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0. INTRODUCTION

The geometric case of the height inequality (cf. [V3]) was discussed
at the conference. By the geometric case, we mean that the global field
in the question is afunction field of one variable over complex number
field $\mathbb{C}$ , instead of anumber field which is afinite extension of Q. Hence
in our geometric case, problem is algebr0-geometric nature. Since we
consider geometry over $\mathbb{C}$ , our problem is also complex analytic nature.

Our method belongs to the second view point. We use techniques of
classical function theory such as Ahlfors’ theory of covering surfaces,
area-length method to prove the height inequality for curves in the
geometric case, which is the main result of our discussion.

1. NOTATIONS

Let $B$ be asmooth, projective, connected curve over C. Let $k$ be
the function field of $B$ . Let $S\subset B$ be afinite set of points which
will be fixed throughout. Let $X$ be asmooth, projective, geometricaly
connected variety over $k$ and $D\subset X$ be an effective divisor. Let $L$ be
aline bundle on $X$ .

Following P. Vojta [V3], $\mathrm{w}\dot{\mathrm{e}}$ define the functions

$h_{L,k}(P),$ $N_{k,S}(D, P),$ $N_{k,S}^{(1)}(D,P),$ $m_{k},s(D, P),$ $d_{k}(P)$

as follows.
First, take amodel of $X$ over $B$ , i.e., smooth variety $x$ projective over

$B$ such that the generic fiber is $X$ . Then by taking the normalization of
the Zariski closure of $P\in X(\overline{k})=X(\overline{k})$ , we can associate the following
commutative diagram.

$B’arrow f_{P}x$

$p\downarrow$ $\downarrow\pi$

$B–B$
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Here $B’$ is the curve whose function field is isomorphic to $k(P)$ .
Let $\mathfrak{D}\subset x$ and $\Sigma$ be an extension of $D\subset X$ and $L$ to $x$ , respectively.
Put

$h_{\mathfrak{L},k}(P)= \frac{\mathrm{l}}{\deg p}\deg f_{P}^{*}L$ ,

$N_{k,S}( \mathfrak{D}, P)=\frac{\mathrm{l}}{\deg p},\sum_{x\in B\backslash p^{-1}(S)}\mathrm{o}\mathrm{r}\mathrm{d}_{x}f_{P}^{*}\mathfrak{D}$

$(P\in X(\overline{k})\backslash D)$ ,

$N_{k,S}^{(1)}( \mathfrak{D}, P)=\frac{\mathrm{l}}{\deg p}$ $\sum$ $\min(1,\mathrm{o}\mathrm{r}\mathrm{d}_{x}f_{P}^{*}\mathfrak{D})$ $(P\in X(\overline{k})\backslash D)$

$x\in B’\backslash p^{-1}(S)$

and
$m_{k,S}( \mathfrak{D}, P)=\frac{\mathrm{l}}{\deg p}$ $\sum$ $\mathrm{o}\mathrm{r}\mathrm{d}_{x}f_{P}^{*}\mathfrak{D}$ $(P\in X(\overline{k})\backslash D)$ .

$x\in p^{-1}(\mathrm{S})$

If we replace the models $x,$ $\mathfrak{D}$ and $\mathcal{L}$ to other models $X’,$ $\mathfrak{D}’$ and $g$ ,
we have

$h_{\mathcal{L},k}(P)=h_{\mathcal{L}’,k}(P)+O(1),$ $N_{k,S}(\mathfrak{D}, P)=N_{k,S}(\mathfrak{D}’, P)+O(1)$,
$N_{k,S}^{(1)}(\mathfrak{D}, P)=N_{k,S}^{(1)}(\mathfrak{D}’, P)+O(1),$ $m_{k,S}(\mathfrak{D}, P)=m_{k},s(\mathfrak{D}’, P)+O(1)$ ,

where $O(1)$ are bounded terms independent of $P\in X(\overline{k})$ . Hence we
write as

$h_{L,k}(P)=h_{\mathrm{C},k}(P)+O(1),$ $N_{k,S}(D, P)=N_{k,S}(\mathfrak{D}, P)+O(1)$ ,

$N_{k,S}^{(1)}(D,P)=N_{k,S}^{(1)}(\mathfrak{D}, P)+O(1),$ $m_{k,\mathrm{S}}(D, P)=m_{k},s(\mathfrak{D},P)+O(1)$ .
Finally, put

$d_{k}(P)= \frac{\mathrm{l}}{\deg p}\deg(\mathrm{r}\mathrm{a}\mathrm{m}p)$ ,

where ram $p\subset B’$ is the ramification divisor of $p$ .

2. MAIN CONJECTURE

Ofcourse, we have equality
(2.1) $h_{L(D),k}(P)=N_{k,S}(D, P)+m_{k,S}(D, P)+O(1)$ ,

where $L(D)$ is the line bundle associated to $D$ . Our problem is that
What happens if we replace the right hand side of (2.1) by the term

$N_{k_{1}S}^{(1)}(D, P)$ ?
In this case, we can’t hope any equality. Instead, we hope the in-

equality like

(2.2) $h_{K_{X}(D),k}\leq N_{k,S}^{(1)}(D, P)+d_{k}(P)+$ ( $\mathrm{s}\mathrm{m}\mathrm{a}11$ error term),

where $K_{X}$ is the canonical line bundle on $X$ .
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Heuristic proof of (2.2).
1. We only consider $k$ rational points $P\in X(k)$ for simplicity. Let

$\mathcal{M}$ be the connected component of the moduli space of sections
of $\pi$ : $xarrow B$ containing the section $fp$ : $Barrow x$ .

2. For integers $k\geq 0$ , put

$\mathcal{M}_{k}=\{f’\in \mathcal{M} : \deg f^{\prime*}\mathfrak{D}-\#\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(f^{\prime*}\mathfrak{D})\geq k\}$ .
Then $\mathcal{M}_{k}\subset \mathcal{M}$ is aZariski closed subset and form asequence

$\mathcal{M}=\mathcal{M}_{0}\supset \mathcal{M}_{1}\supset \mathcal{M}_{2}\supset\cdots$

3. For ageneric $f’\in \mathcal{M},$ $f’(B)$ and $\mathfrak{D}$ would intersect transverly.
Hence we hope

$\deg f^{\prime*}\mathfrak{D}=\#\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(f^{\prime*}\mathfrak{D})$ ,

which implies $\mathcal{M}_{1}\subset \mathcal{M}_{0}=\mathcal{M}\neq$ and $\mathrm{c}\mathrm{o}\dim(\mathcal{M}_{1}, \mathcal{M}_{0})\geq 1$ .
4. More generaly, we hope $\mathrm{c}\mathrm{o}\dim(\mathcal{M}_{k+1}, \mathcal{M}_{k})\geq 1$ for $k\geq 0$ .
5. Hence, for $k=\dim \mathcal{M}+\epsilon$ , we hope “ $\mathcal{M}_{k}=\emptyset$”, which implies

$\deg f_{P}^{*}\mathfrak{D}-\dim \mathcal{M}\leq\neq \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(f_{P}^{*}\mathfrak{D})+\epsilon$.
6. By the equality “$\dim \mathcal{M}=.\cdot-h_{K_{X},k}(P)$”, which seems to be true,

and the fact $\# S<\infty$ we get

$h_{K_{X}(D),k}(P)\leq N_{k,S}^{(1)}(D, P)+\epsilon+O(1)$

as desired.
Unfortunately, the above inequality (2.2) is not correct in general, and
it seems very difficult to justify the above argument.

The precise conjecture is

Conjecture ([V3]). Let $X$ be a smooth projective variety over $k$ , let
$D$ be a normal crossings divisor on $X$ , let $L$ be a big line bundle on
$X_{f}$ let $r\in \mathbb{Z}_{>0}$ and let $\epsilon>0$ . Then there exists a proper Zariski closed
subset $Z=Z(k, S,X, D, L, r,\epsilon)\subset X\neq$ such that

$h_{K_{X}(D),k}(P)\leq N_{k,S}^{(1)}(D,P)+d_{k}(P)+\epsilon h_{L,k}(P)+O_{\epsilon}(1)$

for all $P\in X(\overline{k})\backslash Z$ with $[k(P) : k]<r$ .

Remark 2.3. (1) Using Arakelov geometry, the number field case of
the above conjecture can be formulated in the same manner (see [V3]).

(2) When $X$ is a curve, $Z$ is a union ofpoints. Hence $P\in Z$ satisfies
$h_{K_{X}(D),k}(P)<O_{\epsilon}(1)$ , which means that we don $\prime t$ need $Z$ in this case.
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3. MAIN RESULT

We can prove the one dimensional case of above conjecture.

Theorem . Let $X$ be a smooth projective curve over $k$ , let $D$ be $a$

reduced divisor on $X_{f}$ let $L$ be a big line bundle on $X$ and let $\epsilon>0$ .
Then we have

(31) $h_{K_{X}(D),k}(P)\leq N_{k,S}^{(1)}(D, P)+d_{k}(P)+\epsilon h_{L,k}(P)+O_{\epsilon}(1)$

for all $P\in X(\overline{k})\backslash D$ .

Remark 3.2. (1) In our case, we don’t need $r$ in above conjecture.
(2) When $(X, D)$ has splitting, $i.e_{f}$. there exists $(X_{0}, D_{0})$ on $\mathbb{C}$ such

that $(X, D)=(X_{0}\otimes_{\mathbb{C}}k, D_{0}\otimes_{\mathbb{C}}k)_{f}$ our theorem is an easy consequense
of Hurwitz $s$ formula.

The following corollary directly follows from our theorem (cf. [V1],
[V2] $)$ .

Corollary . Let $X$ be a smooth projective ctrrve over $k$ and let $\epsilon>0$ .
Then we have

$h_{K_{X},k}(P)\leq(1+\epsilon)d_{k}(P)+O_{\epsilon}(\mathrm{I})$

for all $P\in X(\overline{k})$ .

4. ABOUT pROOF

Our proof is based on Ahlfors’ theory of covering surfaces [A], which
is an important theory in classical complex analysis. Roughly speaking,
main result of Ahlfors’ theory is kind of Hurwitz’s formula for non-
proper covering of surfaces.

First, we reduce the general case of our theorem to the special case
that $X=\mathrm{P}_{k}^{1}$ and $D=(P_{1})+\cdots+(P_{q})$ where $P_{1}$. are distinct k-rational
points of $\mathrm{P}_{k}^{1}$ . This reduction step is algebraic; using aramified cover
and the ramification formula.

Then this special case is equivalent to the following; Let $a_{1},$ $\cdots,$ $a_{q}$

be distinct rational functions on $B_{f}$ let $\epsilon>0$ . Then there is a positive
constant $C(\epsilon)>0$ such that for all covering $\pi$ : $\mathrm{Y}arrow B$ and rational
function $f$ on $\mathrm{Y}$ such that $f\neq a\dot{.}0\pi$ , we have

(4.1) $(q-2- \epsilon)\deg f\leq\dot{.}\sum_{=1}^{q}\#\{z\in \mathrm{Y};a:0\pi(z)=f(z)\}$

$+\deg$(ram $\pi$ ) $+C(\epsilon)\deg\pi$ .
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To prove (4.1), we first divide $B$ by sufficiently small, finite Jordan
domains $\triangle_{\lambda}$ such that

$B=.\cup\overline{\triangle_{\lambda}}\lambda.\mathrm{f}\mathrm{i}\dot{\mathrm{m}}\mathrm{t}\mathrm{e}$’
$\triangle_{\lambda}\cap\triangle_{\lambda’}=\emptyset$ for $\mathrm{A}\neq\lambda’$ .

If each $\triangle_{\lambda}$ is small enough, then the move of rational functions $a_{i}$ on
$\triangle_{\lambda}$ are very small, hence the situation is close to the constant case.
As already mentioned above, if rational functions $a_{i}$ are constant, then
(4.1) can be proved by Hurwitz’s formula. In our case, since $\triangle_{\lambda}$ is non-
compact, we use Ahlfors’ theory instead of Hurwitz’s formula to prove
localized inequality of (4.1) on $\triangle_{\lambda}$ . Then we sum all these localized
inequality over Ato obtain (4.1). In this part, we also need s0-called
area-length method, which is an important technique in complex anal-
ysis.

Our inequality (4.1) is an algebraic analogue of along standing con-
jecture, called defect relation for small functions, in one dimensional
value distribution theory. And above proof is amodification of an
argument in [Y1].
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