite subset of Yo. Hence,
‘one can define the function '

T'o(g9) = min{T > 0: Br N Xqg # 0} = min Ho(y)
yEXqQg

on G(A). Then the mazimum

'Y(G’Qa k) = gé?}a(‘f)l PQ(g)

exists.

The constant vq = 7(G,Q, k) is called the fundamental Hermite constant of (G, Q) over
k. An interesting thing is a similarity between the definitions of v, and vg. Namely, v, is
represented as

Y= max min{T >0|B%NgZ" # {0}},

geGL,(R)
| det g|=1
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where BE} denotes the ball of radius 7 with center 0 in R™. On the other hand, by definition,

= in{T > 0: BrNX 0}.
Yo = Iiax, min{ T N Xqg # 0}

Thus Xg plays a role of the lattice Z" and Br is an analogue of the ball B.. In some cases,
it is more convenient to consider the constant

@G, Q, k) = in Hol(g).
(G, Q, k) o i Q(9)

If k is an algebraic number field, then (G, Q, k) is always equal to v(G, @, k). The next
example shows a relation between v(GLy,Q, k) and vy, 4(k).

Ezample 1. Let e;,--- ,e, be a standard k-basis of k”. We identify the group of linear
automorphisms of k™ with GL.(k). For 1 < d < n — 1, Q4(k) denotes the stabilizer of the
subspace spanned by e;,--- ,e4 in GL,(k). A k-basis of the d-th exterior product /\d k™ is
formed by the elements e = e;;, A---Ae;, with I = {1 <4 <ip <---<ig <n}. The
global height H; on A% k™ is defined to be

[kw:R}/2
Hy(Y arer)= [] (Z Iazlz,’[kw’“‘]) [T sup(laslo).
I w I i

infinite finite

where |- |, denotes the usual normalized absolute value of the completion field k,, at a place
v of k. We can define the constant

ﬁn,d(k) =

Hi(gzi A+ A gzq)

eglz?‘x(A) n d/n
g nld) 2y, ,@a€k |detg|A
TIN-Aza#0

If k is an algebraic number field, 7, 4(k)%**® is none other than Thunder’s definition of
Yn,a(k). It is immediate to see that

Hi(g et A+ Agleq)
| det g“lli/"

for g € GLy(A), and hence
Fn,a(k) = F(GLn, Qq, k)E4dn=a/n

In general, Zg; (A)GL,(A)! is an index finite normal subgroup of GL,(A), but it is not
necessarily equal to GL,(A) if k is a function field. Let Z be a complete set of representatives
for the cosets of Zgr, (A)GL,(A)'\GL,(A). If we put

= Ho, (g)=én=3/n

Ha{gz1 A--- A gTa)

€Zor, (AOLn(A): n d/n
g GLp ) "( ) 531,“’ ,-'BJGk !dethA
Z1A-Azqg#0

Tn,i(k)e =

1 max min  Hy(gzy A+ A gzq)
- €T “ee €T
| det €[/ 9€CLA A E 4y e ipgekn T 9z4
zlA...Azd¢0
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for £ € E, then
Yn,a(k) = max Yn,a(k)e
and in particular, for the unit element £ = 1,
Fn,a(k)1 = ¥(GLn, Qa, k)sed(@dn—d)/n,
If k is a number field, Zgr, (A)GL,(A)! = GL,(A) holds, and hence one has

H(GLn, Qas k) = (G Ln, Qu, k) = Yo a(k) A/ @redtén=a),

We summarize the properties of v(G, Q, k).

Theorem 1. Assume the ezact sequence

1 y Z e RN » 1
of connected reductive groups defined over k satisfies the following two conditions:
e 7 is central in G.

e Z is isomorphic to a product of tori of the form Ry ;x(GL1), where each k' [k is a finite
separable extension and Ry i, denotes the functor of restriction of scalars from k' to k.

Then v(G, Q, k) is equal to v(G', B(Q), k).

Theorem 2. If k/f is a finite separable extension, then v(Rye(G), Ri/e(Q),£) is equal to
(G, Q, k).

Theorem 3. Let R and Q be two different mazimal standard k-parabolic subgroups of G,
QR = Mr N Q a mazimal standard parabolic subgroup of Mp and Mg = MrN Mg a Levi
subgroup of QR. We write @ for the Z-basis Ggr of X3;(ME/Zr). Then Q-vector space
X3 (ME/Zc) ®2 Q is spanned by ag and arlug- If we take wy,ws € Q such that

o~ AR ~
anMg = wi0g + wzanlug y

then one has an inequality of the form

W(Gv Q! k) S W(MRv QR, "7)‘”1 ’Y(G? R, k)m2 .

Ezample 2. We illustrate that Theorem 1 and Theorem 3 are generalizations of the duality
relation (1) and Rankin’s inequality (2) in §1, respectively. We use the same notations as
in Example 1. First, we consider the automorphism 8: GL, — GL,, defined by B(g) =
wo(tg~ )wy !, where '

00 - 01
6 0 --- 10

wo=|: 1 . i i|€GLalk).
0 1 0 0
10 0 0
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Since 8(Q4) = Qn—d, Theorem 1 deduces
'Y(GLn, Qd1 k) = ’Y(GL.", Qn-—d, k)

If k is a number field, this implies the duality relation (1). Next, for i,j € Z with 1 < i <
j < n—1, we take two maximal standard k-parabolic subgroups R = Q; and @ = @; of
GL.,,,. Then, Mg = GLj X GLn_j, MQ = GL; X GLn._i and Mg = GL, X GLJ'__,; X GLn_j.
It is easy to see
w _Eng(iaj—i) w _ing(jan“j)
17 5 ged(i,n—1)’ 27 jged(in—1)

Theorem 3 deduces ,
- . cdi'—i_ cd:n—:
YGLu, Qir k) < F(Ma,, Q' k) EH=59(GLy, Qy, k) ERHEH
If k is a number field, this and Example 1 imply Rankin’s inequality (2).

Let 7(G) (resp. 7(Q)) be the Tamagawa number of G (resp. @) and w§ (resp. wgq and
wﬂ"’) the Tamagawa measure of G(A) (resp. Ug(A) and Mg(A)). The modular character
55" of Q(A) is defined by the relation dwj®(m~tum) = dq(m) = dw, (u) for u € Ug(A)
and m € Mg (A). We define constants ég and Cg,q as follows:

o 5g(m) = |ag(m)|;® for all m € M(A).

o duw(g) = C{;}qu(m)‘ldwg" (u)dwﬁl"(m)dux(h) for all g = umh, u € Ug(A), m €
Mg(A) and h € K.

Here vk denotes the Haar measure of K normalized so that vx(K) = 1. By an argument
of the mean value theorem, we can show the following theorem.

Theorem 4. One has an estimate of the form

1/€q
(C'G,Q -Dqg,q - Eq - ;—E—g—g) <7(G,Q,k),

where D¢, and Eq are given as follows:
[X5(Ze) : X3(G)]
o] BiZe) Xi (o)
Q= (log g)**** X4 (%) [Hom(X} (G), ¢%) : Im ¥g]
(log g)2"k*i (Ma)[Hom(X} (Mg), ¢%) : Im s, ]
| ElXi(2q/26) : Xi(Mg/Ze)]  (ch(k) =0),
“Nla-¢g% (ch(k) > 0).
Here, if ch(k) > 0, then q denotes the cardinality of the constant field of k and g9 > 1

the generator of the subgroup |Gg(Mqg(A) N G(A))|a of the cyclic group q* generated by q.
Moreover, this inequality is strict if ch(k) > 0.

(ch(k) = 0),

(ch(k) > 0),

We note that y(G, Q, k) € ¢% if ch(k) > 0.
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Ezample 3. Let G = GL, and Q = Qq. If ch(k) = 0, Theorem 4 is essentially the same as
the lower bound of (3) in §1. If ch(k) > 0, we obtain go = ¢g"/8°4(4"~9) and

IT «®
JEF=DEE-D+D) (g _ 1)(1 ~ ¢~™) imnoas1

hik d
T ¢0)

1=2

1/ ged(d,n—d)

< ’Y(GLYL’ Qd: k) ’

where g(k) denotes the genus of k, i the divisor class number of k and (i (8) the congruence
zeta function of k. On the other hand, from the definition of 4, 4(k) and Thunder’s theorem
on an analogue of Minkowski's second convex bodies theorem ([T1]), it follows that

1 < Y(GLp, Qa, k) < F(GLn, Qa, k) < g9/ sedldm—d) _ gdo(k)

If g(k) = 0, ie., k is a rational function field over Fg, this implies Y(GLp,Q4, k) =
Y(GLn,Qa, k) = 1. If g(k) = 1 and d = 1, the first inequality and the upper bound of
the second inequality give

n-1_ (g=1)(¢*" +a1g" +9) - n
' K) < ¥(GLn,Q1,k) < ",
S Py R

where hiy = a3 + ¢ + 1. Combining this with the Hasse-Weil bound |a;| < 2,/g, we have
'Y(GL'ranyk) = :Y’(GLna Ql’ k) = qn provided that hk _<_ q- 1.

Except for the case where G is either an inner form of a general linear group or an
orthogonal group defined over an algebraic number field ((W2], [W3]), we have no any result
on an upper bound of v(G, Q, k).

Theorems 1 — 4 and Example 3 were proved in [W5). Furthermore, we can add a small
result on ¥(GLy,Q1, k).

Theorem 5. We define the constant Ay as follows:
As — { | D (k is an algebraic number field of absolute discriminant Dy).
* 9®)-2  (k is a function field of genus g(k) and constant field F).
If £ is a separable extension of k with degree r, then

7(GL,;, Qh e) —nrae/2 W(GLnr’ Ql, k)

<r
A:&/2 A:r/2

?

where s denotes the number of infinite places of k.

This theorem was first proved in [O-W] in the case of k = Q. See [W8] for a genral case.
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3. Behavior of fundamental Hermite constants under isogenies. Theorem 1 asserts
that the fundamental Hermite constants is invariant under some kind of central extensions.
It is natural to ask how the fundamental Hermite constatns behaves under central isogenies.
We can show the following general result.

Theorem 6. Let

1 y F y 6 L > 1
be a separable central k-isogeny of a connected reductive k-group G and Q a mazimal k-
parabolic subgroup of G. Then

¥(G,871Q), k)* < (G, Q,k),
where dg = (X} (Mp-1(q)/Zg) : Xi(Mq/Zc)]-

If k is an algebraic number field, we have a more precise result. We assume G is an almost
simple isotropic group and

1] —— F s G B;G - 1

is the simply connected covering of G defined over k. Let o (resp. 0,) be the ring of integers
in k (resp. k, for a finite place v of k). We fix an s-model of G and take the group G(o,)
of o,-rational points of G. We set

GAx) = [] G x [] Glow).
w v
) infinite finite
It is known that G(k)G(A) is a normal subgroup of G(A) and G(k)G(Ax)\G(A) =

G(k)\G(A)/G(A) is a finite set ([P-R, Proposition 8.8]). Let Z¢ be a complete set of
representatives of G(k)G(Ax)\G(A). For each £ € E¢, we set

G,Q,k)e = in H, ,
(G, Q. k) 9€G(%Am)€wén§gg o@)
and especially

v(G,Q,k)1 = max min Hg(z).

g€G(K)G(Ax) z€X Qg
It is obvious that
(G, Q,k) = Inax (G, Q, k)¢ .

€Ec

Theorem 7. Being the notations and assumptions as above, we have
(G, 871Q), k)% = (G, Q, k)1 .

Theorems 6 and 7 will be proved in [W9)]. As a corollary of Theorems 1 and 7, we obtain
the following.
Corollary. If k is an algebraic number field, then
¥(SLn,Qa N SLn, k)™ 844"~ = o(PGLy, Z61,\Qa, k)
In particular, if the ideal class group I = k*AX\A* of k satisfies I = I}, then
V(SLn, Q4 N SLn, k) 8°94"=D = (GL4, Qu, k) = Y(PGLn, ZaL,\Qa, ).
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