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1. JNTRODUCTION
The purpose of this article is to summarize some of the results the

author has obtained concerning symmetric pairs.
Let $G$ be an reductive algebraic group over afield $k$ , and let $\sigma$ be

an involutive automorphism of $G$ defined over $k$ . Such apair $(G, \sigma)$

is said to be asymmetric pair. Aclassical example of asymmetric
pair arises from Riemannian symmetric spaces: the group $G$ is areal
reductive group, the involution $\sigma$ is aCartan involution of $G$ . Given
asymmetric pair $(G, \sigma)$ we have the associated homogeneous variety
$G/G^{\sigma}$ which we call the (associated) symmetric variety.

We shall first show that the theory of restricted root systems carry
over to the case of symmetric pairs over arbitrary fields. This general-
ization has been carried out by Th.Vust, $\mathrm{R}.\mathrm{W}$ .Richardson and Helminck-
Wang for fields of characteristic not equal to two. We shall show that
the theory carries over to fields of characteristic two by utilizing an
argument based on buildings; the proof is new, and simpler.

It should be noted that centralize $\mathrm{s}$ of involutions in Chevalley groups
over finite fields have been studied extensively by finite group theorists,
including the $p=2$ case.

As an application, we give amodel of symmetric varieties over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z})$ ;
this model allows us to produce aflat deformation of spherical unip0-
tent varieties, where the fibre at $p=2$ is a $\mathrm{s}\mathrm{y}$ mmetric variety.

We then give decomposition theorems for symmetric varieties over
$p$-adic fields. Let $F$ be a-adic field. These theorems describe orbits of
parahoric subgroups of $G(F)$ acting on $\mathrm{G}/\mathrm{G}\mathrm{a}(\mathrm{F})$ . Anovelty here is the
definition of a“moment map” which greatly simplifies our statement
of the theorem.

Details of the results summarized here will appear in apaper in
preperation.

The author wishes to thank the Professors Hiroshi Saito and Takuya
Konno for their kind invitation to present these work at the workshop
on -adic groups, and Professor Tetsuya Takahashi for his help and
patience regarding this manuscript.

2. STRUCTURE THEORY FOR INVOLUTIONS OVER ARBITRARY
FIELDS

Let G be areductive group defined over afield k, and let $\sigma$ be an
involutivie automorphism of G defined over k.
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In the case of automorphisms of arbitrary order, it is customary to
first appeal to Steinberg’s theorem to conclude the existence of a $\sigma-$

stable Borel subgroup, and then to use the fact that ais asemisimple
automorphism to show that there exists aa-stable maeximal torus.

This argument fails for involutions, since involutions are unipotent
over fields of characteristic two. Indeed, we shall see that it is impos-
sible, in general, to find a $\sigma- \mathrm{s}\mathrm{t}\dot{\mathrm{a}}\mathrm{b}\mathrm{l}\mathrm{e}$ maximal torus inside astable Borel
subgroup.

Let us consider an example. Let $G=GL(2)$ and let $\sigma$ be an in-
volution. Maximal tori of $G$ are in one-t0-0ne correspondence with
unordered pairs of points on $\mathrm{P}^{1}(k)$ . Thus amaximal torus is a-stable
if and only if the corresponding point pair is a-stable. If $\sigma$ acts as the
identity map on $\mathrm{P}^{1}(k)$ , then $\sigma$ is also the identity map. Let $p\in \mathrm{P}^{1}(k)$

such that $\sigma(p)\neq p$ . The point pair $(p, \sigma(p))$ produces aa-stable max-
imal torus $T$ . Since $\sigma$ acts by interchanging two fixed points of $T$ , $\sigma$

acts by inversion on $T;\sigma(a)=a^{-1}$ for $a\in T$ .
Let us see for this example the non-existence of a-stable maximal

tori inside astable Borcl subgroup. For $\sigma(X)={}^{t}X^{-1}$ , there exists a
unique Borel subgroup $B$ fixed by $\sigma$ :thus ahas aunique fixed point
on $\mathrm{P}^{1}(k)$ . Any maximal torus $T$ contained in $B$ corresponds to apoint
pair $(p, q)$ where $p$ is the point corresponding to $B$ . Since $p$ is the
unique fixed point of $\sigma$ , we see that $\sigma(q)\neq q$ ;thus $\sigma(T)\neq T$ .

We have thus seen that for acharacteristic free theory of involutions,
it is beneficial to look for tori on which $\sigma$ acts by inversion. Thus the
following definition.
Definition 2.1. Atorus $A$ is said to be $\sigma$-split if $\sigma$ acts by inversion
on $A$ .

By amodification of the argument sketched above, one obtains the
following theorem, which is due to Th. Vust for char(fc) $\neq 2$ .

Proposition 2.2. Assume that the involution $\sigma$ is not the identity
map. Let $k$ be an algebraically closed field. Then

(1) There exists a non-trivial $\sigma$-split torus.
(2) Let $A$ be a maximal $\sigma$ -split to us of G. Then $A$ is the unique

maximal $\sigma$-split torus of $Z_{G}(A)$ .
(3) The commutator of $Z_{G}(A)$ is contained in $G^{\sigma}r[Z_{G}(A)_{1}Z_{G}(A)]\subset$

$G^{\sigma}$ .
(4) $Z_{G}(A)=(Z_{G}(A)\cap H)^{0}A$ .
(5) Let $T$ be a torus of $G$ such that $A\subset T$ . Then $T$ is O-stable.
(6) Let $P$ be a $\sigma$-split minimal $k$ -parabolic subgroup. Then there $i_{\iota}s$

a unique maximal $\sigma$ -split torus $A$ in $L=P\cap P^{\sigma}$ .
(7) One has $L-Z_{G}(A)$ ,

We can then define arestricted root system for the symmetric pair
$(G, \sigma)$ . Let $A$ be amaximal a-split maximal torus. Let $T\supset A$ be a
maximal torus; it is automatically a-stable, by virtue of 2.2
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The inclusion A $arrow T$ induces the projection map $\pi$ : $X^{*}(T)arrow$

$X^{*}(A)$ . Let It(G, T) be the root system of G with respect to T, and
let E $=\pi(R(G, T))-\{0\}$ . The argument of Richardson [?] carries
over to show that the pair (R,$X^{*}(A)$ (&R) is aroot system, possibly
non-reduced.

Proposition 2.3. (1) The pair $(R, X^{*}(A)\otimes \mathbb{R})i,s$ a root system.
(2) Let $W=N_{G}(A)/Z_{G}(A)$ . Then the $i\uparrow\tau\iota,age$ of $W$ in End(X’(A) (&

$\mathrm{R}$ coincides with the group generated by reflections with respect
to elements of $R$ .

3. AMODEL OVER $\mathbb{Z}$

The purpose of this section is to give amodel for asymmetric variety
defined over the ring of integers. In the group case, where $G\mathrm{x}$ (; acts
on $G$ , amodel has been constructed by Chevalley. The resulting model
has amaximal torus split over the ring of integers. For thc model
we construct here, we assume that the symmetric pair is as “split” as
possible. Namely, we assume that $G$ is split over $k$ , and lhal Lhere
exists amaximal a-split torus split over $k$ .

We first lift the action of $\sigma$ to the Chevalley group $\mathcal{G}$ over Z. Let
us start with aconnected reductive group $G$ defined over afield $k$ of
char $\neq 2$ , equipped with an involution $\sigma$ defined over $k$ . Let us assume
that $G$ is maximally split; there exists amaximal a-split torus $A$ split
over $k$ and amaximal torus $T$ containing $A$ split over A.

Let $R=R(G,T)$ denote the root system of $G$ with respect to the
maximal torus $T$ . Fix asystem of positive roots $R^{+}$ so that the fol-
lowing holds: for $ae\in R^{+}$ if $\sigma(\alpha)\neq\pm 1$ , then $\sigma(\alpha)\in(-R^{+})$ . Let $D$

be the set of simple roots corresponding to the choice of $R^{+}$ . By the
theory of Chevalley groups, there exists areductive group scheme $\mathcal{G}$

defined over $\mathbb{Z}$ such that $\mathcal{G}\otimes k\cong G$ . Let $\mathrm{g}$ be the Lie algebra of $\mathcal{G}$ . Let
$X_{\alpha}$ , $H_{a}$ be aChevalley system of $\mathrm{g}$ , corresponding to the choice $R^{+}$ of
positive roots. By virtue of ??, the root system $R(G,T)$ contains only
real, complex or compact imaginary roots with respect to the tr-action.
Define the action of $\sigma$ on simple root vectors by

(1) If $\alpha\in D$ is acomplex root, then $\sigma(X_{\alpha})=-X_{\sigma(a)}$ and $\sigma(H_{\alpha})=$

$H_{\sigma\{\alpha)}$ .
(2) If $\alpha\in D$ is areal root, then $\sigma(X_{\alpha})=X_{-\alpha}$ and $\sigma(H_{\alpha})=-H_{\alpha}$ .
(3) If $\alpha$ is compact imaginary root, then $\sigma(X_{a})=X_{a}$ and $\sigma(H_{a})=$

$H_{a}$ .
The following proposition holds.

Proposition 3.1. Under the assumptions $0 \int lh\dot{h}9$ section:
(1) The morphism $\sigma$ extends to an involutive automorphism of 9

uzhich extends to an involutive automorphism of $\mathcal{G}$ defined over
Z.
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(2) Let k be the original field of definition. Then the pair ( $\mathcal{G}\otimes k$ , ax
k) is isomorphic to (G,$\sigma)$ .

The pair ( $\mathcal{G}\otimes \mathbb{Q}$ , a@Q) gives asymmetric pair defined over Q. This
symmetric pair is maximally split over $\mathbb{Q}$ in the sense that there exists
a $\mathbb{Q}$-split maximal torus $T$ of $\mathcal{G}$ , and amaximal a-split torus $A\subset T$

split over Q. Let $G=Ci\otimes \mathbb{Q}$. Then the homogeneous space $G/G^{\sigma}$ is an
affine variety defined over Q. The Lang map $\mathrm{A}(\mathrm{g})=\sigma(g)g^{-1}$ gives an
isomorphism of $G/G^{\sigma}$ with asubvariety $S$ of $G$ . The scheme theoretic
closure of $S$ in $\mathcal{G}$ gives an affine scheme $S’$ over $\mathbb{Z}$ with twisted $\mathcal{G}$-action.
However the fiber of $\mathrm{S}’$ over 2is not ahomogeneous space of ($;\otimes\overline{\mathrm{F}_{2}}$ in
general. This happens because in some cases, the fixed point set of $\sigma$

at the prime 2is not reductive. In order to remedy the situation, it is
necessary to replace $\mathrm{S}’$ by its dilation with respect to the closed orbit
in the special fibre over 2.
Theorem 3.1. Let $(G, \sigma)$ be a symmerric pair defined over a field $k$ of
characteristic not equal to 2. Let $(\mathcal{G}, \sigma)$ be $ite$ lift to $\mathbb{Z}$ defined above.
Then there exists a closed smooth affine $sc_{d}h,em,e$ $S$ flat over $\mathrm{S}\mathrm{p}\mathrm{e},\mathrm{c}.(\mathbb{Z})$ ,
equipped with an action of $\mathcal{G}$ such that

(1) For a field $k$ of characteristic not equal to 2, $S\otimes k$ is isomor phic
to $\mathcal{G}\otimes k/(\mathcal{G}\otimes k)^{\sigma}$ .

(2) For a field $k$ of characteristic 2, S@ $k$ is a homogeneous space
with reductive isotropy subgroup.

It should be noted that $\mathrm{S}(k)\neq \mathcal{G}(k)/\mathcal{G}(k)^{\sigma}$ in general.
It is instructive to look at the case of non-singular conies to under-

stand the construction. Let $G=GL(3)$ , and let $\sigma(X)={}^{t}X^{-1}$ . Then
the Lang map $L$ : $Garrow G$ defined by $L(X)=X\sigma(X)^{-1}$ allows us
to identify $G/G^{\sigma}$ with the space of non-degenerate 3 $\mathrm{x}$ $3$ symmetric
matrices over fields of characteristic not equal to two. For geometric
reasons, one is interested in the space of non-singular conies. The corre-
spondence between non-singular symmetric matrices and non-singular
conies break down over fields of characteristic two. The correspondence
between $(a_{!j})$ and $q= \sum b_{ij}x_{i}x_{j}$ has denominators since $a_{ij}=. \cdot\frac{b_{j}+b_{\dot{g}k}}{2}.$ .
The remedy here is to consider the rational map $a_{ij},arrow a_{ij}$ if $i,$ $\neq j$

and $a_{ii}arrow 2a:i$ for the diagonal entries. The proper transform of non-
singular matrices gives the desired model.

Let us give abrief description of the construction. In order to con-
struct an affine scheme over the ring of integers, it is sufficient to give
the coordinate ring as a $\mathbb{Z}$-algebra. Consider the $G$-action on $X$ . There
is $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$ multiplication map $G\cross Xarrow X$ . Let us see how one can embed
the coordinate ring of $X$ into the dual of the universal envelopping
algebra $U(\mathfrak{g})$ of the Lie algebra $\mathfrak{g}$ . Let $P\in U(\mathfrak{g})$ and let $f\in \mathbb{Q}[X]$ .
Then $Pf\in \mathbb{Q}[X]$ , and $Pf(e)\in \mathbb{Q}$ . Hence given $f$ , we can associate
alinear form $Parrow Pf(e)$ . The problem now is to find asubring $A$ of
$U(\mathfrak{g})^{*}=\mathrm{H}\mathrm{o}\mathrm{m}(U(frg),\mathbb{Q})$ which is finitely generated over $\mathbb{Z}$ satisfyin$\mathrm{g}$
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the following conditions. Let $\mu$ denote the comultiplication of the Hopf
algebra $U(\mathrm{g})^{*}$ . Then $\mu(A)\subset A\otimes B$ , where $B$ denotes the $\mathbb{Z}$-form of
Q. Chasing through duality, this becomes equivalent to the fact that
$A$ is stable under the action of $\mathfrak{g}_{\mathbb{Z}}$ , which acts by differentiation.

$\mathbb{Q}\otimes A$ is the ring of elements of $B\otimes \mathbb{Q}$ killed by $(\mathrm{g}\otimes \mathbb{Q})^{\sigma}$ . The
sublattice $A$ is given by adivided-power construction for elements of 9
corresponding to real roots.

4. THE CANONICAL COMPACTIFICATION

We make abrief interlude to explain the notion of acanonical com-
pactification of semisimple symmetric varieties of adjoint type.

Let $k$ be an algebraically closed field, and let $G$ be asemisimple
group scheme of adjoint type defined over $k$ equipped with an involutive
automorphism $\sigma$ , also defined over $k$ .

Theorem 4.1. There exists a smooth 9-scheme X over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}.(\mathbb{Z})$ such
that:

(1) $X$ is a smooth scheme over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z})$ with a 9-acti0n.
(2) There is an open subscheme $X_{0}$ of $X$ such that the complement

of $X_{0}$ in $X$ is a divisor with only norm.al crossings. The num.ber
of irreducible components of the divisor is equal to $p$ , the rank
of the symmetric pair $(9, \sigma)$ .

(3) Let $F$ be an algebraically closed field. Then $X\otimes F$ is an equivari-
ant smooth compactification, of $9/9^{\sigma}\otimes F$ . If char(F) $=0$ , then
it is isomorphic to the wonderful compactification of $DeC_{J}onci,ni-$

Procesi[l].
(4) There is an action of $\Gamma$ on $X\otimes k_{s}$ such that the fixed point

scheme $(X @ k_{s})^{\Gamma}$ is a smooth $c,ompactification$ of the hornoge-
neow space $G/G^{\sigma}$ .

Remark 4.2. The space of non-singular conies in the projective plane
$\mathrm{P}^{2}$ is a homogeneous space under the action of PGL(3). The stabilizer
of the form, $xy+z^{2}$ is $O(3),$’it is the fixed point of an involution of
PGL(3). The compactification $X$ above has the following interpretation
in classical terms. Let $C$ denote a nonsingular conic in $\mathrm{P}^{2}$ , and let

$\check{C}$ denote the dual curv’$e$ of C. The dual curve lies in $\check{\mathrm{P}}^{2}$ , the dual
projective space. This is the space of complete conies, first considered
by $C^{1},h,\alpha 9le_{\wedge}9$ .

For an algebraically closed field $F$ of characteristic not equal to 2,
$X\otimes F$ is the closure of the correspondence $(C, (C))\vee$ in $\mathrm{P}^{2}\mathrm{x}\check{\mathrm{P}}^{2}$ .

For an algebraically closed field $F$ of characteristic 2the dual curve
(C) $i\mathrm{c}\mathrm{q}$ a pencil of lines. The center of the pencil is called the strange
point of $C$ , denoted by $\mathrm{s}\mathrm{t}(C)$ . The compactification X&F is the closure
of the correspondence $(C,\mathrm{s}\mathrm{t}(C))$ . This coincides with the compactifica-
tion defined by Vainsencher[2]
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5. DECOMPOSITION THEOREMS

The purpose of this section is to give decomposition theorems for
symmetric varieties over $p$-adic fields. Let us give aheuristic argu-
ment to show what time of results are expected. Let $X$ be avariety
defined over $\mathbb{Q}_{p}$ . Let $G(\mathbb{Z}_{p})$ be agood maximal compact subgroup of
$G$ . The space $X(\mathbb{Q}_{p})$ can be thought of as the space of loops in $X$ .
Equivalence under $G(\mathbb{Z}_{p})$ simply deforms the loop within its homotopy
class. Therefore, it is natural to look for geodesies within each hom0-
topy class as candidates for representatives. In the case of compact
groups, given abiinvariant Riemannian metric, the geodesies are one
parameter subgroups.

There are two ways to formulate ” homotopy” in the context of p-adic
groups. One is to define an analogue of length of paths for $p$-adic points.
This we call the moment map method. Another is to define numerical
invariants for $\mathrm{p}$-adic points which are invariant under homotopy; the
invariants are defined as intersection numbers with boundary divisors.

The following construction is crucial for the second approach.
Let us see how one can understand elementary divisors through the

theory of compactifications.
Let $G$ be agroup of adjoint type. Let $\overline{G}$ be the canonical compacti-

fication of $G$ . Let $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathbb{Q}_{p}arrow C_{\tau}$ be a $\mathbb{Q}_{p}$-rational point of $G$ . Then by
the valuative criterion of completeness, we see that there is a $\mathbb{Z}_{p}$-valued
rational point of $\overline{G}$ such that the following diagram is commutative.

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Q}_{p})arrow X$

$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z}_{p})\downarrowarrow\frac{\downarrow}{X}$

Let $D$ be aCartier divisor on $\overline{X}$ . Let us recall the definition of the
intersection number of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z}_{p})arrow\overline{X}$ with $D$ .
Definition 5.1. Let $(f, V)$ be alocal coordinate of $D$ such that the
closed point $P$ of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z}_{p})$ is contained in $V$ . Define $w(P, D)$ to be the
order of vanishing of $f$ at $P$ .

Let $\overline{X}$ be the canonical compactification of $X=G/G^{\sigma}$ .
We define the following map.
$\mu:X(\mathbb{Q}_{p})arrow X_{*}(A)$

Let $\alpha$:be aset of simple roots. Then each $\alpha_{i}$ corresponds to adivisor
$D_{i}$ of the canonical compactification $\overline{X}$ . For apoint $p$ of $X(\mathbb{Q}_{p})$ , let
$<\mathrm{a}\mathrm{i}\mathrm{y}\mathrm{p}>=\mathrm{w}(\mathrm{P}, D:)$ . Then this pairing allows us to associate aone
parameter subgroup $\mu(p)$ to $p$ .

As aformal consequences of this definition, we see that the map $l^{l}$

is $G(\mathbb{Z}_{p})$-invariant.
We are now in position to give the decomposition theorem. Let

$\lambda$ $\in X_{*}(A)$ .
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The following definition is standard.
Proposition 5.2. Let Abe $a$ one parameter subgroup (1PS for short)
of G. Let $P(\lambda)=$ { $s| \lim_{tarrow 0}\lambda(t)s\lambda(t)^{-1}$ exists in $G$} and let $L(\lambda)$ be
the centralizer of Ain G. Then $\mathrm{P}(\mathrm{X})$ is a parabolic subgroup of $G$ , and
$L(\lambda)$ is its Levi subgroup.

Then we can state the following theorem.

Theorem 5.3. Let $F$ be a local field of residual characteristic not equal
to 2. Let $\mu$ : $X(F)arrow X_{*}(A)$ be the map defined above and let $O_{F}$

denote the ring of integers of F. Then $\mu$ is $G(O_{F})$ -invariant, and the
fiber has the following structure. Let $k_{F}$ denote the residue class field.
Then $\mu^{-1}(\lambda)=\{L(\lambda)(k_{\mathrm{A}’})\backslash (L(\lambda)/L(\lambda)^{\sigma})(k_{F’})\}$ .

We remark that the case where the residual characteristic is equal
to 2can also be treated in asimilar way; in this case, we need to allow
for ramification, and the fiber will be of the form

$L(\lambda)(O_{F}/\pi^{\mathrm{e}}))\backslash (L(\lambda)/L(\lambda)^{\sigma})(O_{F}/\pi^{e})$

for asuitable integer $e$ (the ramification index).
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