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0. INTRODUCTION

The geometric case of the height inequality (cf. [V3]) was discussed
at the conference. By the geometric case, we mean that the global field
in the question is a function field of one variable over complex number
field C, instead of a number field which is a finite extension of Q. Hence
in our geometric case, problem is algebro-geometric nature. Since we
consider geometry over C, our problem is also complex analytic nature.

Our method belongs to the second view point. We use techniques of
classical function theory such as Ahlfors’ theory of covering surfaces,
area-length method to prove the height inequality for curves in the
geometric case, which is the main result of our discussion.

1. NOTATIONS

Let B be a smooth, projective, connected curve over C. Let k be
the function field of B. Let S C B be a finite set of points which
will be fixed throughout. Let X be a smooth, projective, geometricaly
connected variety over £ and D C X be an effective divisor. Let L be
a line bundle on X.

Following P. Vojta [V3], we define the functions

hex(P), Nes(D,P), N'X(D,P), mys(D,P), di(P)

as follows.

First, take a model of X over B, i.e., smooth variety X projective over
B such that the generic fiber is X. Then by taking the normalization of
the Zariski closure of P € ¥(k) = X (k), we can associate the following
commutative diagram. ’ .

’

B ., x
”l l,r
B —— B
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Here B’ is the curve whose function field is isomorphic to k(P).
Let ® C X and £ be an extension of D C X and L to X, respectively.
Put

hew(P) = — gpdeg fpE,
1 —
= — x k
Nis(D, P) degpxea,\z,,-l(s,ord’”f”g (P € X(R\D),
1 —
NY®D,P) = —— min(1,ord, f3®) (P € X(E)\D
559, P) degpxeB'\Zp—l(S) ( 52) ( (k)\D)
and
1 | _
mes(D,P)=—— Y  ord, fpD (P e X(k)\D).

deg P z€p~1(S)

If we replace the models X, © and £ to other models X', ®' and £/,
we have

hei(P) = ke x(P) + O(1), Nis(®D,P) = Ny s(®',P)+ O(1),
N ®, P) = NOJ(®', P) + 0(1), ms,s(D, P) = mps(D', P) + O(1),

where O(1) are bounded terms independent of P € X (k). Hence we
write as

hL,k(P) = hg k(P) + 0(1) Ni S(D P) = N; s(@ P) + O(l)
NEY(D, P) = NEY(®, P) + O(1), mys(D, P) = mys(D, P) + O(1).
Finally, put
di(P) =

1
dozp deg(ramp),
where ram p C B’ is the ramification divisor of p.

2. MAIN CONJECTURE

Ofcourse, we have equality
(2.1) hL(D),k(P) = Nk,s(D, P) + mk,s(D, P) + 0(1),
where L(D) is the line bundle associated to D. Our problem is that
What happens if we replace the right hand side of (2.1) by the term
(1)( D,P)?
In this case, we can’t hope any equality. Instead, we hope the in-
equality like

(2.2) hix (D) < N (D P) + di(P) + (small error term),

where K x is the canonlcal line bundle on X.



Heuristic proof of (2.2):

1. We only consider k rational points P € X (k) for simplicity. Let
M Dbe the connected component of the moduli space of sections
of 7 : ¥ — B containing the section fp: B — X.

2. For integers k > 0, put

My = {f € M : deg f*D — # supp(f""D) > k}.
Then M, C M is a Zariski closed subset and form a sequence
M=MgDM;DM;D---.

3. For a generic f' € M, f'(B) and © would intersect transverly.
Hence we hope

deg f*® = # supp(f"*D),

which implies M; & C Mo =M and codim(M;, Mp) > 1.
. More generaly, we hope codim(My4q, Mg) > 1 for k > 0.
Hence, for k = dim M + €, we hope “M; = #”, which implies

deg fp® — dim M < #supp(fpD) + €.

ot

6. By the equality “dim M = —hg, (P)”, which seems to be true,
and the fact #S < oo we get

hxxp)s(P) < NIS};(D, P)+e+0(1)

as desired.

Unfortunately, the above inequality (2.2) is not correct in general, and
it seems very difficult to justify the above argument.
The precise conjecture is

Conjecture ([V3]). Let X be a smooth projective variety over k, let
D be a normal crossings divisor on X, let L be a big line bundle on
X, let r € Zi»g and let € > 0. Then there exists a proper Zariski closed
subset Z = Z(k,S,X,D,L,r,e) G X such that

hicx(D)x(P) < N{J(D, P) + di(P) + ehp i(P) + O:(1)
for all P € X(k)\Z with [k(P) : k] <.

Remark 2.3. (1) Using Arakelov geometry, the number field case of

the above conjecture can be formulated in the same manner (see [V3]).
(2) When X is a curve, Z is a union of points. Hence P € Z salisfies

hix(D)k(P) < Oc(1), which means that we don’t need Z in this case.



3. MAIN RESULT

We can prove the one dimensional case of above conjecture.

Theorem . Let X be a smooth projective curve over k, let D be a
reduced divisor on X, let L be a big line bundle on X and let € > 0.
Then we have

(3.1) hixD)x(P) < N,S}%(D,P) + di(P) + ehp x(P) + O.(1)
for all P € X(R)\D.

Remark 3.2. (1) In our case, we don’t need r in above conjecture.

(2) When (X, D) has splitting, i.e., there ezists (Xo, Do) on C such
that (X, D) = (Xo Q¢ k, Do Q¢ k), our theorem is an easy consequense
of Hurwitz’s formula.

The following corollary directly follows from our theorem (cf. [V1],
[v2)).

Corollary . Let X be a smooth projective curve over k and let € > 0.
Then we have

hixk(P) < (14 ¢€)di(P) + O(1)
for all P € X(k).

4. ABOUT PROOF

Our proof is based on Ahlfors’ theory of covering surfaces [A], which
is an important theory in classical complex analysis. Roughly speaking,
main result of Ahlfors’ theory is kind of Hurwitz’s formula for non-
proper covering of surfaces.

First, we reduce the general case of our theorem to the special case
that X = P} and D = (P;)+-- -+ (P,) where P; are distinct k-rational
points of P1. This reduction step is algebraic; using a ramified cover
and the ramification formula.

Then this special case is equivalent to the following; Let a,,--- ,a,
be distinct rational functions on B, let € > 0. Then there is a positive
constant C(e) > 0 such that for all covering # : Y — B and rational
function f on'Y such that f # a; o w, we have

(41) (g—2-¢)degf < E #{z €Y; a;0m(z) = f(2)}
i + deg(ram ) + C(e) deg .
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To prove (4.1), we first divide B by sufficiently small, finite Jordan
domains A such that

B= [J Ay, Axnay=0for)#).

Afinite |
If each A, is small enough, then the move of rational functions a; on
A, are very small, hence the situation is close to the constant case.
As already mentioned above, if rational functions a; are constant, then
(4.1) can be proved by Hurwitz’s formula. In our case, since A, is non-
compact, we use Ahlfors’ theory instead of Hurwitz’s formula to prove
localized inequality of (4.1) on Ay. Then we sum all these localized
inequality over A to obtain (4.1). In this part, we also need so-called
area-length method, which is an important technique in complex anal-
ysis.

Our inequality (4.1) is an algebraic analogue of a long standing con-
jecture, called defect relation for small functions, in one dimensional
value distribution theory. And above proof is a modification of an
argument in [Y1].
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