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1Introduction
We consider to compute numerical solutions of the three-dimensional exterior Helmholtz
problem:

(1) $\{$

$-\Delta u-k^{2}u=0$ in $R^{3}\backslash \overline{O}$ ,
$u$ $=g$ on $\gamma$ ,

$\lim_{rarrow+\infty}r(\frac{\partial u}{\partial r}-iku)$ $=$ $0$ (Sommerfeld radiation condition),

where $k$ is apositive constant called the wave number , $O$ is abounded domain of $R^{3}$ with
Lipschitz continuous boundary $\gamma$ , $R^{3}\backslash O$ is assumed to be connected, $r=|x|(x\in R^{3}\}_{\backslash }$

and $i=\sqrt{-1}$ . This problem arises in models of acoustic scattering by asound-soft
obstacle $O$ embedded in ahomogeneous medium.

To compute numerical solutions of (1), we use afictitious domain method with a
Lagrange multiplier defined on 7, which is studied in [5], [6], [7], [8]. So we introduce a
rectangular parallelepiped domain $\Omega$ , the fictitious domain, such that $\overline{O}\subset\Omega$ , and then
we set $\omega$

$=\Omega\backslash \overline{O}$ and $\Gamma$ $=\partial\Omega$ (see Figure 1). To approximate the Sommerfeld radiation
condition in (1), we impose the Sommerfeld-like boundary condition on $\Gamma$ :

$\frac{\partial u}{\partial n}-iku=0$ ,

where $n$ is the outward unit normal vector to $\Gamma$ . This boundary condition is not so
accurate; however, we do not discuss more accurate boundary condition here, for which
we refer the reader to [1], [10]. As an approximate problem to (1), we here consider the
following problem:

(2) $\{$

$-\Delta u-k^{2}u=0$ in $\omega$ ,
$u=g$ on $\gamma$ ,

$\frac{\partial u}{\partial n}-ik^{\wedge}u=$ $0$ on $\Gamma$ .
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We can equivalently rewrite (2) as asaddle point problem in $\Omega$ which is obtained by
extending the solution $u$ of (2) to $\Omega$ so that the extended function also satisfies the
homogeneous Helmholtz equation in $O$ , and by imposing weakly the non-homogeneous
Dirichlet boundary condition on $\gamma$ with aLagrange multiplier. When we discretize such
asaddle point problem, we may use auniform tetrahedral mesh in $\Omega$ ;however, we need
to construct atriangular mesh on $\gamma$ . These meshes can be constructed independently of
each other, except that the boundary mesh size is larger than the mesh size in the domain.
Thus the mesh generation in the fictitious domain method is easier than that in the usual
finite element computations, especially when $\omega$ is acomplicated shape. When the $P_{1}$

conforming finite element on 0and the $P_{0}$ finite element on $\gamma$ are used, the constrain
matrix of the discrete saddle point problem, i.e., the matrix whose entries are integrals
of the product of basis functions of the $P_{1}$ and $P_{0}$ finite elements, can be automatically
computed with an algorithm introduced in Section 5. Furthermore, the use of uniform
meshes in $\Omega$ allows us to use fast Helmholtz solvers as introduced in [3].

$\Gamma$ $\Gamma$

$\Omega$ co
Figure 1: Domains $\Omega$ and $\omega$ etc.

We present an apriori error estimate for approximate solutions obtained by the ficti-
tious domain method. Such an apriori error estimate is derived by following an idea of
Girault and Glowinski [5]. Although they studied apositive definite Helmholtz problem,
we here study an indefinite one. Thus our proof for the error estimate is slightly different
from theirs; however, we do not write it here, which will be described in aforthcoming
article. We further present results of numerical experiments concerning the rate of con-
vergence for approximate solutions of atest problem which confirm the obtained apriori
error estimate.

Girault et al. [6] analyze the error of the fictitious domain method applied to anon-
homogeneous steady incompressible Navier-Stokes problem. Bespalov [2], Kuznetsov-
Lipnikov [11], Heikkola et al. [9], [10] study another fictitious domain method, which
requires locally fitted meshes. Farhat et al. [4] propose afictitious domain decomposition
method aimed at solving efficiently partially axisymmetric acoustic scattering problems.

The remainder of this article is organized as follows. In Section 2, we describe the
fictitious domain formulation of problem (2) and present atheorem concerning the well-
posedness of the resulting saddle point problem. In Section 3, we formulate adiscrete
problem of the saddle point problem. In Section 4, we present the apriori error estimate
mentioned above which are derived under some assumptions with respect to meshes in
$\Omega$ and on $\gamma$ and the regularity for the solution of the continuous saddle point problem.
In Section 5, we describe how to compute the constrain matrix. In Section 6, we report
results of numerical experiments, which are consistent with the apriori error estimate.
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2Fictitious domain formulation
Aweak formulation of (2) is:

(3) $\{$

Find $u\in H^{1}(\omega)$ such that
$a(u, v)$ $=$ $0$ for all $v\in V$,

$u=g$ on $\gamma$ ,

where $V=$ {$v\in H^{1}(\omega)|v=0$ on 7} and

$a(u, v)= \int_{\omega}(\nabla u\cdot\nabla\overline{v}-k^{2}u\overline{v})dx-ik\int_{\Gamma}u\overline{v}d\gamma$ .

THEOREM 1for every $g\in H^{1/2}(\gamma)$ , problem (3) has a unique solution.

We here introduce some notations. We denote the standard Sobolev space $H^{1}(\Omega)$ by
$X$ . Let $H^{-1/2}(\gamma)$ be the set of all semi-lineax forms on $H^{1/2}(\gamma)$ . We denote $H^{-1/2}(\gamma)$ by
$M$ , and the duality pairing between $H^{-1/2}(\gamma)$ and $H^{1/2}(\gamma)$ by $\langle\cdot, \cdot\rangle_{\gamma}$ .

The solution of (3) can be obtained by solving the following saddle point problem:

(4) $\{$ $\mathrm{F}\lambda_{\frac{\}\in X}{b(v,\lambda)}}\cross\lambda f\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\frac{\frac{}{a}(u,v)\mathrm{i}\mathrm{n}\mathrm{d}\{u}{b(u,\mu)},+=0$

that
for all $v\in X$ ,

$=$ $\langle\mu, g\rangle_{\gamma}$ for all $\mu\in\Lambda f$ ,

where

$\tilde{a}(u, v)=\int_{\Omega}(\nabla u\cdot\nabla\overline{v}-k^{2}u\overline{v})dx-ik\int_{\Gamma}u\overline{v}d\gamma$ for $u$ , $v\in X$ ,

$6(\mathrm{v}, \mu)=\overline{\langle\mu,v\rangle_{\gamma}}$ for $v\in X$ and for $\mu\in M$.

To describe the well-posedness of problem (4), we consider the following eigenvalue prob-
$\mathrm{l}\mathrm{e}\mathrm{m}$ :

(5) $\{$

$-\Delta u$ $=$ $\alpha u$ in $O$ ,
$u$ $=$ $0$ on $\gamma$ .

We denote by athe set of all eigenvalues of (5).

THEOREM 2Assume that $k^{2}\in(0, \infty)\backslash \sigma$ . Then, for every $g\in H^{1/2}(\gamma)$ , problem (4)
has a unique solution $\{u, \lambda\}\in H^{1}(\Omega)\cross H^{-1/2}(\gamma)$ . Farther the restriction of $u$ to $\omega$ is the
solution of problem (3).

3Discrete problem
We divide $\Omega$ by auniform cube grid and subdivide each cube into six tetrahedrons, as in
Figure 2. Let $h$ denote the length of the longest edge of these tetrahedrons and let $\mathcal{T}_{h}$

denote the corresponding tetrahedrization of 0. We take aCartesian coordinate syste$\mathrm{m}$
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in $R^{3}$ so that $\Omega$ can be represented as follows: $\Omega=(-l_{x}/2, l_{x}/2)\cross(-l_{y}/2, l_{y}/2)\cross$

$(-l_{z}/2, l_{z}/2)$ . Let

$\mathcal{H}=\{h=\sqrt{3}h’|h’=\frac{l_{x}}{N_{x}}=\frac{l_{y}}{N_{y}}=\frac{l_{z}}{N_{z}}$ , $(N_{x}, N_{y}, N_{\sim},)\in N^{3}\}$ .

We consider afamily $\{\mathcal{T}_{h}\}_{h\in \mathcal{H}}$ of such tetrahedrizations of Q. For each $h\in \mathcal{H}$ , we take

$X_{h}=$ { $v_{h}\in C^{0}(\overline{\Omega})|v_{h}|_{T}\in P_{1}$ for every $T\in \mathcal{T}_{h}$ },

where $P_{1}$ denotes the space of polynomials, in three variables, of degree less than or equal
to one.

Figure 2: Tetrahedrization of domain $\Omega$ .

We here assume

(B) the boundary $\gamma$ is polyhedral, with restrictions that its angles at edges and vertices
are not too small.

We divide each face of $\gamma$ into triangular patches. Let $\eta$ be the maximum length of the
sides of these triangular patches and denote by $P_{\eta}$ the corresponding triangulation of $\gamma$ .
We consider afamily $\{P_{\eta}\}_{0<\eta\leq\overline{\eta}}$ of triangulations of $\gamma$ . For each $\eta\in(0,\overline{\eta}]$ , we take

$M_{\eta}=$ { $\mu_{\eta}|\mu_{\eta}|p$ is aconstant for every $P\in P_{\eta}$}.

Adiscrete problem of (4) is:

(6) $\{$ $\mathrm{F},\lambda_{\eta_{\frac{\}\in X_{h}\cross}{b(v_{h},\lambda_{\eta})}}}M_{\eta}\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\frac{\tilde{a}(u_{h},v_{h})\mathrm{i}\mathrm{n}\mathrm{d}\{u_{h}}{b(u_{h},\mu_{\eta})}+=0$

that
for all $v_{h}\in X_{h}$ ,

$=$ $\langle\mu_{\eta}, g\rangle_{\gamma}$ for all $\mu_{\eta}\in \mathrm{A}f_{\eta}$ .

4Error estimate
We assume the following:

(HI) There exists apositive constant $\theta_{0}$ independent of $\eta\in(0,\overline{\eta}]$ such that $\theta_{P}\geq\theta_{0}$ for
all $P\in P_{\eta}$ , where $0_{P}$ is the smallest angle of $P$ .

(HI) There exists apositive constant $L\cdot \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that $\eta\leq Lh$ .
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(H3) For every $P\in P_{\eta}$ , the diameter of the inscribed circle of $P$ is grater than Ah.

For the solution $\{u, \lambda\}\in X\cross M$ of (4), we assume

(R1) There exists an $s\in(1/2,1]$ such that $u\in H^{1+s}(\Omega)$ ;

(R2) A $\in L^{\underline{9}}(\gamma)$ .

We now consider the following auxiliary problem: for agiven $f\in L^{2}(\Omega)$ , find $\{u, \lambda\}\in$

$H^{1}(\Omega)\mathrm{x}H^{-1/2}(\gamma)$ such that

(7) $\{$

$\tilde{a}^{*}(u, v)+\overline{b(v,\lambda)}=$ $(f, v)_{L^{2}(\Omega)}$ for all $v\in X$ ,
$6(\mathrm{v}, \mu)$ $=0$ for all $\mu\in M$ ,

where

$\tilde{a}^{*}(u, v)=\int_{\Omega}(\nabla u\cdot\nabla\overline{v}-k^{2}u\overline{v})dx+ik\int_{\Gamma}u\overline{v}d\gamma$ .

For every $f\in L^{2}(\Omega)$ , problem (7) has aunique solution. We assume that for every
$f\in L^{2}(\Omega)$ , the solution $\{u, \lambda\}\in X\cross M$ of (7) satisfies

(H3) $u\in H^{1+s}(\Omega)$ , where $s$ is the constant presented in (R1);

(R4) $\lambda\in L^{2}(\gamma)$ .

THEOREM 3Assume that hypotheses (B) and $(H1)-(H3)$ hold. Suppose that the wave
number $k$ satisfies $k^{B}\in(0, \infty)\backslash \sigma$ and that hypotheses $(R1)-(R4)$ hold. Then, there eist
positive constants $h-(k)$ and $\overline{\eta}(k)$ such that for all $\{h, \eta\}\in(0,\overline{h}(k))\cross(0,\overline{\eta}(k))$ , problem
(6) has a unique solution $\{u_{h}, \lambda_{\eta}\}\in X_{h}\mathrm{x}M_{\eta}$ , and there exists a positive constant $C$ such
that

(8) $||u-u_{h}||_{H^{1}(\Omega)}+||\lambda-\lambda_{\eta}||_{H^{-1/2}}(\gamma)\leq C\{h^{\mathit{8}}||u||_{H^{1+s}(\Omega)}+\sqrt{\eta}||\lambda||_{L^{2}(\gamma)}\}$ .

5Numerical computation
Let $\varphi_{1}$ , $\ldots$ , $\varphi N$ be the basis functions of $X_{h}$ such that $\varphi_{n}(Q_{l})=\delta_{nl}(1\leq n, l\leq N)$ ,

where $N$ $=\dim X_{h}$ , $Q_{l}(1\leq l\leq N)$ are the nodes of tetrahedrization $\mathcal{T}_{h}$ , and $\delta_{nl}$ denotes
Kronecker’s delta. Also let $\psi_{1}$ , $\ldots$ , $\psi_{M}$ be the basis functions of $M_{\eta}$ such that $\psi_{m}|_{P_{\mathrm{t}}}\equiv\delta_{ml}$

$(1\leq m, l\leq \mathcal{M})$ , where $\mathcal{M}=\dim M_{\eta}$ and $P_{l}(1\leq l\leq \mathcal{M})$ are the triangular patches of
triangulation $P_{\eta}$ . Then the solution {un, $\lambda_{\eta}$ } of problem (6) is written as follows:

$u_{h}= \sum_{n=1}^{N}c_{n}\varphi_{n}$ and $\lambda_{\eta}=\sum_{m=1}^{\mathrm{A}1}d_{m}\psi_{m}$

with $(c_{n})_{1\leq n\leq N}\in C^{N}$ and $(d_{m})_{1\leq m\leq\lambda 4}\in C^{\mathcal{M}}$ , and problem (6) is reduced to the following
linear system:

$\{\begin{array}{ll}A B^{T}B O\end{array}\}\{\begin{array}{l}cd\end{array}\}=\{\begin{array}{l}og\end{array}\}$ ,
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$A=(\tilde{a}(\varphi_{n}, \varphi_{l}))_{1\leq l,n\leq N}$ , $B=(b(\varphi_{n}, \psi_{m}))1\leq m\leq\lambda 4,1\leq n\leq N$ ,

$c=(c_{n})_{1\leq n\leq N}$, $d=(d_{m})_{1\leq m\leq \mathcal{M}}$ ,

$g=(\overline{\langle\psi_{m},g\rangle_{\gamma}})_{1\leq m\leq \mathcal{M}}$

Computation of matrix $A$ is easy because uniform meshes are used in $\Omega$ ;however,
computation of matrix $B$ is not so easy at first glance, so we will explain how to compute
matrix $B$ in the subsequent subsection.

5,1 Computation of matrix $B$

We first note that the $(n, m)$-entries of matrix $B$ are given by

$b( \varphi_{n}, \psi_{m})=\int_{P_{n\iota}}\varphi_{n}d\gamma$ .

To compute these values exactly, we need to construct atriangulation of the intersection of
triangular patch $P_{m}$ and each of tetrahedral elements of which the support of $\varphi_{n}$ consists.
We give an algorithm for constructing such atriangulation. We fix atriangular patch $P$

and atetrahedral element $K$ , which are considered to be closed sets.

Algorithm for constructing atriangulation of $P\cap K$ :

1. Compute the plane $\Pi$ which includes the triangular patch $P$.

2. Seek $\Pi\cap K$ whose measure is positive.

2-1. Count the number $N_{0}$ of vertices of $K$ which are on $\Pi$ and the number $N_{+}$ of
vertices of $K$ which are above $\Pi$ . The cases for $(\mathrm{i}\mathrm{V}\mathrm{o}, N_{+})$ are listed in Table 1.

2-2. Compute the intersection points of $\Pi$ and edges of $K$ which are not vertices of
$K$ . Their number $N_{i}$ is written in Table 1.

2-3. If $\Pi\cap K$ is atriangle, then proceed to the next procedure.
If $\Pi\cap K$ is aquadrangle, then divide it into two triangles and proceed to the
next procedure.
If the measure of $\Pi\cap K$ is zero, then the measure of $P\cap K$ is also zero, and
hence need not construct atriangulation of $P\cap K$ .

Thus, if the measure of $\Pi\cap K$ is positive then we can obtain one or two triangles,
which will be denoted by $T$ in the following, and are also considered to be closed

42



ble
1, not
$K\mathrm{v}$

3. Construct atriangulation of $P\cap T$ .
Let $s_{1}$ , $s_{2}$ , $s_{3}$ be the sides of the triangle $T$ , and let $l_{j}(j=1,2,3)$ be the line
including $s_{j}$ . Let $D_{j}$ be the closed half-plane on $\Pi$ divided by $l_{j}$ which includes the
vertex of $T$ not on $l_{j}$ (see Figure 3). We here note that we have

$T\cap P=(j=\cap^{3}D_{j})1\cap P=D_{3}\cap(D_{2}\cap(D_{1}\cap P))$ .

Prom this relation, we get the following procedure for constructing atriangulation
of $T\cap P$ .

3-1. Construct atriangulation of $D_{1}\cap P$ .
(a) Seek the line $l_{1}$ .
(b) Count the number $n_{0}$ of vertices of $P$ which are on $l_{1}$ and the number $n_{+}$ of

vertices of $P$ which are interior points of $D_{1}$ . There are cases for $(n_{0}, n_{+})$

as in Table 2.
(c) Compute the intersection points of $l_{1}$ and sides of $P$ which are not vertices

of $P$ . Their number $n_{i}$ is written in Table 2.
(d) If $D_{1}\cap P$ is atriangle, which will be denoted by $P_{1}$ , then proceed to

procedure 3-2.
If $D_{1}\cap P$ is aquadrangle, then divide it into two triangles $P_{1}^{(1)}$ and $P_{1}^{(2)}$ ,
and proceed to procedure 3-2.
If the measure of $D_{1}\cap P$ is zero, then the measure of $T\cap P$ is also zero,
and hence need not construct atriangulation of $T\cap P$ .
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$\Pi$

Figure 3: Half-plane D$, triangle $T$ , side $s_{j}$ and line $l_{j}$ .

Table 2: $D_{1}\cap P$ and the number $n_{i}$ of the intersection points of $l_{1}$ and sides of $P$ which
are not vertices of $P$ are listed for each $(n_{0}, n_{+})$ , where no is the number of the vertices
of $P$ which are on $l_{1}$ , and $n_{+}$ is the number of the vertices of $P$ which are interior points
of $D_{1}$ .

3-2. Construct atriangulation of $D_{2}\cap(D_{1}\cap P)$ .
If $D_{1}\cap P$ is atriangle, then we have

$D_{2}\cap(D_{1}\cap P)=D_{2}\cap P_{1}$ ,

and hence apply procedure 3-1 to $D_{2}\cap P_{1}$ .
If $D_{1}\cap P$ is aquadrangle, then we have

$D_{2}\cap(D_{1}\cap P)=(D_{2}\cap P_{1}^{(1)})\cup(D_{2}\cap P_{1}^{(2)})$ ,

and hence apply procedure 3-1 to $D_{2}\cap P_{1}^{(1)}$ and $D_{2}\cap P_{1}^{(2)}$ .
3-3. Construct atriangulation of $D_{3}\cap(D_{2}\cap(D_{1}\cap P))=T\cap P$ in the same way as

in procedure 3-2.

Implementing this algorithm in acomputer, we can automatically construct atriangula-
tion of $K\cap P$ .
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6Numerical experiments
We measure convergence rates of approximate solutions for atest problem whose exact
solution is known analytically. In the problem, the boundary $\gamma$ is aregular octahedron
with length of the edges equal to 1.5, $\Omega$ $=(-2,2)^{3}$ , and the wave number $k=0.4$ . The
test problem is:

$\{$ $\mathrm{F}\lambda\cross M\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\frac{\tilde{a}(u,v)\mathrm{i}\mathrm{n}\mathrm{d}\{u}{b(u,\mu)},+=\int_{\Omega}\frac{\}\in X}{b(v,\lambda)}F\overline{v}dx+\int_{\Gamma}f\overline{v}d\gamma$ for all $v\in X$ ,

$=$ $\langle\mu, g\rangle_{\gamma}$ for all $\mu\in M$,

where the data $F$ , $f$ and $g$ are so chosen that the exact solution becomes

$u(x, y, z)=x^{2}+y^{2}+z^{2}+i(x^{2}-y^{2}-z^{2})$ in $\Omega$ ,

which belongs to $C^{\infty}(\overline{\Omega})$ , and then the Lagrange multiplier $\lambda=0$ since Ais given by

A $= \frac{\partial u|_{\omega}}{\partial\nu}-\frac{\partial u|_{\mathcal{O}}}{\partial\nu}$,

where $\nu$ is the unit normal vector to $\gamma$ outward from $O$ . This problem is associated with
the following problem:

$\{$

$-\Delta u-k^{2}u$ $=$ $F$ in $\omega$ ,
$u$ $=$ $g$ on $\gamma$ ,

$\frac{\partial u}{\partial n}-iku$ $=$ $f$ on $\Gamma$ .

Although we have considered the case where $F=f=0$ in the above sections, all the
theorems stated above hold for the case where $F$ and $f$ are non-homogeneous, with proper
modifications.

In our numerical experiments, mesh sizes $h$ and $\eta$ satisfy $h$ , $\eta\leq(2\pi/k)/10$ , i.e., the
used meshes include at least ten grid points per the wavelength, which is acommonly
used criterion for computing appropriate numerical solutions of the Helmholtz problem.
In addition, the diameter of inscribed circle of each triangular patch is taken to be equal
to $4h$ in order that hypothesis $(\# 3)$ is satisfied. All computations were performed in
double precision complex arithmetic on VT-Alpha6 $\mathrm{G}\mathrm{I}\mathrm{V}$ personal computer $(\mathrm{A}\mathrm{l}\mathrm{p}\mathrm{h}\mathrm{a}21264$

$800\mathrm{M}\mathrm{H}\mathrm{z}$ CPU, $4\mathrm{G}\mathrm{B}$ Memory).
We report errors measured with $H^{1}(\Omega)$ -seminorm and $L^{2}(\Omega)$-norm in Table 3, which

shows that the rates of convergence with respect to $H^{1}(\Omega)$-seminorm and $L^{2}(\Omega)$-norm are
$O(h^{1})$ and $o(h^{2})$ , respectively. This convergence rate with respect to $H^{1}(\Omega)$-seminorm is
consistent with error estimate (8) since $u\in H^{2}(\Omega)$ and $\lambda=0$ in this test problem.
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