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We present anovel search and cluster mining system based on vector space model-
ing that addresses some issues that have been neglected by conventional systems for
database analysis. Novel features of our search and cluster mining engine are: discov-
ery of both major and minor clusters, accommodation of cluster overlap, automatic
labeling of clusters based on their document contents, and advanced visualization of
search and mining results. Implementation studies using adata set with over 100,000
news articles demonstrate the effectiveness of our system.

1. Introduction

The proliferation massive databases has created unforeseen challenges for many enterprises.
One of these challenges is to develop tools for analyzing massive repositories of heterogeneously
formatted documents, generated by many people and machines. Some successful methods for
retrieving and analyzing information have been developed by the data mining $\infty \mathrm{m}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}^{1}$ ,
however, there is significant room for improvement. We present anovel system for exploring the

contents of massive databases that improves upon conventional mining systems in several ways.

First, most data mining systems consider numerical data of homogeneous format and target
major cluster discovery and analysis, even though major topics are often already well-known
by personnel fiom on-the job experience. However, information on minor clusters is usually not
known, and until recently, their discovery and analysis have been neglected, although it may
be just as valuable for business and government planning [8]. For example, minor clusters in a
customer survey database may represent emerging trends or long-term, minor concerns that may
lead to customer dissatisfaction. Or minor clusters may represent loyal, s0-called gold customers

or very bad customers who may default on aloan. In scientific databases, minor clusters may
aid in the accurate diagnosis of diseases or prediction of natural disasters.

Second, whereas most conventional clustering systems are partition-based, ours does not Par-
tition the document set. We recognize that cluster overlap is anaturally occurring phenomenon

in very large databases. Moreover, preservation of overlap information is essential for analysis

of database contents and preservation of essential documents [4]; portions of very small clusters
that have substantial overlap with other clusters might be trimmed so much by partitioning
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algorithms that the tiny fraction of the cluster that remains may be mistaken for noise and dis-
carded. Finally, very few mining systems have an advanced graphical user interface (GUI) and
system to aid selection of good coordinate axes and angles in 3-D space for visualizing results.

In this paper we present anovel cluster mining system with an advanced GUI to aid in
the understanding of contents of massive databases. The system finds and automaticaly labels
both major and minor clusters. The remainder of this paper is organized as follows. In the
next section we review work related to ours. The third section is adescription of the main
components of our system. Results from implementation studies using avery large set of over
100,000 news articles ffom the TREC benchmark $\mathrm{s}\mathrm{e}\mathrm{t}^{2}$ are given in the penultimate section. We
conclude with asummary of findings and discuss possible directions for future research.

2. Related Works

Vector space modeling (VSM) of databases has become astandard tool in search and cluster-
ing systems since its introduction by Salton over three decades ago $[2],[9]$ . One of the advantages
of the method is it enables relevance ranking of documents of heterogeneous format with respect
to user input queries as long as the attributes are well-defined characteristics of the documents.
In Boolean vector models each coordinate of the vector is $\mathrm{n}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{h}\dot{\mathrm{t}}$ (when the corresponding at-
tribute is absent) or unity (when the corresponding attribute is present). In our implementation
studies we used afairly common type of $tern$ frequency inverse document frequency weighting
(tf-idf) to take into account the fiequency of their appearance in each document as well as in
the document set as awhole. The weight of the $\mathrm{i}$-th term in the $j$-th document, denoted by
weight(i, $j$ ) is defined by:

$\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(:,j)=\{$

$(1+tf_{,j})\log_{2}(N/dfj)$ , if $tf_{\dot{|}i}\geq 1$ ,
0, if $tf_{\dot{1}_{1}j}=0$ ,

where $tf_{\dot{|}i}$ is defined as the number of occurrences of the $\mathrm{i}$-th term within the $j$-th document
$dj$ , and $dfi$ is the number of documents in which the term appears. Each query is modeled as a
vector using the same attribute space as the documents. The relevancy ranking of adocument
with respect to aquery depends on its “distance” to the query vector. In our experiments we
use the cosine of the angle defined by the query and document vectors as the distance metric.

Many databases are so massive that the similarity ranking method described above requires
too many computations and comparisons for real-time $\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}^{3}$ . One approach to solving this
problem is to reduce the dimension of mathematical models by projecting into asubspace of $\mathrm{s}\mathrm{u}\mathrm{f}rightarrow$

ficiently small dimension to enable fast response times, but large enough to retain characteristics
for distinguishing contents of individual documents. Two algorithms for carrying out dimen-
sional reduction are: latent semantic inde xing (LSI) [3], and avariation of principal component
analysis (PCA), which we refer to hereafter as covariance matrix analysis or $COV[7]$ .

$3\mathrm{U}.\mathrm{S}$ . National Institute of Stan&r&&Ibchnolog Text REtrieval Competition: $h\mathrm{W}//tr\mathrm{e}e$.niat.gov
Scalability of relevancy ranking methods to massive databases is aserious concern $u$ users consistently

select the most important feature of IR engines to be fast, real-time rmpom to their queries in the an-
nual Graphics, Visualzation, and Usability Center of Georgia Institute of Technology’s Web users’ survey:
$h\# p//www.gv\mathrm{u}$.gaetch. $edu/us$er-surveys.

251



Let $A$ be the M-by-N document-attribute matrix representing adatabase with $M$ documents

modeled by $N$ attributes, with entry $a(i,j)$ representing the importance of the $i$-th term in the
$j$-th document. The main idea in LSI is to reduce the dimension of the IR problem to $k$ , where

$k\ll M,N$ , by projecting the problem into the space spanned by the rows of the closest rank-fc
matrix to $A$ in the Probenius norm. Projection is performed by computing the largest several

hundred singular values and their corresponding left singular vector of $A$ , so LSI is not scalable

to massive databases. The scalability issue is resolved by the COV algorithm, which projects

the problem into the subspace spanned by the $k$ largest principal components of the symmetric,

positive semi-definite attribute attribute covariance matrix $C$ :

$C \equiv\frac{1}{M}\sum_{\dot{|}=1}^{M}d_{i}d_{\dot{1}}^{T}$
$-\overline{d}\overline{d}^{T}$ , (1)

where $d\iota$ represents the $i$-th document vector and $\overline{d}$ is the component-wise average over the set

of all document vectors

Asecond approach for tackling the scalability issue with search systems is to identify sets

of documents that cover similar topics, known as clusters, so they can be retrieved together

to reduce the query response time. Cluster analysis can also be used to understand topics

addressed by documents in massive databases. Implementation studies show that LSI and

COV can successfully find major document clusters [5]. However, both algorithms are not as
successful at finding smaller, minor document clusters, because major clusters dominate the

process. During the dimensional reduction step in LSI and COV, documents in minor clusters

are often mistaken for noise and are discarded.

Recently, two algorithms for identifying (possibly overlapping) multiple major and minor
document clusters were reported [5]. The first, which is based on LSI, can only be applied

to small databases. The second, which is based on COV, is scalable to large databases. The

idea in both algorithms is to prevent major themes from dominating basis vector selection (for

subspace projection) by introducing weighting. The weighting (or negative bias) decreases the

relative importance of attributes represented by subspace basis vectors that have already been

computed. The weighting is dynamically controlled to prevent deletion of information on major

clusters. Both algorithms are refinements of asimpler one by Ando [1] proposed for avery small
set of 683 TREC documents.

LSI-rescale (minor cluster mining based on $\mathrm{L}\mathrm{S}\mathrm{I}$ and re-scaling)

for $(i=1;i\leq k;\dot{\iota}++)\{$

$t_{\mathrm{m}\mathrm{x}}=\mathrm{w}\mathrm{a}\mathrm{x}(|r_{1}|, |r_{2}|, ..., |r_{M}| )$ ;
$q=\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}$ $(t_{\mathrm{m}\mathrm{x}})$ ;
$R_{\theta}=[|r_{1}|^{q}r_{1}, |r_{2}|^{q}r_{2}, ..., |r_{M}|^{q}r_{M}]^{T}$ ;
SVD $(R_{s})$ ; (the singular value decomposition)
$y_{\dot{1}}$

$=\mathrm{t}\mathrm{h}\mathrm{e}$ first row vector of $V^{T}$ :
$b_{:}=\mathrm{M}\mathrm{G}\mathrm{S}$ $(\theta_{i})$ ; (modified Gram-Schmidt)
$R=R-Rb_{j}ffl_{}$ ; (residual matrix
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The input parameters for these algorithms are the document-attribute matrix $A$ , the re-scaling
factor $q$ (used for weighting), and the dimension $k$ to which the problem will be reduced. The
residual matrices are denoted by $R$ and Rs. Initially, $R$ is set to be $A$ . After each iterative step
the residual vectors are updated to take into account the most recently computed basis vector
$b_{i}$ . After the $k$-th basis vector is computed, each document vector $d_{j}$ in the original problem is
mapped to its counterpart $\hat{d}_{j}$ in the $k$-dimensional subspace: $\hat{d}_{j}=$ $[b_{1}, b_{2}, ..., b_{k}]^{T}d_{j}$ . The
query vector is mapped to the $k$-dimensional subspace before relevance ranking is performed.

The LSI-rescale algorithm is based on the idea that $\mathrm{r}\mathrm{e}$-scaling document vectors after oom-
putation of each basis vector can be useful, but the weighting factor should be $\mathrm{r}\mathrm{e}$-evaluated after
each iterative step to take into account the length of the residual vectors to prevent decimation
from over-reduction. More specifically, in the first step of the iteration, we compute the maxi-
mum length of the residual vectors and use it to define the scaling factor $q$ that appears in the
second step.

$q=\{$

$t_{\max}^{-1}$ if $t_{\mathrm{m}\mathrm{x}}>1$

$1+t_{\max}$ if $t_{\max}\approx 1$

$10^{\mathrm{h}\overline{\mathrm{n}}^{2}\mathrm{m}}$ if $t_{\max}<1$

The second algorithm, COV-rescale, for minor cluster identification is amodification of COV,
analogous to LSI-rescale and LSI. In COV-rescale, the residual of the covariance matrix (defined
by equation 1) is computed. Our implementation studies indicate that COV-rescale is better
than LSI, COV, and LSI-rescale at identifying large and multiple minor clusters. In Section 5, we
introduce selective scaling, afurther improvement upon the weighting process in the LSI-rescale
and COV-rescale algorithms.

COV-rescale (minor cluster mining based on re-scaling&COV)
for $(: =1;i\leq k; : ++)\{$

$t_{\max}= \max(|r_{1}|, |r_{2}|, ..., |r_{M}|)$ ;
$q=\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}$ $(t_{\max})$ ;
$R_{\theta}=[|r_{1}|^{q}r_{1}, |r_{2}|^{q}r_{2}, ..., |r_{M}|^{q}r_{M}]^{T}$ ;
$\mathrm{C}=\mathrm{C}\mathrm{O}\mathrm{V}$ $(R_{\epsilon})$ ; (covariance matrix)
SVD (C) ;(singular value decomposition)

$\mathrm{y}_{\dot{1}}$ $=\mathrm{t}\mathrm{h}\mathrm{e}$ first row vector of $V^{T}$ ;
$b_{j}=\mathrm{M}\mathrm{G}\mathrm{S}$ $(d_{\dot{1}})$ ; (modified Gram-Schmidt)
$R=R-Rb_{*}.b_{\dot{1}}^{T}$ ; (residual matrix)

$\}$

3. Our Mining System

Our prototype system consists of search and clustering engines based on VSM, PCA, and
random sampling. Since it is uses VSM, with the exception of keyword labeling, its search and
clustering engines can be applied to heterogeneous document sets (e.g., multilngual text, image
audio, video), as long as the characteristics for the attributes are well defined. Notable features
include its ability to mine and automaticaly label both major and minor clusters and to displa
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global and local views of the results from cluster mining. We introduce several new technologies

that we have developed since our earlier report on amore primitive version of our current system

[5]; these include: arefinement of the cluster identification algorithms to facilitate more efficient
mining of small clusters; introduction of automatic cluster labeling; random sampling of docu-
ments to increase scalability of cluster mining; and addition of an advanced, user-friendly GUI.
The GUI features: charts of retrieved documents and their relevancy rankings; multidimensional
slices of attribute space, including asystem to recommend slice angles based on the user’s input

query terms; an interface for browsing the collection of all retrieved clusters; options for selecting

asubset of the collection and displaying only those clusters and topics covered by documents in
those clusters; and keyword labels of retrieved clusters and titles of documents in clusters.

$3\mathrm{a}$. Selective Scaling and Random Sampling for Basis Vector Computation

Our system uses the basic COV algorithm to mine major clusters. COV-rescale was de-

veloped to overcome difficulties with mining minor clusters using COV [5]. In this subsection
we introduce selective scaling (SS), amore computationaly efficient minor cluster mining algo

rithm. Like COV-rescale, COV-SS allows users to skip over iterations that find major clusters
and jump to iterations to find minor clusters. However, COV-rescale requires too many com-
putations during the $\mathrm{r}\triangleright$-scaling step to be practical for massive databases. Selective re-scaling

reduces computational costs by testing whether $\mathrm{r}\mathrm{e}$-scaling is necessary after each step and Per-
forming the procedure only when necessary. Although the savings is measurable, it is not enough

to enable mining from massive databases, so we combine COV-SS with random sampling to in-
crease its scalability by several orders of magnitude. To summarize, our system COV is used to

find major clusters then COV-SS is used to find minor clusters for large databases, and COV-SS
with random sampling for massive databases.

When random sampling of documents is used, concerns about the lkelihood of selecting

unrepresentative samples are often raised in anegative context. This concern is justified for our
algorithm for extremely skewed, unrepresentative samples, such as sampling from only one or
just afew clusters or sampling only noise. However, drawing aseries of slightly unrepresentative

samples is the most likely outcome of random sampling, and this lies at the heart of the success of
our algorithm. Analysis of slightly unrepresentative samples tends to lead to better identification
results since some minor clusters will appear to be larger than their actual size (when they are
over-represented in the sample). Repetition of the sampling process increases the chance that all

minor clusters will be over-represented, and consequently identified, at least once. This proposed

algorithm belongs to clam of randomized algorithms which output many of the clusters with

appropriate labels most of the time, however, the probability of arriving at an incomplete set of

clusters or misclassified (either as minor, medium or major) or mislabeled (keyword labels are
misleading) exists regardless of the number and ffequency of samples are drawn since aseries of
unrepresentative samples might be drawn fiom the large pool of data

The input parameters for $\mathrm{C}\mathrm{O}\mathrm{V}rightarrow \mathrm{S}\mathrm{S}$ are denoted as follows. Aand $k$ axe defined as above, $\rho$ is

threshold parameter, and $\mu$ is the scaling off-set. Initially, the residual matrix $\mathrm{R}$ is set to be A.
$R$ does not be kept in the main memory; it suffices to keep just the the $\mathrm{N}$-dimensional residual
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vector $\mathrm{r}_{i}$ during each of the M loops. The output is the set of basis vectors $\{\mathrm{b}_{i}$: i $=1,$ 2, \ldots , k}
for the $k$-dimensional subspace. M is either the total number of documents in the database or
the number of randomly sampled documents from avery large database.

COV-SS $(\mathrm{A},k, \rho,\mu, \mathrm{b})$

for (int $h=1$ , $h\leq k$ , $h++$) $\{$

if (! first) for (int $i=1$ , $i\leq M$ , $i++$) $\{$

$t=|\mathrm{r}_{j}|$ ; (length of document vector)

if $(||\mathrm{P}[\mathrm{i}]||>\rho)$ {(dot product greater than threshold)
$w$ $=(1-||\mathrm{P}[\mathrm{i}]||)^{(t+\mu\}}$ ; (compute scaling factor)
$\mathrm{r}_{i}=\mathrm{r}_{j}w$ ; (selective scaling)
continue;
$\}$

$\}$

$\mathrm{C}=(1/\mathrm{A}\mathrm{f})\sum_{i=1}^{M}\mathrm{r}_{\dot{2}}\mathrm{r}_{}^{T}-\overline{\mathrm{r}}\overline{\mathrm{r}}^{T}$ ; (compute comianoe matrix)
$\mathrm{b}_{h}$ $=$ PowerMethod(C) ; (compute $\lambda_{\max}$ and its eigenvector)
$\mathrm{b}_{h}$ $=$ $\mathrm{M}\mathrm{G}\mathrm{S}(\mathrm{b}_{h})$ ; (Modified Gram-Schmidt)

for (int $:=1$ , $i\leq M$ , $:++$) $\{$

$\mathrm{Q}[\mathrm{i}]=\mathrm{r}_{i}\cdot$ $\mathrm{b}_{h}$ ; $\mathrm{P}[\mathrm{i}]=||\mathrm{r}_{\dot{1}}||^{2}$ ;
$\mathrm{P}[\mathrm{i}]=\mathrm{Q}[\mathrm{i}]/\sqrt{\mathrm{P}[\mathrm{i}]}$ ; (store dot product $=\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}$ measure)
$\}$

for (int $:=1$ , $:\leq \mathrm{A}\mathrm{f}$, $:++$) ; $\mathrm{r}_{*}$

. $=\mathrm{r}:- \mathrm{Q}[\mathrm{i}]\mathrm{b}_{h}$ ; (residual matrix)

if (first) ffist $=\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}$ ;
$\}$

Here: $\mathrm{P}$ and $\mathrm{Q}$ ae $M$-dimensional vectors; $\mathrm{R}$ is the residual matrix (which exists in theory, but
is not allocated, in practice); $\mathrm{r}_{i}$ is the $i$-th document vector of $\mathrm{R}$ (an $N$-dimensional vector); $\overline{\mathrm{r}}$

is the component-wise average of the set of all residual vectors $\mathrm{r}$ , i.e., $\overline{\mathrm{r}}=(1/M)\sum_{\dot{|}=1}^{M}\overline{\mathrm{r}}$ ; $\mathrm{C}$ is
the N-by-N square covariance matrix; $w$ and $t$ are double-precision floating point numbers; and

first is aboolean expression equivalent to true.

COV-SS selectively scales document (residual) vectors according to the most recently com-
puted similarity measure $\mathrm{P}[\mathrm{i}]$ (i.e., the dot product of the previous basis vector and the document
vector). The user-specified threshold and ofbt parameters control the number of minor clusters
that will be associated with each basis vector. Asmall threshold and large offiet value tend
to lead to basis vectors associated with alarge number of minor clusters. Conversely, alarge
threshold and asmall oflit value tend to lead to basis vectors with few minor clusters.

The computational work associated with the COV-based $\mathrm{r}\mathrm{e}$-scaling algorithms (COV-rescale
and COV-SS) is significantly greater than the basic COV algorithm. $\mathrm{R}\triangleright$-scalng is computational
ally expensive for large databases. COV has no rescaling costs, but it uses amoderately expensive
eigenvalue eigenvector solver for large, symmetric positive semi-definite matrices. COV-rescale
and COV-SS use the accurate and inexpensive power method to find the largest eigenvalue and
its corresponding eigenvector after each round of (possible) $\mathrm{r}\mathrm{e}$-scaling of residual vectors. An
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analogous selective scaling algorithm for LSI (denoted by LSI-SS) can be constructed straight-
forwardly [6]. The computational trade offs are similar for LSI with and without $\mathrm{r}\mathrm{e}$ scaling LSI
requires no $\mathrm{r}\mathrm{e}$-scaling of residual vectors, however, amoderately expensive solver (such as the
Lanczos algorithm) must be used to determine left singular vector-value pairs of avery large,
sparse document-attribute matrix. Like its counterpart COV-based algorithm, LSI-SS uses most
of its computational resources to $\mathrm{r}\mathrm{e}$-scale some residual vectors after finding each new singular
valu -vector pair, and it can partially off-set the additional cost by using the power method. LSI
cannot be applied to massive databases without specialized hardware since it requires storage of
all non-zero entries of document vectors. LSI-SS is even less scalable, because the system must
cope with adense matrix with the same dimension as the original document-attribute matrix
after only afew steps; the original document-attribute matrix is typically only 0.2% to 0.3%
dense.

$3\mathrm{b}$ . Cluster Mining: Finding and Labeling Clusters

Our system uses information from basis vector computations to find and label clusters using
an embodiment of the Label Algorithm given below. The input consists of: basis vector $\mathrm{b}_{\dot{1}}$

output by COV or COV-SS; the number of cluster labels for extrinsic and intrinsic keywords
(defined below),$\cdot$ threshold for separating clusters; and keyword data extracted from the original
document data. We implemented the Label Algorithm as two separate two sub program :after
keyword generation and cluster merging and labeling.

The cluster keyword generation program computes the similarity measure between each
basis vector and all the document vectors in the original document-keyword matrix. It produces
extrinsic and intrinsic keywords if the similarity measure between abasis vector and document
vector is greater than agiven threshold $\delta$ . Extrinsic keywords are the top $p(e)$ keywords that
contribute towards making the similarity measure between abasis vector and the document
vector greater than the threshold 6. Intrinsic keywords are the top $p(\dot{\mathrm{s}})$ keywords that correspond
to the largest $p(i)$ TF-IDF weights of the original document vector. Note that, unlike k-means
and k-menoid clustering, our clustering method is not partition-based. In other words, we
allow adocument vector to be classified into more than one cluster as long as the extrinsic
keywords of the document vector for two basis vectors have no keywords in common. Since
database contents may be mined ffom different user perspectives allowing clusters to overlap is
essential. Furthermore, information on overlaps between clusters can yield valuable information
on relationships between clusters and topics in the documents.

Label Algorithm: Cluster detection and labeling
Input: $\{\mathrm{b}_{j} : i=1,2, \ldots,k\}$ basis vectors
output: $\{s:i:j=1,2, \ldots,qj\}$ clusters associated with $\mathrm{b}_{t}$ ,

where:
$s_{*\dot{o}}.=$

$\{$ (cluster label)(cluster type)(document $\mathrm{I}\mathrm{D}1\mathrm{i}\mathrm{s}\mathrm{t}\rangle\}_{i\mathrm{j}}$,
$q=\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}$ of clusters associated with $\mathrm{b}_{\dot{1}}$ ,
{cluster label} $=\mathrm{k}\mathrm{e}\mathrm{y}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{d}$ set $p(|.)$ Up(e),

256



\langle cluster union } $=major$, minor or noise, and
(document ID list } $=\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{t}$ of IDs for documents in the cluster.

4. Cluster Analysis Studies

We conducted numerical experiments with LSI, COV, COV-rescale and Cov-SS using a
Reuters and LA Times TREC news databases with 21,578 and 127,742 articles, respectively.
In our experiments, the LSI and COV algorithms found major clusters, but they usualy failed
to find all minor clusters. The algorithms deleted information in some minor clusters, because
major clusters and their large sub clusters dominated the subjects that were preserved during
dimensional reduction. For medium size databases, major clusters should be mined using basic
COV and minor clusters using COV with selective re-scaling.

Rble 1: $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\dot{\mathrm{u}}$on of LSI- and COV-based cluster analysis algorithms:
scalabilties, bottlenedcs, ability to identity major and minor clusters.

for clusters found: $++++=\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}$ , $+++=\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{y}$ , $++=\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}$ , $+=\mathrm{f}\mathrm{e}\mathrm{w}$

Major cluster identification results from LSI and COV are usually identical, however, COV
usually requires 20%-30% fewer iterations to find major clusters because it can find clusters in
both the negative and positive directions along each basis vector since the origin is shifted during
dimensional reduction. The shift parameter is the second term in the LHS of equation (1). LSI
can only find clusters either in the positive direction or in the negative direction of each basis
vector, but not both. For massive databases, major clusters should be mined using basic COV
, followed by COV with selective scaling and sampling to find minor clusters. Selective gcalng
is preferable to (complete) $\mathrm{r}\mathrm{e}$-scaling since the results from both should be similar, but selective
scaling is more computationally efficient.

Figures 1and 2and show results from our cluster identification experiments with basic COV
and its variations and the LA Times database. 2000 documents were sampled each time during
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Figure 1: Graph of size and number clusters identified by $S$ mining methods: $COV$, $COV$ using

sampling, and $COV$ using sampling $\theta$ selective scaling.

$\overline{\Xi\not\in\ovalbox{\tt\small REJECT} \mathrm{o}}$

$\frac{\mathrm{w}}{\xi\circ}\epsilon$

.

Figure 2: Graph of size and number of cluste$rs$ identified by $S$ mining methods: $COV$ using

sampling, garnpling&complete $\mathrm{r}e$-scaling, and sampling &selective scaling.

atotal of 3random samplings. Identified clusters are sorted according to size to determine
algorithms that are effective. The results show that both $\mathrm{r}\mathrm{e}$-scaling and sampling skip over
major clusters and more quickly discover minor clusters. Figure 2confirms that results from
complete and selective scaling are similar so that the more computationa lly efficient selective
scaling should be used in practice. Table 1summarizes the strengths and limitations of the

algorithms.

Figure 3shows ascreen image from our system. The coordinate axes for the subspace

are the first three basis vectors output by the COV algorithm. The 3major clusters $\mathrm{A}$ , $\mathrm{B}$

and $\mathrm{C}$ shown are comprised of articles about {Bush, US, Soviet, Iraq}, {team, coach, league,

inning}, and {police, digest, county, officer}, respectively. A $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ ofminor cluster $\mathrm{D}$ on {Zurich,
Swiss, London, Switzerland} can be seen in the background. This minor cluster can be seen
more clearly when other coordinate axes are used for visualization and display. This example
shows that careful analysis is needed before deciding whether afaint cloud of points is noise or
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Figure 3: Identification, labeling, and display of major clusters in the LA Times database.

part of acluster. Examples of minor clusters identified by our system are shown in Figure 4,
where the basis vectors are 58, 63 and 104. Note that two clusters may lie along acoordinate
axis -one each in the positive and negative directions. The clusters are comprised of articles
on {abrtion, anti-abortion, clinic, Roe}, {lottery, jackpot, California, ticket}, {A$IDS$, disease,
virus, patientt, {gang, school, youth, murder}, {Cypress, Santiago, team, tournament}, and
{jazz, pianist, festival, saxophonist}, respectively. Aplus or minus sign is used to mark the
direction in which clusters lie.

5. Conclusions and Future Work

We mention anumber of interesting questions and and open problems that have arisen in
the course of developing our system. They include:. How can we determine the optimal reduced dimension $k$ (the $\epsilon 0$-called“intrinsic dimen-

sion”) of the attribute space $q$

$\bullet$ Hoev can we determine whether a massive database is suitable for random sampling 9 Can
we develop simple tests to determine whether there is an abundance of witnesses or if the
database consists entirely of noise or documents on completely unrelated topics ?

$\bullet$ How can one devise a reliable means for estimating the optimal sampling size for a given
database $p$ Factors to consider are the cluster structure of the database (the number and
sizes of the clusters and the amount of noise) and the trade off between sample sizes and
the number of samples. Are there any advantages to be gained from dynamically changing
the sample sizes based on clusters that have already been identified ?. What is a good stopping criterion for sampling 9 When is it appropriate for auser to
decide that it is likely that most of the major or minor clusters have been found ?
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Figure 4: Identification, labeling, and display of minor clusters in the LA Times database.

. How can the $GUI$ effectively map identified clusters and their inter-relationships (subclus-

ters of larger clusters, cluster overlap, etc.) $p$

Although many open issues and possibilities for improvements remain, our prototype system

demonstrates that the COV algorithms with selective scalng and random sampling can be
effective for exploring contents of very large databases.
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